Time-dependent picture for trapping of an anomalous massive system into a metastable well Jing-Dong Bao ([email protected]) Department of Physics, Beijing Normal University 2005. 8. 19 – 21 Beijing 1. The scale theory 2. Barrier passage dynamics 3. Overshooting and backflow 4. Survival probability in a metastable well 1. The model (anomalous diffusion) xb saddle x0 ground state xsc exit 2 1 x 2 A metastable potential: U ( x ) m0 x1 2 2 lb What is an anomalous massive system? memory effect, underdamped (i) The generalized Langevin equation t mx(t ) (t s ) x ( s )ds U ' ( x ) (t ), 0 (t ) 0, (t ) ( s ) k BT (t s ). J. D. Bao, Y. Z. Zhuo: Phys. Rev. Lett. 91, 138104 (2003). J ( ) Here we consider non-Ohmic model( ) (ii) the fractional Langevin equation mx(t ) m 1 (t ) U ' ( x ) (t ) x 1 t Jing-Dong Bao, Yi-Zhong Zhuo: Phys. Rev. C 67, 064606 (2003). (iii) Fractional Fokker-Planck equation 2 P( x, t ) 1 U ' ( x) P( x, t ) 2 P( x, t ) 0 Dt t x x 这里0 Dt1 是一个 分数导数,即黎曼积分 x 1 1 D f ( x ) ( x y ) f ( y )dy, a x ( ) a ( x a) Jing-Dong Bao: Europhys. Lett. 67, 1050 (2004). Jing-Dong Bao: J. Stat. Phys. 114, 503 (2004). Fractional Brownian motion Normal Brownian motion Jing-Dong Bao, Yan Zhou: Phys. Rev. Lett. 94, 188901 (2005). •Here we add an inverse and anomalous Kramers problem and report some analytical results, i.e., a particle with an initial velocity passing over a saddle point, trapping in the metastable well and then escape out the barrier. •The potential applications: (a) Fusion-fission of massive nuclei; (b) Collision of molecular systems; (c) Atomic clusters; (d) Stability of metastable state, etc. •The scale theory (1) At beginning time: the potential is approximated to be an inverse harmonic potential, i.e., a linear GLE; (2) In the scale region (descent from saddle point to ground state) , the noise is neglected, i.e., a deterministic equation; (3) Finally, the escape region, the potential around the ground state and saddle point are considered to be two linking harmonic potentials, (also linear GLE). 2. Barrier passage process 1 U ( x ) mb2 x 2 2 W ( x, t ) x (t ) x (t ) 1 exp 2 2 2 x (t ) x (t ) 2 t 2 x (t ) 1 b (t ' )dt ' x0 (t )v0 0 t t1 0 0 x2 (t ) 2mk B T dt1 dt 2 (t t1 ) (t t 2 ) (t1 t 2 ) J. D. Bao, D. Boilley, Nucl. Phys. A 707, 47 (2002). D. Boilley, Y. Abe, J. D. Bao, Eur. Phys. J. A 18, 627 (2004). The response function is given by ~ sin (t ) 0 r exp( tr)dr R (t ) 2 2 2 ~ ~ r 2 cos with r 2 b2 and exp( a M t ) 2a ~ a 1 , M M a1 a 2 1 exp( a1t ) exp( a 2 t ), R (t ) exp( a M t ) (t ), 1 ~ 2a M a M (t ), 1 2; 1; 0 1 0 0 Where is the anomalous fractional constant ; a M is the largest positive root of the equation s 2 ~ s 2 0 b The effective friction constant is written as 1 1 ~ r sin ( 2) The passing probability (fusion probability) over the saddle point is defined by Ppass ( x0 , v0 , t ) W ( x, t )dx 0 1 erfc 2 2 x (t ) x (t ) It is also called the characteristic function ( x0 , v0 , t ) 1.2 normal diffusion (a) v0=6.0 (x0,v0,t) 1.0 subdiffusion 0.8 0.6 Passing 0.4 Probability 0.2 0.0 0 1 2 3 4 5 6 7 8 9 10 t 0.5 (b) v0=3.0 (x0,v0,t) 0.4 0.3 0.2 0.1 0.0 0 2 4 6 8 10 3. Overshooting and backflow j (t ) dPpass ( xb , v0 , t ) dt exp( z 2 (t )) 2 x (t ) ( t t ) where z (t ) 1 t1 t 2 2 mk Tz ( t ) B (t )v dt1 dt 2 (t1 t 2 ) b (t ) x0 0 ( t ) x 0 0 ( t t 2 ) ( t t1 ) ( t t 2 ) x (t ) 2 x (t ) * For instance, quasi-fission mechanism J. D. Bao, P. Hanggi, to be appeared in Phys. Rev. Lett. (2005) 35 (b) 30 25 j(t) 20 15 10 5 0 -5 0.1 t 1 v0 10 (a) 8 <x(t)> 6 x(t) 4 2 0 -2 0 2 4 t 6 8 10 Pfus Pfus 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 100 100 0.2 (a) Mo+ Mo 0.1 0.0 180 190 200 210 220 230 240 250 260 Ecm/MeV Pfus Pfus 86 123 (b) Kr+ Sb 210 220 230 Ecm/MeV Ecm/MeV 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 96 124 0.2 (c) Zr+ Sn 0.1 0.0 210 220 230 240 250 260 270 280 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 200 240 250 1.1 1.0 1D 0.9 0.8 0.7 0.6 2D 0.5 0.4 0.3 100 110 0.2 (d) Mo+ Pd 0.1 0.0 210 220 230 240 250 260 270 280 Ecm/MeV 4. Survival probability in a metastable well We use Langevin Monte Carlo method to simulate the complete process of trapping of a particle into a metastable well t ttr ; N ( x 0, t ) Ppass (t ), Psur (t ) N0 Ppass (ttr ) exp( rk t ), t ttr . 0 x 0.5 (a) v0=0.3 Psur(t) 0.4 0.3 0.2 0.1 0.0 -1 10 0 1 10 2 10 3 10 t 10 1.0 (b) v0=2.0 Psur(t) 0.8 0.6 0.4 J.D. Bao et. al., to be appeared in PRE (2005). 0.2 0.0 -1 10 0 10 1 t 10 2 10 Summary 1. The passage barrier is a slow process, which can be described by a subdiffusion; 2. When a system has passed the saddle point, anomalous diffusion makes a part of the distribution back out the barrier again, a negative current is formed; 3. Thermal fluctuation helps the system pass over the saddle point, but it is harmful to the survival of the system in the metastable well. Thank you !
© Copyright 2026 Paperzz