Tamsui Oxford Journal of Information and Mathematical Sciences 28(3) (2012) 281-292 Aletheia University A New Multiple Inequality Similar to Hardy-Hilbert’s Integral Inequality ∗ Vandanjav Adiyasuren† Department of Mathematical Analysis, National University of Mongolia, Ulaanbaatar, Mongolia and Tserendorj Batbold‡ Institute of Mathematics, National University of Mongolia, P.O. Box 46A/104, Ulaanbaatar 14201, Mongolia Received February 9, 2011, Accepted October 24, 2011. Abstract In this paper, by introducing some parameters we establish a new multiple inequality similar to Hardy-Hilbert’s integral inequality with the best constant factor which involves the Γ function. Some particular results are obtained. Keywords and Phrases: Hardy-Hilbert’s inequality, Hölder’s inequality, Hardy’s inequality. ∗ 1991 Mathematics Subject Classification. Primary 26D15. E-mail: V [email protected] ‡ Corresponding author. E-mail: [email protected] † 282 Vandanjav Adiyasuren and Tserendorj Batbold 1. Introduction If p > 1, p1 + 1q = 1, f, g ≥ 0, satisfy 0 < R∞ q g (x)dx < ∞, then 0 ∞ Z ∞ Z 0 0 Z ∞ ∞ Z 0 f (x)g(y) π dxdy < x+y sin( πp ) 0 f (x)g(y) dxdy < pq max{x, y} R∞ 0 ∞ Z f p (x)dx f p (x)dx < ∞ and 0 < p1 Z 0 g q (x)dx 1q , (1.1) 0 p1 Z ∞ Z ∞ p ∞ q 1q g (x)dx f (x)dx (1.2) 0 0 where the constant factors π/(sin π/p) and pq are the best possible. Inequalities (1.1) and (1.2) are called Hardy-Hilbert’s inequalities (see [1]) and are important in analysis and their applications (cf. Mitrinović et al. [2]). At present, because of the requirement of higher-dimensional harmonic analysis and higher-dimensional operator theory, multiple Hardy-Hilbert’s integral inequalities are researched (see [3, 4, 5]). In 2005, Yang ([3]) gave the following inequality. P Theorem 1.1. If n ∈ N\{1}, pi > 1, ni=1 p1i = 1, λ > 0, fi ≥ 0, satisfy Z ∞ 0< xpi −1−λ fipi (x)dx < ∞ (i = 1, 2, . . . , n), 0 then Z ∞ Z ··· 0 0 ∞ n Y 1 P n j=1 xj λ fi (xi )dx1 . . . dxn i=1 n 1 Y < Γ Γ(λ) i=1 where the constant factor 1 Γ(λ) Qn i=1 Γ Z ∞ p1 i λ pi −1−λ pi x fi (x)dx pi 0 λ pi (1.3) is the best possible. In the recent years, many new inequalities similar to (1.1) and (1.2) have been established; see ([6, 7, 9]). Recently Das and Sahoo ([6]) have given a new inequality similar to Hardy-Hilbert’s inequality (1.1) as follows: 283 Multiple Inequality Similar to Hardy-Hilbert’s Inequality Theorem 1.2. Let p > 1, p1 + 1q = 1, λ, s, r > 0, r + s = λ, f, g ≥ 0 and F (x) = Rx Rx R∞ R∞ f (t)dt, G(x) = 0 g(t)dt. If 0 < 0 f p (x)dx < ∞ and 0 < 0 g q (x)dx < 0 ∞, then Z ∞ 0 ∞ Z 0 1 1 xr− q −1 y s− p −1 F (x)G(y)dxdy (x + y)λ Z ∞ p1 Z p < pqB(r, s) f (x)dx 1q ∞ q g (x)dx (1.4) 0 0 where the constant factor pqB(r, s) is the best possible. Sulaiman ([8, 9]) derived three new integral inequalities similar to (1.1) as follows: Theorem 1.3 ([8]). Let f, g, h ≥ 0, p, q, r > 2, x Z + 1q + 1 r = 1, y Z f (t)dt, F (x) = 1 p g(t)dt, G(y) = h(t)dt. H(z) = 0 0 0 z Z Then ∞ ∞ ∞ p x1/p y 1/q z 1/r xyzF (x)G(y)H(z) dxdydz (x + y + z)6 0 0 0 Z ∞ 1/p Z ∞ 1/q Z p/2 q/2 < Kp Kq Kr f (x)dx g (y)dy Z Z Z 0 0 1/r ∞ r/2 h (z)dz 0 (1.5) where s Kp = p/2 B 1/p p/2 − 1 1 1 , p p B 1/p (p, p). Theorem 1.4 ([9]). Let f, g ≥ 0, p > 1, p1 + 1q = 1, λ > 1, αp = p(λ − 1) + 1. Define Z x Z y F (x) = f (t)dt, G(y) = g(t)dt. 0 0 284 Vandanjav Adiyasuren and Tserendorj Batbold Then Z ∞Z 0 ∞ F 0 αq αpp αqq (x)G q (y) αq αp dxdy <B(λ, λ) (x + y)2λ αp − 1 αq − 1 p1 Z ∞ 1q Z ∞ αp αq f (x)dx g (y)dy . × αp p 0 0 (1.6) Theorem 1.5 ([9]). Let f, g, h ≥ 0, p, q, r > 1, p1 + 1q + αs,t = λ(1 + s/t) + (λ − 1)(s − 1), 1 r = 1, s, t ∈ {p, q, r}, λ > 1. Define Z x Z f (t)dt, F (x) = h(t)dt. H(z) = 0 0 Suppose also that Z ∞ f αp,q (t)dt < ∞, 0< ∞ Z g 0< αq,r Z (t)dt < ∞, ∞ hαr,p (t)dt < ∞. 0 ∞ F αp,q /p (x)Gαq,r /q (y)H αr,p /r (z) dxdydz (x + y + z)4λ 0 0 0 1/q Z 1/p Z ∞ Z ∞ αq,r αp,q g (y)dy f (x)dx <K Z ∞ 0< 0 0 z Z g(t)dt, G(y) = 0 Then Z ∞Z y αr,p h (z)dz (1.7) 0 0 0 1/r ∞ where K = B(λ, λ)B(2λ, 2λ) αp,q αp,q − 1 αp,q /p αq,r αq,r − 1 αq,r /q αr,p αr,p − 1 αr,p /r . But he cannot show that the constant factors in the new inequalities are the best possible. In this paper, by introducing some parameters we establish a new multiple generalization of the above four inequalities similar to Hardy-Hilbert’s integral inequality (1.3) with the best constant factor. Some particular results are obtained. Multiple Inequality Similar to Hardy-Hilbert’s Inequality 285 2. Preliminary Lemmas In order to prove main result, we need the following lemmas. Pk+1 Lemma 2.1. If k ∈ N, ri > 1(i = 1, 2, . . . , k + 1), and Z ∞ Z ∞ ··· 0 0 k Y 1 1+ Pk j=1 uj λ(k) i=1 ri = λ(k), then Qk+1 r −1 uj j du1 . . . duk = j=1 Γ(ri ) . Γ(λ(k)) i=1 (2.1) For the proof of Lemma 2.1 the reader is referred to ([3, 4]). Lemma 2.2 (Hardy’s inequality, cf. [1]). If p > 1, f ≥ 0 and F (x) = Rx f (t)dt, then 0 Z 0 ∞ F (x) x p dx < p p−1 p Z ∞ f p (x)dx (2.2) 0 unless f ≡ 0. The constant is the best possible. Lemma 2.3. Let p > β1 , 0 < β ≤ 1, 0 < ε < βp − 1 for x ≥ 1, then (x βp−(1+ε) βp − 1)β ≥ x βp−(1+ε) p − 1. (2.3) Proof. For x ≥ 1, we set f (x) = (x βp−(1+ε) βp − 1)β − x βp−(1+ε) p +1 Simple computations yield for x > 1 f 0 (x) = 1+ε−βp βp − (1 + ε) (β−1)p−(1+ε) p x (1 − x βp )β−1 − 1 > 0. p f is increasing function on (1, ∞) and continuous on [1, ∞). In particular, we have f (x) ≥ f (1) = 0, which gives the desired inequality. 286 Vandanjav Adiyasuren and Tserendorj Batbold 3. Main Results P Theorem 3.1. Let n ∈ N\{1}, pi > α1i , 0 < αi ≤ 1, ni=1 p1i = 1, λ, si > 1, and Rx Pn Assume Fi (x) = 0 fi (t)dt (i = 1, 2, . . . , n). If fi ≥ 0 satisfy i=1 R s∞i =αi pλ. 0 < 0 fi i (x)dx < ∞ (i = 1, 2, . . . , n) then the following inequality holds: Z ∞ ∞ Z ··· 0 n Y 1 P n j=1 0 xj λ si + p1 −1−αi xi i i=1 n 1 Y Γ(si ) < Γ(λ) i=1 1 Γ(λ) where the constant factor Fiαi (xi )dx1 . . . dxn Qn i=1 α i pi αi pi − 1 Γ(si ) αi Z ∞ fiαi pi (x)dx p1 i (3.1) 0 αi p i αi pi −1 αi is the best possible. Proof. By Hölder’s inequality and Lemma 2.1, we have Z ∞ Z ∞ ··· J = P 0 0 n Y 1 n j=1 λ xj si + p1 −1−αi xi i Fiαi (xi )dx1 . . . dxn i=1 Z ∞ Z ··· = 0 0 ≤ Z n Y i=1 Qn = 0 ∞ ∞ n j=1 xj i=1 ∞ Z ··· 0 n Γ(sj ) Y Γ(λ) i=1 j=1 n n sj −1 Y psi −αi Y pi i x Fiαi (xi ) x λ j i dx1 . . . dxn 1 P 1 P n j=1 Z 0 ∞ xj j=1 (j6=i) s λ xi i Fi (xi ) xi n Y s −1 xj j j=1 (j6=i) Fi (xi ) xi αi pi dx1 . . . dxn 1 pi p1 αi pi dxi i . (3.2) Then by Hardy inequality (2.2), (3.1) is valid. For the best constant factor, let for sufficiently small ε > 0, ( 0, for x ∈ (0, 1) fei (x) = (i = 1, 2, . . . , n) − α1+ε p x i i , for x ∈ [1, ∞) Multiple Inequality Similar to Hardy-Hilbert’s Inequality then we find n Z Y ∞ feiαi pi (x)dx p1 i = 0 i=1 1 ε 287 (3.3) and ( for xi ∈ (0, 1) 0, Fei (xi ) = (i = 1, 2, . . . , n). − 1), for xi ∈ [1, ∞) αi αi Q Q i pi i Denote φ(ε) = ni=1 αi piα−(1+ε) . Then φ(ε) → ni=1 ααi piip−1 , as ε → 0+ and for xi ≥ 1, by Lemma 2.3, we have n n n αi pi −(1+ε) αi pi −(1+ε) Y Y Y αi pi pi αi αi e − 1) > φ(ε) (xi − 1). Fi (xi ) = φ(ε) (xi αi pi −(1+ε) αi p i αi pi (xi αi pi −(1+ε) i=1 i=1 i=1 Hence, we have Z ∞ Z J(ε) = ··· 0 ∞ P n j=1 0 Z ∞ Z ∞ n j=1 ··· =φ(ε) n j=1 i Feiαi (xi )dx1 . . . dxn i=1 n Y xj λ si + p1 −1−αi xi n Y xj i αi pi −(1+ε) pi (xi − 1)dx1 . . . dxn i=1 1 P 1 1 si + p1 −1−αi xi 1 ∞ Z λ P 1 1 xj ∞ Z ··· >φ(ε) n Y 1 λ si − pε −1 xi i i=1 ! n k n X XY sj − pε −1 si + p1 −1−αi Y j k (−1) + xi i xj dx1 . . . dxn cyc i=1 k=1 Z ∞ 1 X j=k+1 ∞ ··· >φ(ε) − Z 1 k XY n Y 1 P n j=1 xj λ si + p1 −1−αi xi 1≤k≤n cyc i=1 k−odd i 1≤k≤n cyc k−odd i i=1 n Y j=k+1 X X =φ(ε) M − N (k) . si − pε −1 xi sj − pε j xj −1 dx1 . . . dxn 288 Vandanjav Adiyasuren and Tserendorj Batbold Taking ui = xi+1 (i x1 Z = 1, 2, . . . , n − 1) and using (2.1), we have ∞ ∞ Z ··· M = 1 1 si − pε −1 Qn i=1 xi P n j=1 Z ∞ x−ε−1 dx1 1 = i xj ∞ Z Qn−1 i=1 ∞ x1−ε−1 dx1 1+ 0 0 − ∞ Z ··· 1 Z λ dx1 . . . dxn 1/x1 Z 1/x1 Z i=1 Qn−1 i=1 ··· 1+ 0 0 1 ε −1 i+1 si+1 − p ui Pn−1 ui λ du1 . . . dun−1 si+1 − p ui Pn−1 i=1 ε −1 i+1 ui λ du1 . . . dun−1 Pn−1 ε Qn−1 ε 1 Γ(s1 − i=1 pi+1 ) i=1 Γ(si+1 − pi+1 ) > ε Γ(λ) Z ∞ Z 1/x1 Z 1/x1 n−1 Y si+1 − p ε −1 i+1 −ε−1 du1 . . . dun−1 − x1 dx1 ··· ui 1 0 1 Γ(s1 − = ε − ε p1 + Again taking ui = Z ∞ Z Pn−1 Pn−1 i=1 Qk ··· N (k) = 1 Z = ε i=1 pi+1 ) xi+1 (i x1 ∞ si+1 x−1−γ dx1 1 i=1 ε ) pi+1 Γ(si+1 − Γ(λ) 1 Q n−1 i=1 (si+1 − si + p1 −1−αi i=1 xi i P Qn n j=1 Z i=1 ε . ) pi+1 = 1, 2, . . . , n − 1) and using (2.1), we have 1 ∞ 0 Qn−1 ∞ Z j=k+1 λ sj − pε −1 xj j dx1 · · · dxn xj ∞ ··· g(u1 , . . . , un−1 )du1 . . . dun−1 Z ∞ Z 1/x1 Z 1/x1 −1−γ − x1 dx1 ··· g(u1 , . . . , un−1 )du1 . . . dun−1 1 0 0 Z ∞ Z ∞ Z ∞ −1−γ < x1 dx1 ··· g(u1 , . . . , un−1 )du1 . . . dun−1 1 0 0 Qk−1 Qn−1 1 1 1 Γ(s1 + γ − α1 − p1 ) i=1 Γ(si+1 + pi+1 − αi+1 ) i=k Γ(si+1 − = · γ Γ(λ) 1 0 0 ε ) pi+1 289 Multiple Inequality Similar to Hardy-Hilbert’s Inequality where γ = Pk i=1 αi − Pk 1 i=1 pi + Pn Qk−1 i=1 g(u1 , . . . , un−1 ) = ε i=k+1 pi , and 1 −1−αi+1 i+1 si+1 + p ui 1+ Qn−1 i=k λ i=1 ui si+1 − p ui Pn−1 ε −1 i+1 . Hence, we have ( J(ε) > φ(ε) 1 Γ(s1 − ε 1 Γ(λ) Pn−1 ε i=1 pi+1 ) Qn−1 i=1 Γ(si+1 − Γ(λ) Qn αi p i αi pi −1 ε ) pi+1 ) − (1) . (3.4) αi in (3.1) is not the best possible, αi Qn αi p i 1 Γ(s ) then there exists a positive constant K such that K < Γ(λ) i i=1 αi pi −1 αi Q n αi p i 1 is replaced by K. In and (3.1) still remains valid if Γ(λ) i=1 Γ(si ) αi pi −1 particular by (3.3) and (3.4), we have ( ) P Qn−1 ε ε Γ(s1 − n−1 i=1 pi+1 ) i=1 Γ(si+1 − pi+1 ) φ(ε) − ε (1) Γ(λ) Z ∞ Z ∞ n Y si + p1 −1−αi α 1 xi i <ε ··· Fei i (xi )dx1 . . . dxn λ P n 0 0 i=1 j=1 xj p1 n Z ∞ Y i α fei i (x)dx < εK = K. If the constant factor i=1 i=1 Γ(si ) 0 αi αi p i Γ(s ) ≤ K as ε → 0+ . This contradicts the fact K < i i=1 αi pi −1 αi αi Qn αi p i αi p i 1 Γ(s ) . Hence the constant factor Γ(s ) i i i=1 i=1 Γ(λ) αi pi −1 Γ(λ) αi pi −1 in (3.1) is the best possible. The theorem is proved. 1 Then Γ(λ) Qn 1 Qn Now we discuss some particular cases of (3.1). Taking αi = 1 in Theorem 3.1, we get the following multiple extension of (1.4), with the constant factor is the best possible. P P Corollary 3.2. Let n ∈ N\{1}, pi > 1, ni=1 p1i = 1, λ, si > 1, and ni=1 si = Rx λ. Assume Fi (x) = 0 fi (t)dt (i = 1, 2, . . . , n). If fi ≥ 0 satisfy 0 < 290 Vandanjav Adiyasuren and Tserendorj Batbold R∞ fipi (x)dx < ∞ (i = 1, 2, . . . , n) then the following inequality holds: 0 Z ∞ ∞ Z ··· P n j=1 0 0 n Y 1 xj λ si + p1 −2 xi i Fi (xi )dx1 . . . dxn i=1 p1 Z ∞ n i 1 Y pi pi < fi (x)dx Γ(si ) Γ(λ) i=1 pi − 1 0 Qn pi 1 where the constant factor Γ(λ) is the best possible. i=1 Γ(si ) pi −1 (3.5) Taking n = 3, αi = 1/2 in Theorem 3.1, we get the following generalization of (1.5), with the constant factor is the best possible. Corollary 3.3. Let p, q, r > 2, p1 + 1q + 1r = 1, λ, s1 , s2 , s3 > 1, and s1 +s2 +s3 = Rx Rx Rx λ. Assume F (x) = 0 f (t)dt, G(x) = 0 g(t)dt, and H(x) = 0 h(t)dt. R∞ q R∞ p h ≥ 0 satisfy 0 < 0 f 2 (x)dx < ∞, 0 < 0 g 2 (x)dx < ∞, 0 < RIf∞f, g, r h 2 (x)dx < ∞ then the following inequality holds: 0 Z 0 1 3 1 3 1 3 xs 1 + p − 2 y s 2 + q − 2 z s 3 + r − 2 p F (x)G(y)H(z)dxdydz (x + y + z)λ 0 0 1/r 1/q Z ∞ 1/p Z ∞ Z ∞ r/2 q/2 p/2 (3.6) h (z)dz g (y)dy < Cλ f (x)dx ∞ Z ∞ Z ∞ 0 where the constant factor Cλ = q p/2 . Kp,s1 = Γ(s1 ) p/2−1 0 0 1 K K K Γ(λ) p,s1 q,s2 r,s3 is the best possible and Taking n = 2, α1 = αp /p, α2 = αq /q, s1 = s2 = λ in Theorem 3.1, we get the following result. Corollary 3.4. Let p > α11 , q > α12 , p1 + 1q = 1, λ > 1, αp = p(λ − 1) + 1, and Rx 1 − min{ p1 , 1q } < λ ≤ 2 − max{ p1 , 1q }. Assume F (x) = 0 f (t)dt, and G(y) = Ry R∞ α R∞ α p g(t)dt. If f, g ≥ 0 satisfy 0 < f (x)dx < ∞, 0 < g q (x)dx < ∞ 0 0 0 then the following inequality holds: αq αpp αqq Z ∞ Z ∞ αpp αp αq F (x)G q (y) dxdy <B(λ, λ) (x + y)2λ αp − 1 αq − 1 0 0 Z ∞ p1 Z ∞ 1q αp αq × f (x)dx g (y)dy (3.7) 0 0 291 Multiple Inequality Similar to Hardy-Hilbert’s Inequality where the constant factor B(λ, λ) αp αp −1 αpp αq αq −1 αqq is the best possible. Taking n = 3, α1 = αp,q /p, α2 = αq,r /q, α3 = αr,p /r, s1 = λ 1q + 1 , s2 = λ 1r + 1 , s3 = λ p1 + 1 in Theorem 3.1, we get the following result. Corollary 3.5. Let p > 2−max{ p1 , 1q , r1 } 1+max{ p1 , 1q , r1 } 1 ,q α1 > 1 ,r α2 > 1 1 , α3 p + 1 q + 1 r = 1, s, t ∈ {p, q, r},1 < λ ≤ , and αs,t = λ(1 + s/t) + (λ − 1)(s − 1). Assume F (x) = Rx Ry Rz G(y) = 0 g(t)dt, and H(z) = 0 h(t)dt. R0∞f (t)dt, R R ∞If αf, g, h ≥ 0 satisfy 0 < ∞ αq,r αp,q f (t)dt < ∞, 0 < 0 g (t)dt < ∞, 0 < 0 h r,p (t)dt < ∞ then the 0 following inequality holds: ∞ ∞ ∞ F αp,q /p (x)Gαq,r /q (y)H αr,p /r (z) dxdydz (x + y + z)4λ 0 0 0 1/q Z 1/p Z ∞ Z ∞ αq,r αp,q g (y)dy f (x)dx <K Z Z Z 0 0 1/r ∞ αr,p h (z)dz (3.8) 0 where the constant factor αp,q /p αq,r /q αr,p /r Γ(s1 )Γ(s2 )Γ(s3 ) αp,q αq,r αr,p K= Γ(4λ) αp,q − 1 αq,r − 1 αr,p − 1 is the best possible. References [1] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press Cambridge, 1952. [2] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Inequalities Involving Function and Their Integrals and Derivatives, Kluwer Acadamic Publishers, Boston, 1991. [3] B. Yang, On a New Multiple Extension of Hilbert’s integral inequality, J. Math. Pure and Appl. Math., 6 no. 2 (2005), Art. 39. 292 Vandanjav Adiyasuren and Tserendorj Batbold [4] B. Yang and L. Debnath, On An Extended Multiple Hardy-Hilbert’s Integral Inequality, Tamsui Oxford J. Math. Sci, 21 no. 2 (2005), 157-169. [5] Q. Huang and B. Yang, On a Multiple Hilbert-Type Integral Operator and Application, J. Inequal. Appl, (2009), Article ID 192197, 13 pages. [6] N. Das and S. Sahoo, New Inequalities Similar to Hardy-Hilbert’s inequality, Turk. J. Math, 34 (2010), 153-165. [7] N. Das and S. Sahoo, On a generalization of Hardy-Hilbert’s integral inequality, Bul. Acad. Sţiinţe Repub. Mold. Mat, 2 (2010), 91-110. [8] W. T. Sulaiman, On Three Inequalities Similar to Hardy-Hilbert’s Integral Inequality, Acta Math. Univ. Comenianae, LXXVI no. 2 (2007), 273-278. [9] W. T. Sulaiman, On Two New Inequalities Similar to Hardy-Hilbert’s Integral Inequality, Soochow J. Math, 33 (2007), 497-501.
© Copyright 2026 Paperzz