New visual secret sharing schemes
using probabilistic method
Ching-Nung Yang
Pattern Recognition Letters 25 , 2004
指導老師:李南逸
Speaker:黃資真
1
Outline
Introduction
ProbVSS scheme
A k-out-of-n ProbVSS scheme
A 2-out-of-2 ProbVSS scheme
A 2-out-of-n ProbVSS scheme
A k-out-of-k ProbVSS scheme
A general k-out-of-n ProbVSS scheme
Conclusion
2
Introduction
White pixels show the contrast of recovered
image.
The new scheme is non-expansible shadow.
3
ProbVSS scheme
n
k
C0
shadows
Get the shared secret by stacking their shadows.
n*1 Boolean matrices of sharing a white pixel.
C1 n*1 Boolean matrices of sharing a black pixel.
L(V) ‘OR-ed’ operation of this k-tuple column vector V.
λ
L( C0 ) values
γ
L( C1 ) values
α
contrast α>0
pTH The threshold probability 0≦ pTH≦1
p0
The appearance probability of white pixel in the write area.
p1
The appearance probability of white pixel in the black area.
Probabilistic scheme use the abbreviation ProbVSS scheme.
4
A k-out-of-n ProbVSS scheme
A (k,n) ProbVSS Scheme is conditions :
n*1 matrices in the set C0 and
C1 , L(V) operation
values of all matrices form two sets λ and γ.
The two sets λ and γ satisfy that
p1 ≦ pTH -α.
p≧0
pand
TH
For any subset { i1 , i2 ,..., iq } of {1,2,…,n} with q<k, the p0
and p1 are the same.
5
A 2-out-of-2 ProbVSS scheme
i , j denotes the set of all n*1 column matrices.
ex:3*1
2,0
1 0 1
, 1 , 0
1
0 1 1
Construction:
C0 {0,0 ,2,0 }
Proof.
C0 {0,0 ,2,0 }={ 00 , 11 }
C1 ={1,1}
C1 ={1,1}={ 01 , 10 }
C0 and C1 is sets consisting
so
of 2*1 matrices.
{L( 00 ) ,L( 11 )}={0,1} , p 0 0.5
Theorem:
pTH = 0.5
{L( 01 ) ,L( 10 )}={1,1} , p1 0
= 0.5
6
A 2-out-of-2 ProbVSS scheme
Proof of third condition “security”:
Shadow 1 λ={L([0]) , L([1])} = {0,1} ,
γ={L([0]) , L([1])} = {0,1} ,
Shadow 2 λ={L([0]) , L([1])} = {0,1},
γ={L([1]) , L([0])} = {1,0},
p0=0.5
p1 =0.5
p0 =0.5
p1 =0.5
7
A 2-out-of-n ProbVSS scheme
Construction 1:
C0 {0,0, n ,0 }
C1 {[ n / 2],1} (even n)
C1 {[ n / 2],1,[ n / 2]1,1}
(odd n)
C0 and C1 is sets consisting of n*1 matrices
Theorem 1:
p TH 0.5
n
(even n)
4n 4
n+1
(odd n)
4n
8
A 2-out-of-n ProbVSS scheme
Proof: A (2,3) ProbVSS scheme
C0
C1
0 1
1
{ 0,0
,3,0 }=
0
,
0 1
{1,1
, 2,1}
0 0 1 1 0 1
1
0
1
1
0
=
0
,
,
,
,
,
1 0 0 0 1 1
0
L , L
0
1
1
0,1
0
0
1
L , L , L ,
0
1
0
1
1
0
L
,
L
,
L
1
0
1
{0,1,1,1,1,1}
p 0 =1/2
p TH =0.5
p1 =1/6
=1/3
9
A 2-out-of-n ProbVSS scheme
Proof: A (2,4) ProbVSS scheme
C0
C2
0 1
0
1
{ 0,0
, 4,0 }=
,
0 1
0 1
{ 2,1}
1 0 1 0 0 1
1
0
0
1
1
0
=
,
,
,
,
,
0 1 1 0 1 0
0 1 0 1 0 1
0
1
L , L 0,1
0
1
1
0
1
L , L , L ,
1
0
0
0
1
0
L 1 , L 0 , L 1
{1,0,1,1,1,1}
p 0 =1/2
p TH =0.5
p1 =1/6
=1/3
10
A 2-out-of-n ProbVSS scheme
Construction 2:
n-1
C0 {0,0,n ,0 ... n ,0 }
C1 {n -1,1}
C0 and C1 is sets consisting of n*1 matrices
Theorem 2:
pTH 1/ n
1/ n
11
A 2-out-of-n ProbVSS scheme
Proof: A (2,3) ProbVSS scheme
0 1 1
,1,1
C0 { 0,0
,3,0
,3,0 }=
0
0 1 1
C1 { 2,1}
1 0 1
, 1 , 0
=
1
0 1 1
1
1
0
L , L , L 0,1,1
1
1
0
1
1
0
{1,1,1}
L , L , L
1
0
1
p 0 =1/3
p TH =1/3
p1 =0
=1/3
12
A k-out-of-k ProbVSS scheme
Construction 2:
C0 i ,0 , where i is even and 0 i k
C1 i ,1 , where i is odd and 0 i k
C0 and C1 is sets consisting of n*1 matrices
Theorem 2:
pTH =1/2k-1
=1/2k-1
13
A k-out-of-k ProbVSS scheme
Proof: A (3,3) ProbVSS scheme
0 1 1 0
C0 {0,0, 2,0 }= 0 , 1 , 0 , 1
0 0 1 1
1 0 0 1
C1 {1,1
,3,1} = 0 ,1 , 0 ,1
0 0 1 1
0
1
1
0
L 0 ,L 1 ,L 0 ,L 1 0,1,1,1
0
0
1
1
1
0
0
1
L 0 ,L 1 ,L 0 ,L 1 {1,1,1,1}
0
0
1
1
p 0 =1/4
p TH =1/4
p1 =0
=1/4
14
A general k-out-of-n ProbVSS scheme
h
l
m
B0
B1
T(.)
The ‘whiteness’ of white pixel
The ‘whiteness’ of black pixel
shadow size
n*m Boolean matrices of sharing a white pixel.
n*m Boolean matrices of sharing a black pixel.
T(.) is transferred to a set of ‘m’ n*1 column
matrices.
15
A general k-out-of-n ProbVSS scheme
Construction :
C0 T ( B0 )
C1 T ( B1 )
Theorem:
h
p TH
m
hl
m
16
A general k-out-of-n ProbVSS scheme
Proof: A Shamir’s (3,4) VSS scheme with white and black matrices
0
0
(1) B0
0
0
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1
1
1
B1
1
1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
0
0
1
0 0 1 1 1 0
, L 0 , L 1 ,
L
0
0
0
1
1
0
1
1
(2) C0 T ( B0 ) , , , , ,
0
0
0
0
1
0
1
1
(3)
1,1, 0,1,1,1
1
1
0
0 0 0 1 1 1
L 1 , L 0 , L 1
1 1 0 0 0 1
1
0
1
0
1
0
1 1 0
1
1
0
C1 T ( B1 ) , , , , ,
L
1
,
L
1
,
L
1 1 0 1 0 0
0 ,
1
0
1
1 1 1 0 0 0
1,1, 0,1,1,1
0
0
1
L 0 , L 1 , L 0
0
0
1
(4) p0 1/ 3
p1 1/ 6
pTH 1/ 3 =1/6
17
Conclusion
New (k,n) ProbVSS schemes with non-expansible
shadow size based on the probabilistic method.
The conventional VSS scheme can be transferred
to ProbVSS scheme.
The ProbVSS scheme is a different view of the
conventional VSS scheme.
18
© Copyright 2026 Paperzz