2.5 Evaluating Limits Algebraically Mr. Peltier Indeterminate Forms • For continuous functions, we use substitution to find the limit • What about discontinuous functions at the discontinuities? • Basic limit laws do not apply to limits of indeterminate forms, such as: – 0/0, ∞/∞, or ∞ - ∞ Indeterminate Forms • So what do we do if f(x) is indeterminate at x = c? • Try to algebraically simplify the function so that it is now continuous at x = c Using Algebra • EX: Evaluate x2 x 2 x lim 2 x2 Substitution gives us 0/0, so we try some factoring x 2 x 2 ( x 1)( x 2) ( x 1)( x 2) x lim 2 x2 x lim 2 ( x 1) 3 Time to cancel! Using Trigonometry • EX: Evaluate x lim 2 tan x sec x sin x cos x 1 sec x cos x tan x Substitution gives us ∞/∞, so we try some identities x lim 2 x sin x cos x 1 cos x lim sin x 2 x lim 2 1 Time to cancel! sin x cos x cos x 1 Using Algebra • EX: Evaluate x lim 4 x 2 x4 Substitution gives us 0/0, so we try using the conjugate (this is a method that sometimes works with roots) x x lim 4 lim 4 x 2 x 2 x4 x 2 x4 Time to cancel! x lim 4 x 4 x 2 1 1 x lim 4 x 2 4 x 2 x 2 x 4 x 2 FOIL the top Using Algebra 2 1 2 • EX: Evaluate x lim 1 x 1 x 1 Substitution gives us ∞ - ∞, so we add the fractions (need common denom) 1 2 x lim 1 x 1 ( x 1)( x 1) 1x 1 2 x lim 1 x 1x 1 ( x 1)( x 1) x 1 2 Time to cancel! x 1 x lim 1 x lim 1 x 1x 1 x 1x 1 1 1 x lim 1 2 x 1 Assignment Page #1, 7, 9, 11, 17, 19, 26, 27, 31, 35, 39, 46, 48
© Copyright 2025 Paperzz