Indian J. Pure Appl. Math., 41(4): 607-623, August 2010 c Indian National Science Academy ° (Z2 )k -ACTIONS WITH FIXED POINT SET OF CONSTANT CODIMENSION 2k + 81 Jingyan Li∗ and Yanying Wang∗∗ ∗ Department of Mathematics and Physics, Shijiazhuang Railway Institute, Shijiazhuang, 050043, Peoples’ Republic of China e-mail : [email protected] ∗∗ College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050016, Peoples’ Republic of China e-mail : [email protected] (Received 19 September 2008; after final revision 26 March 2010; accepted 19 May 2010) k 2 +8 The ideal J∗,k of cobordism classes in the unoriented cobordism ring M O∗ containing a representative admitting a (Z2 )k -action with fixed point set of constant codimension 2k + 8 is determined for k ≥ 4. Key words : (Z2 )k -action, indecomposable cobordism class, fixed point set, constant codimension, Dold manifold. 1. Introduction Let φ : (Z2 )k × M n → M n be a smooth action of the group (Z2 )k = {T1 , T2 , · · · , Tk | Ti2 = 1, Ti Tj = Tj Ti } on a closed n-dimensional manifold. The fixed point set F of the action is a disjoint union of closed submanifolds 1 Project supported by the Academic Research Fund from Shijiazhuang Railway Institute and NSFC (10971050). 608 JINGYAN LI AND YANYING WANG of M n . If each component of F is (n − r)-dimensional, then F has constant r denote the set of n-dimensional cobordism classes codimension r. Let Jn,k containing a representative M n admitting a (Z2 )k -action with fixed point P r = r set of constant codimension r and J∗,k n≥r Jn,k . From [1] we know that r is a subgroup in the unoriented cobordism group M O and J r forms Jn,k n ∗,k P an ideal of the cobordism ring M O∗ = n≥0 M On . It is not difficult to see r1 r2 r1 +r2 r ⊂ Jr that J∗,k . ∗,k+1 and J∗,k J∗,k ⊂ J∗,k 1 = (0) in [2]. Inspired in In 1965, Conner and Floyd showed that J∗,1 r and this fact, Stong introduced the question of determining the ideal J∗,1 2 3 4 computed J∗,1 in [3]. Soon after, Capobianco computed J∗,1 in [4] and J∗,1 5 , J 6 , J 7 and in [5]. After this, Iwata, Wada, Wu and Kikuchi obtained J∗,1 ∗,1 ∗,1 8 respectively in [6-9]. In 1992, Pergher introduced the same question of J∗,1 r with k ≥ 2 in [10]. Also, he computed J 1 and J 2 for determining J∗,k ∗,k ∗,k k ≥ 2, and made a lot of characteristic numbers calculations to determine 3 defined in terms of certain restrictions on the fixed certain sub-ideals of J∗,2 data of the actions. In 1994, Shaker got the most important advance in r in [11]. The crucial point was the discovery the direction of computing J∗,k of a method for constructing models of (Z2 )k −actions on certain manifolds so that one can control two involved properties: the indecomposability of the manifold and the codimension of the fixed point set of the action, thus providing a method to construct generators for the unoriented cobordism r for ring with desired properties. Using this method, Shaker computed J∗,k r < 2k , and concluded that r = 1, (0), r ∞ J∗,k = ⊕n=r M On , r even, ⊕∞ M O ∩ Kerχ, r odd, r ≥ 3, n n=r where χ : M O∗ → Z2 denotes the mod 2 Euler characteristic. Later, in [12], Shaker solved the case r = 2k . The key point was a way to equip Dold manifolds with certain (Z2 )k −actions and the fact that there is a method to recognize the indecomposability of Dold manifolds. These two articles of Shaker gave a clear scheme to attack the next cases. Using this scheme and the complicated formula of Kosniowski and Stong given in [13], Wang, Wu and Ma solved the case r = 2k + 1 in [14], leaving open some particular cases. In [15], Wang, Wu and Ding gave a crucial contribution concerning the determination of the next cases and made an important advance in the r for r > 2k . The authors showed that, for a given setting of computing J∗,k (Z2 )k -ACTIONS WITH FIXED POINT SET 609 r > 2k , there exists a number g(r) much bigger than r so that, if n ≥ g(r), r then Jn,k is explicitly computed. For r > 2k , this completely solves the r question of computing Jn,k for all sufficiently large n. In other words, for k r to a finite and explicit list of r > 2 , this reduces the computation of Jn,k values of n. The authors also solved the case r = 2k + 3 for k ≥ 4 and n ≥ 2k + 4. In [16], Liu and Wu studied the case r = 2k + 2. They used the generalized Dold manifold given in [17] to construct certain indecomposable manifolds equipped with (Z2 )k −actions. This allowed to obtain, besides the case r = 2k + 2, the solution for certain cases left previously open. For r have been determined in [18-21] r = 2k + 4, 2k + 5, 2k + 6 and 2k + 7, J∗,k respectively. In this paper, we will construct some special generators of M O∗ to de2k +8 termine the ideal J∗,k . The main result is k 2 +8 Theorem — For k ≥ 4, the ideal J∗,k of M O∗ consists of all classes k in dimensions greater than 2 + 8 and the decomposable classes in dimension 2k + 8 which contain only factors with dimension less than 2k . Throughout this paper manifolds will be smooth, compact and without boundary but not necessarily connected. S m denotes the m-dimensional sphere. The coefficient group is Z2 (the integers mod 2) and ≡ denotes ¡ ¢ congruence mod 2. Binomial coefficients are m n = m!/n!(m − n)!. 2. Preliminaries It is well known that the unoriented cobordism ring M O∗ is a Z2 -polynomial algebra with a single generator in each dimension n which is not of the form 2u − 1 (see [1]). If the cobordism class [M n ] of the smooth closed manifold M n can be expressed as a sum of products of lower dimensional cobordism classes, then [M n ] is called decomposable. Otherwise it is indecomposable. The indecomposable classes can be chosen as generators of the Z2 -polynomial algebra M O∗ . For our purpose, the indecomposable classes will come from the following sources. Lemma 2.1 — [3; Lemma 3.4] Let RP (n1 , n2 , · · · , nl ) be the projective space bundle of λ1 ⊕ λ2 ⊕ · · · ⊕ λl over RP (n1 ) × RP (n2 ) × · · · × RP (nl ), where λi is the pullback of the canonical line bundle over the i-th factor. Then for l > 1, [RP (n1 , n2 , · · · , nl )] is indecomposable in M O∗ if and only 610 JINGYAN LI AND YANYING WANG if à n+l−2 n1 ! à + n+l−2 n2 ! à + ··· + n+l−2 nl ! ≡ 1 mod 2, where n = n1 + n2 + · · · + nl . The manifold RP (n1 , n2 , · · · , nl ) has dimension n + l − 1. If ni+1 = ni+2 = · · · = nl = 0, then RP (n1 , n2 , · · · , nl ) will sometimes be written as RP (n1 , n2 , · · · , ni ; l). In [17], Brown constructed the generalized Dold manifold. For a space X and a positive integer m, let P (m, X) be formed from S m × X × X by identifying (u, x, y) with (−u, y, x). If X is an n-dimensional manifold, then P (m, X) is an m + 2n-dimensional manifold. He also gave Lemma 2.2 — [17; Proposition 4.1] [P (m, M n )] is indecomposable in M O∗ if and only if [M n ] is indecomposable in M O∗ and the binomial coefficient ! à m+n−1 ≡ 1 mod 2. m−1 To calculate binomial coefficients mod 2, we recall Kummer’s result: If m= l X mi 2i and n = i=0 à with 0 ≤ mi , ni ≤ 1, then m n l X ni 2i i=0 ! ≡ 1 mod 2 if and only if ni ≤ mi for every i. Lemma 2.3 — [11; Lemma 3.1] Let λi −→ Xi be line bundles, and let (Z2 )ki (ki ≥ 0) act on λi as bundle maps with fixed point set Fi on Xi for all l P 1 ≤ i ≤ l with 2ki ≤ 2k . Then RP (n1 , n2 , · · · , nl ) over X1 × X2 × · · · × Xl i=1 admits a (Z2 )k -action with fixed point set F1 × F2 × · · · × Fl × E with E being a set of l points. Lemma 2.4 — [13] If (M n , φ) is a (Z2 )k -action on an indecomposable nmanifold, then some component of the fixed point set of M is of dimension at least [n/2k ]. (Z2 )k -ACTIONS WITH FIXED POINT SET 611 Lemma 2.5 — [13] If (M n , φ) is a (Z2 )k -action on a manifold with s(λ1 ,··· ,λi ) [M ] 6= 0, then some component of the fixed point set of M is of dimension at least [λ1 /2k ] + · · · + [λi /2k ]. 3. Existence of Indecomposables k 2 +8 The main task of this section is to exhibit indecomposable classes in J∗,k . k 2 +8 Lemma 3.1 — There exist indecomposable classes xn ∈ J∗,k for k ≥ 4, k u n ≥ 2 + 9 odd and not of the form 2 − 1. Proof : Since n is not of the form 2u − 1, n−1 is not of the form 2 n−1 2k +9−1 u k−1 2 − 1. We have 2 ≥ = 2 + 4. From [11; 5.1], there exists 2 2k−1 +4 an indecomposable class X ∈ J n−1 ,k (for 2k−1 + 4 < 2k ), so that X has 2 a representative M admitting a (Z2 )k -action with fixed point set F 0 , where n−1 n − 2k − 9 dim(F 0 ) = − (2k−1 + 4) = . Let Ti0 (i = 1, 2, · · · , k) denote 2 2 the (Z2 )k -action on M . Then we can define a (Z2 )k -action on S 1 × M × M as follows: T1 (u, x, y) = (u, T10 (x), T10 (y)), T2 (u, x, y) = (u, T20 (x), T20 (y)), ······ , Tk (u, x, y) = (u, Tk0 (x), Tk0 (y)). These involutions commute with the map T (u, x, y) = (−u, y, x), so that induce a (Z2 )k -action on P (1, M ) with fixed point set F = S 1 × F 0 × F 0 /T = P (1, F 0 ), where dimF = n − 2k − 8. Taking xn = [P (1, M )], we have that 2k +8 xn ∈ J∗,k . By Lemma 2.2, xn is indecomposable. ¤ k 2 +8 Lemma 3.2 — There exist indecomposable classes xn ∈ J∗,k for k ≥ 4, k k+1 2 + 10 ≤ n ≤ 2 and n even. Proof : We will consider the following cases. 612 JINGYAN LI AND YANYING WANG Case 1 — n = 2k + 2r1 + 2r2 + · · · + 2rm + 2, k > r1 > r2 > · · · > rm ≥ 2 and m ≥ 1. k−1 From [11; 5.1], there exists an indecomposable class X ∈ J 2n−2 ,k+4 (for 2 2k−1 + 4 < 2k ), so that X has a representative M admitting a (Z2 )k -action k−1 + 4) = n−2k −10 . Take with fixed point set F 0 , where dim(F 0 ) = n−2 2 − (2 2 xn = [P (2, M )], with the (Z2 )k -action given in the proof of Lemma 3.1. The fixed point set of this action is F = S 2 × F 0 × F 0 /T = P (2, F 0 ) with 2k +8 . By Lemma 2.2, xn is indecomposable. dimF = n − 2k − 8, then xn ∈ J∗,k Case 2 — n = 2k + 2r1 + 2r2 + · · · + 2rm , k > r1 > r2 > · · · > rm ≥ 2 and m ≥ 2. (1) If m ≥ 3 or m = 2 and r1 ≥ 5, then 2k−1 − 2r1 −1 − · · · − 2rm−1 −1 + 8 < 2k−1 . From [11; 5.1], there exists an indecomposable class 2k−1 −2r1 −1 −···−2rm−1 −1 +8 X ∈ J n−2rm , so that X has a representative M admitting 2 ,k−1 rm a (Z2 )k−1 -action with fixed point set F 0 , where dim(F 0 ) = n−22 − (2k−1 − 2r1 −1 −· · ·−2rm−1 −1 +8) = 2r1 +2r2 +· · ·+2rm−1 −8. Let Ti0 (i = 1, 2, · · · , k−1) denote the (Z2 )k−1 -action on M . Then we can define a (Z2 )k -action on rm S 2 × M × M as follows: T1 (u, x, y) = (u, y, x), T2 (u, x, y) = (u, T10 (x), T10 (y)), ······ , 0 0 Tk (u, x, y) = (u, Tk−1 (x), Tk−1 (y)). These involutions commute with the map T (u, x, y) = (−u, y, x), so that rm induce a (Z2 )k -action on P (2rm , M ) with fixed point set F = S 2 × ∆(F 0 × F 0 )/T , where dimF =dim(F 0 ) + 2rm = n − 2k − 8. Taking xn = [P (2rm , M )], 2k +8 we have xn ∈ J∗,k . By Lemma 2.2, xn is indecomposable. (2) If m = 2 and r1 = 4, we take xn = [RP (19, 2r2 − 1; 2k − 1)]. From 2k +8 [15; Lemma 2.4], xn ∈ J∗,k . à ! à ! k 4 r 2 +2 +2 2 −1 2k + 24 + 2r2 − 1 + + 2k − 3 ≡ 1 mod 2. 24 + 2 + 1 2r2 − 1 By Lemma 2.1, xn is indecomposable. (Z2 )k -ACTIONS WITH FIXED POINT SET 613 (3) If m = 2 and r1 = 3, we take xn = [RP (11, 11; 2k − 9)]. Let T1 [x1 , x2 , · · · , x12 ] = [x1 , x2 , · · · , x6 , −x7 , −x8 , · · · , −x12 ], T2 [x1 , x2 , · · · , x12 ] = [x1 , x2 , x3 , −x4 , −x5 , −x6 , x7 , x8 , x9 , −x10 , −x11 , −x12 ]. Then (T1 , T2 ) defines a (Z2 )2 -action on RP (11) with fixed point set being four copies of RP (2). Let (Z2 )0 act as the identity on the rest of the base. 2k +8 Since 22 + 22 + 2k − 9 − 2 = 2k − 3 < 2k , by Lemma 2.3, xn ∈ Jn,k . By Lemma 2.1, xn is indecomposable. Case 3 — n = 2k + 2r1 and k > r1 ≥ 4. If r1 > 4, we take xn = [RP (2n − 2k+1 − 17, 1, 1; 2k+1 − n + 16)]. From 2k +8 [22; Lemma 2.3], xn ∈ Jn,k . ! n−1 + 2k+1 − n + 16 − 3 +2 1 à ! 2k + 2r1 −1 + · · · + 2 + 1 ≡ +1 2r1 + · · · + 25 + 23 + 22 + 2 à n−1 2n − 2k+1 − 17 ! à ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. If r1 = 4, we take xn = [RP (19, 4; 2k − 6)]. Let T1 [x1 , x2 , · · · , x20 ] = [x1 , x2 , · · · , x10 , −x11 , −x12 , · · · , −x20 ], T2 [x1 , x2 , · · · , x20 ] = [x1 , · · · , x5 , −x6 , · · · , −x10 , x11 , · · · , x15 , −x16 , · · · , −x20 ]. Then (T1 , T2 ) defines a (Z2 )2 -action on RP (19) with fixed point set being four copies of RP (4). Let (Z2 )0 act as the identity on the rest of the base. 2k +8 By Lemma 2.3, xn ∈ Jn,k . à 2k + 24 − 1 19 ! à + 2k + 24 − 1 4 ! + 2k − 8 ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. ¤ k 2 +8 Lemma 3.3 — There exist indecomposable classes xn ∈ J∗,k for k ≥ 4, k+1 k+2 2 ≤n<2 and n even. 614 JINGYAN LI AND YANYING WANG Proof : We will consider the following cases. Case 1 — 2k+1 ≤ n ≤ 2k+1 + 2k and k ≥ 5. Let xn = [RP (2k + 1, 1, n − 2k − 2k−1 − 8; 2k−1 + 7)]. From [22; Lemma 2k +4 2.3], xn ∈ Jn,k . à ! à ! à ! n−1 n−1 n−1 + + + 2k−1 + 7 − 3 2k + 1 1 n − 2k − 2k−1 − 8 à ! à ! n−1 n−1 ≡ + + 1. 2k + 1 2k + 2k−1 + 7 If n = 2k+1 , ! à ! à 2k+1 − 1 2k+1 − 1 + + 1 ≡ 1 + 1 + 1 ≡ 1 mod 2. 2k + 1 2k + 2k−1 + 7 If n = 2k+1 + 2k , ! ! à à 2k+1 + 2k − 1 2k+1 + 2k − 1 + 1 ≡ 0 + 0 + 1 ≡ 1 mod 2. + 2k + 2k−1 + 7 2k + 1 If n = 2k+1 + 2r1 + · · · + 2rm and r1 < 2k , à ! à ! 2k+1 + 2r1 + · · · + 2rm − 1 2k+1 + 2r1 + · · · + 2rm − 1 + +1 2k + 1 2k + 2k−1 + 7 ≡ 0 + 0 + 1 ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. Case 2 — 2k+1 ≤ n ≤ 2k+1 + 2k and k = 4. k 2 +8 If n = 25 , we take xn = [RP (26; 7)]. From [15; Lemma 2.5], xn ∈ Jn,k . By Lemma 2.1, xn is indecomposable. If 25 < n ≤ 25 + 24 , we take xn = [RP (11, 11, n − 34; 13)]. From [22; 2k +8 Lemma 2.3], xn ∈ Jn,k . à ! à ! à ! n−1 n−1 n−1 2 + + 13 − 3 ≡ ≡ 1 mod 2, 11 n − 34 25 + 1 By Lemma 2.1, xn is indecomposable. (Z2 )k -ACTIONS WITH FIXED POINT SET 615 Case 3 — 2k+1 + 2k < n < 2k+2 and k ≥ 4. Suppose n = 2k+1 +2r1 +2r2 +· · ·+2rs , k = r1 > r2 > · · · > rs ≥ 1, s ≥ 2. Write S = {i|there exists some i in the 2-adic expansion of n such that ri > ri+1 + 1}. (1) If S 6= ∅, let l = min{i | i ∈ S} and p = 2rl+1 + 2rl+2 + · · · + 2rs . (i) If p > 9, then k ≥ 4. Take xn = [RP (2p + 1, 1, n − 2k − p − 8; 2k − 2k +8 p + 7)]. From [22; Lemma 2.3], xn ∈ Jn,k . à ! n−1 + + + 2k − p + 7 − 3 n − 2k − 2p − 8 à ! 2k+1 + 2r1 + · · · + 2rl + 2rl+1 · · · + 2rs − 1 ≡ + 2rl+1 +1 + 2rl+2 +1 + · · · + 2rs +1 + 1 à ! 2k+1 + 2r1 + · · · + 2rl + 2rl+1 · · · + 2rs − 1 +1 2k + 2r1 + · · · + 2rl − 1 − 7 n−1 2p + 1 ! à n−1 1 ! à ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. (ii) If 2 ≤ p ≤ 8, the argument is divided into the following cases: (a) p = 8 or p = 4. Take xn = [RP (19, n − 2k − 17; 2k − 1)]. From [15; Lemma 2.4], xn ∈ Jn,k . If p = 8, then rl ≥ 5. 2k +8 à à ! n−1 19 à + ! n−1 n − 2k − 17 + 2k − 1 − 2 ! 2k+1 + 2r1 + · · · + 2rl + 8 − 1 ≡ 24 + 2 + 1 ! à 2k+1 + 2r1 + · · · + 2rl + 8 − 1 +1 + 2k + 2r1 + · · · + 2rl − 8 − 1 ! à 2k+1 + 2r1 + · · · + 2rl + 8 − 1 +1 ≡ 0+ 2k + 2r1 + · · · + 2rl −1 + · · · + 24 + 22 + 1 ≡ 0 + 0 + 1 ≡ 1 mod 2. 616 JINGYAN LI AND YANYING WANG If p = 4, then rl ≥ 4. à ! à ! n−1 n−1 + + 2k − 1 − 2 19 n − 2k − 17 à ! 2k+1 + 2r1 + · · · + 2rl + 22 − 1 ≡ 24 + 2 + 1 à ! 2k+1 + 2r1 + · · · + 2rl + 22 − 1 + + 1. (∗) 2k + 2r1 + · · · + 2rl − 1 − 8 − 4 For rl > 4 à (∗) ≡ 0 + 2k+1 + 2r1 + · · · + 2rl + 2 + 1 2k + 2r1 + · · · + 2rl+1 + 2rl −1 + · · · + 2 + 1 − 8 − 4 ! +1 ≡ 0 + 0 + 1 ≡ 1 mod 2. For rl = 4 à (∗) ≡ 1 + 2k+1 + 2r1 + · · · + 24 + 2 + 1 2k + 2r1 + · · · + 2rl+1 + 2 + 1 ! +1 ≡ 1 + 1 + 1 ≡ 1 mod 2. From above, we know that xn is indecomposable. (b) p = 6. If p = 6, then rl ≥ 4. For rl > 4, we take xn = [RP (19, n−2k −17; 2k −1)]. 2k +8 From [15; Lemma 2.4], xn ∈ Jn,k . à à n−1 19 ! à + n−1 n − 2k − 17 ! + 2k − 1 − 2 ! 2k+1 + 2r1 + · · · + 2rl + 4 + 1 ≡ 24 + 2 + 1 ! à 2k+1 + 2r1 + · · · + 2rl + 4 + 1 +1 + 2k + 2r1 + · · · + 2rl − 1 − 8 − 2 ≡ 0 + 0 + 1 ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. (Z2 )k -ACTIONS WITH FIXED POINT SET 617 For rl = 4, we take xn = [RP (2k+1 + 1, 2, 2, 2, 2, n − 2k+1 − 16, 0, 0)]. 2k +8 From [15; Lemma 2.4], xn ∈ Jn,k . à ! 2k+1 + 2r1 + · · · + 24 + 22 + 2 − 1 2k+1 + 1 à ! 2k+1 + 2r1 + · · · + 24 + 22 + 2 − 1 + 2r1 + · · · + 24 + 22 + 2 − 24 ≡ 1 + 0 ≡ 1 mod 2 By Lemma 2.1, xn is indecomposable. (c) p = 2. If p = 2, then rl ≥ 3. For rl > 4, we take xn = [RP (19, n − 2k − 17; 2k − 1)]. From [15; Lemma 2k +8 2.4], xn ∈ Jn,k . à ! 2k+1 + 2r1 + · · · + 2rl + 2 − 1 24 + 2 + 1 à ! 2k+1 + 2r1 + · · · + 2rl + 2 − 1 + +1 2k + 2r1 + · · · + 2rl − 1 − 8 − 4 − 2 ≡ 0 + 0 + 1 ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. For rl = 4 or 3, we take xn = [RP (2k+1 + 1, 2, 2, 2, 2, n − 2k+1 − 16, 0, 0)]. k 2 +8 From [15; Lemma 2.4], xn ∈ Jn,k . à 2k+1 + 2r1 + · · · + 2rl + 2 − 1 2k+1 + 1 ! à + 2k+1 + 2r1 + · · · + 2rl + 2 − 1 2r1 + · · · + 2rl + 2 − 24 ≡ 1 + 0 ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. (2) If S = ∅, i.e. n = 2k+1 + 2r1 + 2r2 + · · · + 2rs , k = r1 > r2 > · · · > rs ≥ 1, ri = ri+1 + 1 and s ≥ 2. ! 618 JINGYAN LI AND YANYING WANG 2rs +1 − 8 2rs +1 − 8 , , n − 2k+1 − 2 2 2k +8 2rs +1 ); 8]. From [15; Lemma 2.4], xn ∈ Jn,k . à à ! ! n − 1 n−1 n − 1 + 2 2rs +1 − 8 + +8−4 2k+1 + 1 n − 2k+1 − 2rs +1 ) 2 à ! à ! k+1 r r 1 2 2 + 2 + 2 + · · · + 2rs − 1 2k+1 + 2r1 + 2r2 + · · · + 2rs − 1 ≡ + 2k+1 + 1 2r1 + 2r2 + · · · + 2rs − 2rs +1 à ! 2k+1 + 2r1 + 2r2 + · · · + 2rs−1 + 2rs −1 + · · · + 2 + 1 ≡ 1+ 2r1 + 2r2 + · · · + 2rs−2 + 2rs For rs ≥ 2, we take xn = [RP (2k+1 + 1, ≡ 1 + 0 ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. For rs = 1, we take xn = [RP (2k+1 + 1, n − 2k+1 − 8; 8)]. From [15; 2k +8 Lemma 2.4], xn ∈ Jn,k . à ! à ! 2k+1 + 2r1 + 2r2 + · · · + 2 − 1 2k+1 + 2r1 + 2r2 + · · · + 2 − 1 + 2k+1 + 1 2r1 + 2r2 + · · · + 2 − 8 ≡ 1 + 0 ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. ¤ Proposition 3.4 — If n ≥ 2k + 9 and n 6= 2u − 1, then there exist inde2k +8 composable classes xn ∈ Jn,k for k ≥ 4. Proof : Take xn as in Lemma 3.1 for n odd, xn as in Lemma 3.2 and Lemma 3.3 for 2k + 10 ≤ n < 2k+2 even, and xn as in [15; Lemma 3.1] for 2k +8 n ≥ 2k+2 even. Then, every xn is indecomposable and xn ∈ Jn,k . ¤ To complete the proof of the main theorem, we need the following two lemmas. Lemma 3.5 — For k ≥ 4 and n = 2k + 7, there exist indecomposable 2k +6 classes xn ∈ Jn,k . Proof : From [11; 5.1], there exists an indecomposable class X ∈ k−1 J 2n−1 ,k+3 (for 2k−1 + 3 < 2k ), so that X has a representative M admitting a 2 (Z2 )k -action with fixed point set F 0 , where dim(F 0 ) = n−1 2 − (2k−1 + 3) = 0. (Z2 )k -ACTIONS WITH FIXED POINT SET 619 Take xn = [P (1, M )] with the (Z2 )k -action as in Lemma 3.1. The fixed point set of this action is F = S 1 ×F 0 ×F 0 /T = P (1, F 0 ) with dimF = 1 = n−2k −6, 2k +6 then xn ∈ J∗,k . By Lemma 2.2, xn is indecomposable. ¤ Lemma 3.6 — For k ≥ 4 and n = 2k + 8, there exist indecomposable 2k +6 classes xn ∈ Jn,k . Proof : Take xn = [RP (11; 2k −6)]. Just as in Lemma 3.2, there exsits a (Z2 )2 -action on RP (11) with fixed point set being four copies of RP (2). Let 2k +6 (Z2 )0 act as the identity on the rest of the base. By Lemma 2.3, xn ∈ Jn,k . à 2k + 8 − 1 8+2+1 ! + 2k − 6 − 1 ≡ 1 mod 2. By Lemma 2.1, xn is indecomposable. ¤ 4. Proof of the Main Theorem Proof : We choose a system of generators xn as follows: (a) Let x2 = [RP (2)]. Noticing that χ(x2 ) = 1, by [11; 5.1], we have 2 . x2 ∈ J∗,k (b) For 3 ≤ n ≤ 2k + 6 and n 6= 2u − 1, we can choose indecomposable n/2 classes xn such that χ(xn ) = 0 (otherwise, replacing xn by xn + x2 ). (c) Take xn as in Lemma 3.5 for n = 2k + 7 and xn as in Lemma 3.6 for 2k +8 n = 2k + 8. By Lemma 2.4, x2k +8 ∈ / J∗,k . (d) For n ≥ 2k + 9, let xn be as in Proposition 3.4. k 2 +8 Since J∗,k is an ideal of M O∗ , to complete the proof it is necessary only to show that it contains the decomposable classes xi1 xi2 · · · xim with m ≥ 2, 2 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ 2k + 8 and i1 + i2 + · · · + im ≥ 2k + 8. The argument is divided into two cases: Case 1. i1 +i2 +· · ·+im > 2k +8. Case 2. i1 + i2 + · · · + im = 2k + 8. Case 1 — i1 + i2 + · · · + im > 2k + 8. (1) The case im > 2k . 620 JINGYAN LI AND YANYING WANG 8 . From (i) If i1 + i2 + · · · + im−1 ≥ 8, from [11; 5.1] xi1 xi2 · · · xim−1 ∈ J∗,k k k k 2 +8 2 and x x · · · x 8 2 [12], xim ∈ J∗,k i1 i2 im ∈ J∗,k J∗,k ⊂ J∗,k . 4 (ii) If i1 + i2 + · · · + im−1 = 7, then xi1 xi2 · · · xim−1 ∈ J∗,k T 7 and J∗,k k 2 +4 im > 2k +1. If im > 2k +4, by [18; Theorem] xim ∈ J∗,k and xi1 xi2 · · · xim ∈ k k 4 J 2 +4 ⊂ J 2 +8 . J∗,k ∗,k ∗,k k 2 +1 . If im ≤ 2k + 4, from (b), χ(xim ) = 0. By [14; Theorem 1], xim ∈ J∗,k k k 7 J 2 +1 ⊂ J 2 +8 . So xi1 xi2 · · · xim ∈ J∗,k ∗,k ∗,k k 2 +2 (iii) If i1 + i2 + · · · + im−1 = 6, then im > 2k + 2. From [16], xim ∈ J∗,k . k k 2 +8 2 +2 6 . Then x x · · · x 6 ⊂ J∗,k . By [11; 5.1], xi1 xi2 · · · xim−1 ∈ J∗,k i1 i2 im ∈ J∗,k J∗,k T 5 4 (iv) If i1 + i2 + · · · + im−1 = 5, then xi1 xi2 · · · xim−1 ∈ J∗,k J∗,k and k 2 +4 im > 2k +3. If im > 2k +4, by [18; Theorem], xim ∈ J∗,k and xi1 xi2 · · · xim ∈ k k 4 J 2 +4 ⊂ J 2 +8 . J∗,k ∗,k ∗,k If im = 2k + 4, from (b), χ(xim ) = 0. k k 2 +3 5 J 2 +3 ⊂ By [15; Proposition 4.3], xim ∈ J∗,k . Then xi1 xi2 · · · xim ∈ J∗,k ∗,k k 2 +8 J∗,k . (v) If i1 +i2 +· · ·+im−1 = 4, then im > 2k +4. From [18; Theorem], xim ∈ 2k +4 4 . Then x x · · · x 4 By [11; 5.1], xi1 xi2 · · · xim−1 ∈ J∗,k ⊂ i1 i2 im ∈ J∗,k J∗,k 2k +4 J∗,k . 2k +8 J∗,k . 2 and (vi) If i1 + i2 + · · · + im−1 = 2, then m = 2, i1 = 2, x2 ∈ J∗,k k k k 2 +6 2 J 2 +6 ⊂ J 2 +8 . 2k +6 < i2 ≤ 2k +8. From (c), xi2 ∈ J∗,k . Then x2 xi2 ∈ J∗,k ∗,k ∗,k (2) The case im ≤ 2k and there exists some l(1 ≤ l ≤ m) such that 8 ≤ il < 2k . il From [11; 5.1], xil ∈ J∗,k . Since i1 + i2 + · · · + im > 2k + 8, i1 + i2 + · · · + il−1 + il+1 + · · · + im > 2k + 8 − il . Because 2k + 8 − il ≤ 2k , 2k +8−il from [11; 5.1] and [12], we have xi1 xi2 · · · xil−1 xil+1 · · · xim ∈ J∗,k . Then k k 2 +8−il il 2 +8 xi1 xi2 · · · xim ∈ J∗,k J∗,k ⊂ J∗,k . (3) The case im ≤ 2k , with no l(1 ≤ l ≤ m) satisfying 8 ≤ il < 2k . In this case, ij = 2k , or ij ≤ 6(1 ≤ j ≤ m). (Z2 )k -ACTIONS WITH FIXED POINT SET 621 2k −2 T 2k −1 (i) If im = 2k , then i1 + i2 + · · · + im−1 ≥ 9 and xim ∈ J∗,k J∗,k . If there are odd numbers in i1 , · · · , im−1 , then χ(xi1 xi2 · · · xim−1 ) = 0 and 2k −l 2k +8 9 . So x x · · · x 9 xi1 xi2 · · · xim−1 ∈ J∗,k i1 i2 im ∈ J∗,k J∗,k ⊂ J∗,k . If i1 , · · · , im−1 10 . Then are all even, i1 + i2 + · · · + im−1 ≥ 10 and xi1 xi2 · · · xim−1 ∈ J∗,k k k 10 J 2 −2 ⊂ J 2 +8 . xi1 xi2 · · · xim ∈ J∗,k ∗,k ∗,k im (ii) If im ≤ 6 and there exists some t such that it 6= 2, then xim ∈ J∗,k and i1 +i2 +· · ·+im−1 > 2k +8−im . From [15],16] and [18], xi1 xi2 · · · xim−1 ∈ 2k +8−im 2k +8−im im 2k +8 J∗,k . Then xi1 xi2 · · · xim ∈ J∗,k J∗,k ⊂ J∗,k . (iii) If i1 = i2 = · · · = im = 2, then 2(m − 4) > 2k . From [11; 5.1] and 4 m−4 ∈ J 8 J 2k ⊂ J 2k +8 . [12], xm 2 = x2 x2 ∗,k ∗,k ∗,k Case 2 — i1 + i2 + · · · + im = 2k + 8. ir If im < 2k , from [11; 5.1], xir ∈ J∗,k (r = 1, 2, · · · , m) and k i1 i2 im 2 +8 xi1 xi2 · · · xim ∈ J∗,k J∗,k · · · J∗,k ⊂ J∗,k . If im ≥ 2k , then s(i1 ,i2 ,··· ,im ) [xi1 xi2 · · · xim ] 6= 0. By Lemma 2.5, the decomposable classes x2 x2k +6 , x4 x2k +4 , x2 2 x2k +4 , x5 x2k +3 , x6 x2k +2 , x2 x4 x2k +2 , 2k +8 x2 3 x2k +2 , x2 x5 x2k +1 , x8 x2k , x2 x6 x2k , x4 2 x2k , x2 2 x4 x2k , x2 4 x2k are not in J∗,k . For some linear combination of the above classes such as xi1,1 xi2,1 · · · xim1 ,1 + xi1,2 xi2,2 · · · xim2 ,2 + · · · + xi1,j xi2,j · · · ximj ,j , we can find (i1 , i2 , · · · , inj ) ∈ {(i1,1 , i2,1 · · · im1 ,1 ), (i1,2 , i2,2 · · · im2 ,2 ), · · · , (i1,j , i2,j , · · · imj ,j )} such that (i1 , i2 , · · · , inj ) is not the refinement of other elements in {(i1,1 , i2,1 · · · im1 ,1 ), (i1,2 , i2,2 · · · im2 ,2 ), · · · (i1,j , i2,j , · · · imj ,j )}. Then, from [23], s(i1 ,i2 ,··· ,inj ) [xi1,1 xi2,1 · · · xim1 ,1 +xi1,2 xi2,2 · · · xim2 ,2 +· · ·+xi1,j xi2,j · · · ximj ,j ] 6= 0. By Lemma 2.5, any linear combination of the above classes are not in 2k +8 J∗,k . ¤ 622 JINGYAN LI AND YANYING WANG Acknowledgement We would like to thank the referee for a careful reading of the paper and many helpful suggestions. References 1. P. E. Conner, Differentiable periodic maps (second edition), Lecture Notes in Math, Univ. Berlin, Springer Verlag. 1979. 2. P. E. Conner and E. E. Floyd, Fibering within a cobordism class, Michigan Math. J., 12 (1965), 33-47. 3. R. E. Stong, On fibering of cobordism classes, Tran. Amer. Math. Soc., 178 (1973), 431-447. 4. F. L. Capobianco, Cobordism classes represented by fiberings with fiber RP (2k + 1), Michigan Math. J., 24 (1977), 185-192. 5. F. L. Capobianco, Manifolds with involution whose fixed point set has codimension four, Proc. Amer. Math. Soc., 61 (1976), 157-162. 6. K. Iwata, Involutions with fixed point set of constant codimension, Proc. Amer. Math. Soc., 83 (1981), 829-832. 7. T. Wada, Manifolds with involution whose fixed point set has codimension Six, Bull. Yamagata Univ. Nature Sci., 10 (1981), 193-250. 8. Z. D. Wu, Manifolds with involution whose fixed point set has codimension seven, Acta Math. Sin., New Series, 4 (1989), 302-306. 9. S. Kikuchi, Involution with fixed point set of codimension eight, Sci. Rep. Hirosaki Univ., 33 (1986), 45-52. 10. P. L. Pergher, (Z2 )2 -actions with fixed point set of constant codimension, Topology Appl., 46 (1992), 55-64. 11. R. J. Shaker, Constant codimension fixed point sets of commuting involutions, Proc. Amer. Math. Soc., 121 (1994), 275-281. 12. R. J. Shaker, Dold manifolds with (Z2 )k -action, Proc. Amer. Math. Soc., 123 (1995), 955-958. 13. C. Kosniowski and R. E. Stong, (Z2 )k -actions and characteristic numbers, Indiana Univ. Math. J., 28 (1979), 725-743. (Z2 )k -ACTIONS WITH FIXED POINT SET 14. Y. Y. Wang, Z. D. Wu and K. Ma, (Z2 )k -action with fixed point set of constant codimension 2k + 1, Proc. Amer. Math. Soc., 128 (1999), 1515-1521. 15. Y. Y. Wang, Z. D. Wu and Y. H. Ding, Commuting involutions with fixed point set of constant codimension, Acta Math. Sin., English Series, 15 (1999), 181-186. 16. Z. Liu and Z. D. Wu, (Z2 )k -actions with fixed point set of constant codimension 2k + 2, Acta Math. Sin., English Series, 21 (2005), 409-412. 17. R. L. W. Brown, Immersions and embeddings up to cobordism, Can. J. Math., Vol. XXIII (1971), 1102-1115. 18. R. C. Li, K. Ma and Z. D. Wu, (Z2 )k -actions with fixed point set of constant codimension 2k + 4, J. Math. Res. Exp., 25 (2005), 659-664. 19. X. F. Feng, (Z2 )k -actions with fixed point set of constant codimension 2k + 5, Master’s thesis (2006), Hebei Normal University. 20. J. Geng, (Z2 )k -actions with fixed point set of constant codimension 2k + 6, Master’s thesis(2006), Hebei Normal University. 21. J. Y. He, (Z2 )k -actions with fixed point set of constant codimension 2k + 7, Master’s thesis (2007), Hebei Normal University. 22. Y. Y. Wang, Z. D. Wu and Z. J. Meng, Commuting involutions with fixed point set of variable codimension, Acta Math. Sin., English Series, 17 (2001), 425-430. 23. Y. Y. Wang, Characteristic numbers and cobordism class of fiberings with fiber RP (2k), Proc. Amer. Math. Soc., 129 (2000), 899-911. 623
© Copyright 2026 Paperzz