Discussion of Patir’s Sync and Bias NBER: Multiple Equilibria and Financial Crises Bruce Mcgough, University of Oregon May 14, 2015 Background TM Learning to believe in sunspots • Indeterminacy and sunspot equilibria • Equilibrium selection: stability under adaptive learning • Correlated equilibria and sentiments • Are sentiments stable? Good question! A simplified model Model yit = β Eit yt + β0 Eit εit Z yt = yit di A simplified model PLM (agent i) yt = φ i + ξ i · zt sit = λ εit + (1 − λ )(φ i + ξ i · zt ) εit ∼ N(0, σε2 ), zt ∼ N(0, I2 ) A simplified model Expectations Eit (?) = E(?|sit ) = − (1 − λ )2 φ i kξ i k2 (1 − λ )kξ i k2 + sit λ 2 σε2 + (1 − λ )2 kξ i k2 λ 2 σε2 + (1 − λ )2 kξ i k2 Eit εit = − λ σε2 (1 − λ )λ φ i σε2 + sit λ 2 σε2 + (1 − λ )2 kξ i k2 λ 2 σε2 + (1 − λ )2 kξ i k2 Eit ξ i · zt A simplified model ALM sit = λ εit + (1 − λ ) Z Z i φ di + (ξ · zt )di i yit = β φ i + β Eit ξ i · zt + β0 Eit εit = T φ (φ i , ξ i ) + T ξ (ξ i )sit Z yt = yit di Z = T φ (φ i , ξ i )di + (1 − λ ) + (1 − λ ) Z T ξ (ξ i )di Z Z T ξ (ξ i )di (ξ i · zt )di Z φ i di A simplified model REE • Homogeneity: ξ i = ξ j = ξ , φ i = φ j = 0 2 2 0 λ σε • (1 − λ )T ξ (ξ )(ξ · zt ) = (1 − λ ) β kξ2 k2 (1−λ )+β (ξ · zt ) λ σε +(1−λ )2 kξ k2 2 ε (β0 −(β0 +1)λ ) • Thus ξ = 0 and kξ k2 = λ σ(1−β )(1−λ )2 • Circle of stochastic equilibria! λ< β0 1+β0 A simplified model RTL ẑt = Z yt = 1 zt and ζti = φti ξti i i T φ (φt−1 , ξt−1 )di + (1 − λ ) + (1 − λ ) Z i T ξ (ξt−1 )di Z Z i T ξ (ξt−1 )di i (ξt−1 · zt )di Rt = Rt−1 + γt (ẑt ẑ0t − Rt−1 ) i i i ζti = ζt−1 + γt R−1 t ẑt (yt + ∆φ − ζt−1 · ẑt ) Z i φt−1 di A simplified model Figure : RTL, 1000 agents, no bias 0.6 2 0.4 1 0.2 constant phase 3 0 -1 0.0 -0.2 -0.4 -2 -0.6 -3 0 20 40 60 80 time 100 120 140 0 20 40 60 80 time 100 120 140 A simplified model Figure : RTL, 1000 agents, no bias 3 2 2 constant phase 1 0 -1 1 0 -1 -2 -2 -3 0 10 20 time 30 40 0 10 20 time 30 40 A simplified model Figure : RTL, 1000 agents, normal bias, no constant 1.0 3 2 0.5 constant phase 1 0 -1 0.0 -0.5 -2 -3 -1.0 0 50 100 150 time 200 250 300 A simplified model Figure : RTL, 1000 agents, normal bias 3 0.4 2 0.2 constant phase 1 0 -1 0.0 -0.2 -2 -0.4 -3 0 50 100 150 time 200 250 300 0 50 100 150 time 200 250 300 A simplified model Figure : RTL, 1000 agents, normal bias 3 0.4 2 0.2 constant phase 1 0 -1 0.0 -0.2 -2 -0.4 -3 0 10 20 30 time 40 50 0 10 20 30 time 40 50 A simplified model Figure : RTL, 20 agents, normal bias 1.0 3 2 0.5 constant phase 1 0 -1 0.0 -0.5 -2 -3 -1.0 0 100 200 300 time 400 500 0 100 200 300 time 400 500 A simplified model Summary • Patir’s model and analysis are quite interesting and thought provoking. • I have a lot to learn about coordination and sunspots
© Copyright 2026 Paperzz