ENCODING NON LINEAR MIXED EFFECTS MODEL Marc Lavielle INRIA Saclay EBI, June 20th, 2011 Population approach & mixed effects model Some examples of PK/PD data Daily seizure counts (epilepsy) Viral load CD4 count Some examples of PK/PD data Daily seizure counts (epilepsy) Viral load CD4 count The statistical model of the observations Statistical model for continuous data The model of the observations y is completely defined by : - The prediction f -The standard deviation g - The distribution of the residual errors e Statistical model for continuous data The statistical model prediction = f standard deviation = g distribution = normal Statistical model for continuous data Any application dedicated to a given task should be able to understand/interpret this description of the model The statistical model prediction = f standard deviation = g distribution = normal Statistical model for continuous data Any application dedicated to a given task should be able to understand/interpret this description of the model The statistical model prediction = f standard deviation = g distribution = normal Estimation p( y ) 1 2 g e 1 y f 2g2 2 Statistical model for continuous data Any application dedicated to a given task should be able to understand/interpret this description of the model The statistical model Simulation y ~ N( f , g2) prediction = f standard deviation = g distribution = normal Estimation p( y ) 1 2 g e 1 y f 2g2 2 Statistical model for continuous data Any application dedicated to a given task should be able to understand/interpret this description of the model The statistical model Simulation y ~ N( f , g2) prediction = f standard deviation = g distribution = normal Estimation p( y ) 1 2 g e 1 y f 2g2 2 edition y f ge Statistical model for time-to-event data The statistical model hazard = l Statistical model for time-to-event data Simulation The statistical model t l ( u ) du P(T t ) e hazard = l 0 Estimation t l ( u ) du p (t ) l (t )e 0 t l ( u ) du P (T t ) e 0 Statistical model for discrete data Categorical data: Y 1, 2 , ... , K Count data: Y 0 ,1, 2 , ... , Y ~ parametric distribution example: Y ~Poissonl P(Y=k) , k=1,2,..K distribution = poisson parameter = lambda The statistical model of the individual parameters Statistical model of the individual parameters General model: Statistical model of the individual parameters General model: Linear model: Statistical model of the individual parameters - Example The statistical model distribution = log-normal standard deviation = omega covariate = c Statistical model of the individual parameters - Example Simulation edition ~ Log N (log( pop ) c, 2 ) log( ) log( pop ) c The statistical model distribution = log-normal standard deviation = omega covariate = c Estimation p( ) 1 2 e 1 2 2 log( ) log( ) c pop 2 Coding non linear mixed effects models with MONOLIX The main Graphical User Interface of MONOLIX Defining the statistical model with the MONOLIX GUI All the information related to the statistical model is stored: - in a Matlab structure - in a XML file - in a « human-readable » script file <project name="theophylline_project.xml"> <covariateDefinitionList> <covariateDefinition columnName="WEIGHT" name="t_WEIGHT" transformation="log(cov/70)" type="continuous"/> <covariateDefinition columnName="SEX" type="categorical"> <groupList> <group name="F" reference="true"/> <group name="M"/> </groupList> </covariateDefinition> </covariateDefinitionList> <data columnDelimiter="\t" headers="ID,DOSE,TIME,Y,COV,CAT" uri="%MLXPROJECT%/theophylline_data.txt"/> <models> <statisticalModels> <parameterList> <parameter name="ka" transformation="L"> <intercept initialization="1.000000"/> </parameter> <parameter name="V" transformation="L"> <intercept initialization="1.000000"/> <betaList> <beta covariate="t_WEIGHT" initialization="0"/> </betaList> <variability initialization="1.000000" level="1.000000" levelName="IIV"/> </parameter> <parameter name="Cl" transformation="L"> <intercept initialization="1.000000"/> <variability initialization="1.000000" level="1.000000" levelName="IIV"/> </parameter> </parameterList> <residualErrorModelList> <residualErrorModel alias="const" output="1.000000" outputName="concentration"> <parameterList> <parameter initialization="1.000000" name="a"/> </parameterList> </residualErrorModel> </residualErrorModelList> </statisticalModels> Coding the (statistical) model with MLXTRAN $DESCRIPTION PK of theophylline $FILE D:/Myproject/theophylline_data.txt $VARIABLES ID, TIME, AMT, OBS use=DV,WT, SEX use=cov type=cat, LW70 = log(WT/70) use=cov $INDIVIDUAL default distribution=log-normal, ka iiv=no, V cov=LW70, Cl, $EQUATION Cc=PKMODEL(ka,V,Cl) $OBSERVATION Concentration type=continuous pred=Cc err=constant
© Copyright 2026 Paperzz