Journal of Geophysical Research: Earth Surface Supporting Information for Mechanics and rates of tidal inlet migration: modeling and application to natural examples Jaap H. Nienhuis1, 2,*, Andrew D. Ashton1 1Department 2Earth, of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA * Corresponding author: 204 Blessey Hall, Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, [email protected] Contents of this file Tables S1 to S3 Figure S1 and S2 Additional Supporting Information Captions for Animation S1 Introduction Supplementary information includes table S1 of the Delft3D-SWAN model settings, table S2 of the Delft3D-SWAN model experiments and results, table S3 of the analyzed natural tidal inlets, figure S1 of the grid resolution test, figure S2 is of the morphologic scaling factor test, and animation S1 of the model experiments mentioned in the article. 1 Supplementary Table 1. Overview of the Delft3D and SWAN model parameters. Parameter Value Units Description General Parameter Value Quadruplts false Units Description Include quadruplets Refraction true Include refraction FreqShift true Include frequency shifting in frequency space WaveForces rad stress Method of wave force computation FlowBedLevel 1 use Use bed level from FLOW in WAVE domain but do not extend FlowWaterLevel 1 use / extend Use water level from FLOW and extend across WAVE domain Tstart 0 min Start time FlowVelocity 1 use / extend Use water level from FLOW and extend across WAVE domain Tstop 41760 min Stop time FlowBedLevel 2 use / extend Use bed level from FLOW and extend across WAVE domain Dt 0.2 min Timestep FlowWaterLevel 2 use / extend Use water level from FLOW and extend across WAVE domain Ag 9.81 ms-2 Gravitational Acceleration FlowVelocity 2 use / extend Use flow velocity from FLOW and extend across WAVE domain DirSpace circle Default directional space Flow Rhow 1025 kgm-3 Water Density Ndir 36 Tempw 15 C Water Temperature FreqMin 0.05 s-1 Minimum frequency Salw 31 ppt Salinity FreqMax 1 s-1 Maximum frequency Bottom Stress formulation due to wave action Nfreq 24 Number of frequencies parametric Spectrum type Rouwav FR84 Number of directional bins Rhoa 1 kgm Air Density SpectrumSpec Ccofu 65 m0.5s-1 Chezy roughness u SpShapeType jonswap Spectrum shape Ccofv 65 m0.5s-1 Chezy roughness v PeriodType peak Wave period type Vicouv 2 Uniform horizontal eddy viscosity DirSpreadType degrees Directional spreading type Dicouv 10 Uniform vertical eddy diffusivity PeakEnhanceFac 3.3 Roughness length vertical side walls WaveHeight var m Wave height at boundaries var s Wave period at boundaries Z0v 0.1 -3 m Peak enhancement factor Dryflc 0.1 m Threshold depth for drying and flooding PeriodType Tlfsmo 60 s Time interval to smooth hydrodynamic boundary conditions Direction 50 deg Wave direction at boundaries (North = 0, East = 90) North neumann North boundary condition DirSpreading 10 deg Directional spreading RettisNorth -1 s North Thatcher Harlemann return time Morphology East water level m East boundary condition, M2 Tide EpsPar false Vertical mixing distribution according to van Rijn South neumann South boundary condition MorFac 90 RettisEast -1 MorStt 1440 min Morphological scale factor Spin-up interval from TStart to the start of morphological changes Thresh 0.05 m Threshold sediment thickness for transport and erosion reduction Minimum depth MorUpd true Update bathymetry during FLOW simulation s South Thatcher Harlemann return time Waves MinimumDepth 0.05 m GenModePhysics 3 Generation mode of physics CMPUds true Update bed composition during flow run Breaking true Include wave breaking EqmBc true Equilibrium sand concentration profile at inflow boundaries BreakAlpha 1 Alpha coefficient for wave breaking DensIn false Include effect of sediment concentration on fluid density BreakGamma 0.73 Gamma coefficient for wave breaking AksFac 0.5 van Rijn's reference height BedFriction jonswap Bed friction type Rwave 2 Wave related roughness. Van Rijn recommends range 1-3 BedFricCoef 0.067 Bed friction coefficient AlfaBS 1 Streamwise bed gradient factor for bed load transport Diffraction false Include diffraction AlfaBT 20 Transverse bed gradient factor for bed load transport WindGrowth false Include wind growth Sus 1 Multiplication factor for suspended sediment ref. concentration WhiteCapping Komen White capping formulation Bed 1 Multiplication factor for bed-load transport vector magnitude 2 Parameter Value SusW 0.15 Units Description BedW 0.15 SedThr 0.1 ThetSD 0.8 HMaxTH 1.5 FWFac 1 Tuning parameter for wave streaming UpdBaseLyr 1 Update option for composition and thickness of base layer UpdInf true Update bed levels at inflow boundaries Islope 2 Bedslope formulation IUnderLyr 2 Flag for underlayer concept TTLForm constant ThTrLyr 0.2 MxNULyr 25 ThUnLyr 0.2 m Thickness of each underlayer 1600 kgm-3 CSoil Reference density for hindered settling calculations RhoSol 2650 kgm-3 Specific density SedDia (1) 0.0002 m Median sediment diameter (D50), fraction 1 SedDia (2) 0.0001999 m Median sediment diameter (D50), fraction 2 SedDia (3) 0.00020001 m Median sediment diameter (D50), fraction 3 CdryB 0.0016 kgm-3 Dry bed density IniSedThick (1) sand1.sdb m Initial sediment sand 1 layer thickness at bed, updrift sediments IniSedThick (2) sand2.sdb m Initial sediment sand 2 layer thickness, downdrift sediments IniSedThick (3) sand3.sdb m Initial sediment sand 3 layer thickness, tidal basin sediments FacDSS 1 Wave-related suspended sed. transport factor Wave-related bed-load sed. transport factor m Minimum water depth for sediment computations Factor for erosion of adjacent dry cells m Max depth for variable THETSD. Transport layer thickness formulation m Thickness of the transport layer Underlayers (excl transp & base lyrs) Sediment Cref Sediment sand FacDss * SedDia = Initial suspended sediment diameter. Sediment mud RhoSol 2650 kgm-3 Specific density SalMax 0 ppt Salinity for saline settling velocity WS0 0.00025 ms-1 Settling velocity fresh water WSM 0.00025 ms-1 Settling velocity saline water TcrSed 1000 Nm-2 Critical bed shear stress for sedimentation TcrEro 0.5 Nm-2 Critical bed shear stress for erosion EroPar 0.0001 kgm-2s-1 Erosion parameter CDryB 500 kgm-3 Dry bed density IniSedThick 0 ms-1 Initial sediment layer thickness at bed FacDSS 1 FacDss * SedDia = Initial suspended sediment diameter. 3 Supplementary Table 2. Boundary conditions and resulting morphological characteristics of the 23 model experiments. Wbarrier is the initial barrier width, Winlet in the inlet width, Dinlet is the inlet depth, AI is the inlet cross-sectional area, P is the tidal prism, Hs is the offshore wave height, Mt is the tidal momentum flux, Mw is the wave momentum flux. Reported values are averages except where noted. The tidal prism and migration rate for experiment #3 are for the 4 years before closure. r d Norm. migr. rate (+d) 0.32 0.32 0.13 0.44 0.36 0.12 0.48 251 0.43 0.15 0.37 0.12 0.38 0.49 0.23 0.72 234 8.5E+02 0.00 0 0 0 0 0 2.3E+08 3.8E+02 3.47 0.87 0.01 0.59 0.86 0.12 0.17 0.29 49 46 2.4E+08 3.8E+02 1.76 0.37 0.11 0.26 0.67 0.52 0.34 0.86 86 1.2 9 2.1E+08 8.5E+02 1.15 0.45 0.15 0.16 0.59 0.4 0.22 0.62 351 1.2 11 2.2E+08 8.5E+02 0.77 0.22 0.24 0.17 0.5 0.53 0.23 0.76 199 1.7E+07 1.4E-02 1.2 25 9.5E+08 8.5E+02 1.56 0.4 0.51 0.33 0.84 190 0.5 5.3E+06 1.4E-02 1.2 7 9.0E+07 8.5E+02 0.33 0.14 0.86 0.04 0 0 0 0 0 9 0.5 7.5E+06 1.4E-02 1.2 10 1.8E+08 8.5E+02 0.59 0.24 0.72 0.06 0.01 0.04 0.01 0.05 9 1220 177 0.5 8.6E+06 1.4E-02 1.2 12 2.3E+08 8.5E+02 0.84 0.2 0.49 0.18 0.67 181 44700 1060 154 0.5 8.7E+06 1.4E-02 1.2 12 2.4E+08 8.5E+02 0.83 0.22 0.33 0.15 0.4 0.45 0.16 0.61 154 554 44700 1060 154 0.5 8.4E+06 1.4E-02 1.2 11 2.2E+08 8.5E+02 0.59 0.09 0.33 0.1 0.41 0.58 0.29 0.87 123 3.0 998 44700 2060 298 0.5 8.2E+06 7.7E-03 1 21 2.1E+08 5.9E+02 1.44 0.72 0.01 0.34 0.75 0.27 0.32 0.59 190 3.3 1374 44700 4100 594 0.8 1.3E+07 1.7E-02 1.2 14 5.2E+08 8.5E+02 1.77 0.73 0 0.27 0.17 0.44 290 230 4.3 988 44700 1700 246 0.8 1.4E+07 1.6E-02 1.2 16 5.8E+08 8.5E+02 1.39 0.33 0.16 0.15 0.56 0.5 0.24 0.74 178 800 141 6.0 844 44700 500 72 0.8 1.4E+07 1.7E-02 1.2 16 5.9E+08 8.5E+02 1.03 0.19 0.43 0.07 0.27 0.38 0.13 0.51 56 18 3 500 639 3.7 2342 44700 1300 188 0.9 3.1E+07 1.8E-02 1.2 33 3.0E+09 8.5E+02 3.04 0.57 0.01 0.3 0.65 0.42 0.36 0.78 239 19 3 800 430 5.5 2348 44700 940 136 1 3.6E+07 1.8E-02 1.2 38 4.0E+09 8.5E+02 2.52 0.3 0.09 0.24 0.66 0.61 0.43 1.04 136 20 3 100 436 2.6 1142 44700 1020 145 0.3 4.1E+06 1.3E-02 1.2 6 2.7E+07 8.5E+02 0.20 0.16 0.84 0.02 0 0 0 0 0 21 3 100 725 3.2 2379 44700 1160 570 0.5 7.2E+06 1.3E-02 1.2 10 8.5E+07 8.5E+02 0.42 0.67 0 0.32 0.12 0.44 571 Ai (m2) Tidal Cycle (s) Migr. rate Migr (myr. (m) 1) Tidal Amp . (m) P (m3) 3.2 417 44700 1580 229 0.3 4.9E+06 1.3E-02 1.2 142 2.7 383 44700 1420 206 0.3 4.7E+06 1.4E-02 800 131 2.0 262 44700 100 24 0.3 3 250 284 2.5 704 44700 740 107 5 3 500 319 2.3 737 44700 900 6 3 250 230 3.8 870 44700 7 3 500 182 3.6 656 44700 8 3 500 381 3.8 1433 9 1 500 200 3.2 10 2 500 155 11 4 500 12 5 # Basin dept Wbarrier Winlet h (m) (m) (m) Mt (kgm-1s-2) Mw (kgm-1s-2) Inlet balance I Dinlet (m) 1 3 250 130 7 7.7E+07 8.5E+02 0.86 2 3 500 1.2 6 7.0E+07 8.5E+02 3 3 4.0E+06 2.6E-02 1.2 3 1.9E+03 4 0.5 8.6E+06 3.3E-03 0.8 49 130 0.5 8.8E+06 3.7E-03 0.8 2100 304 0.5 8.2E+06 1.7E-02 1500 217 0.5 8.3E+06 1.5E-02 44700 1700 246 0.5 634 44700 -60 -9 4.6 709 44700 60 200 3.3 652 44700 500 196 3.4 670 13 3 800 141 3.9 14 3 250 332 15 3 250 422 16 3 500 17 3 Qs (m3s-1) Hs (m) 1 d 0 d 0 0.09 0.16 0.73 0.31 0.15 0.41 0.43 0.52 0.20 0 Migr. rate (myr-1) 4 # Basin dept Wbarrier Winlet h (m) (m) (m) Dinlet (m) Ai (m2) Tidal Cycle (s) r Migr. rate Migr (myr. (m) 1) Tidal Amp . (m) P (m3) Qs (m3s-1) Hs (m) Mt (kgm-1s-2) Mw (kgm-1s-2) Inlet balance I d d d Norm. migr. rate (+d) Migr. rate (myr-1) 22 3 250 109 6.9 761 44700 240 37 0.5 8.8E+06 7.2E-04 0.5 233 1.3E+08 1.4E+02 9.09 0.27 0.24 0.59 0.26 0.48 0.59 1.07 14 23 3 500 169 4.8 828 44700 40 8 0.5 8.9E+06 6.6E-04 0.5 257 1.3E+08 1.4E+02 3.97 0.21 0.54 0.29 0.27 0.31 0.25 0.56 5 5 Supplementary Table 3. Morphological characteristics and estimated sediment distribution of 57 natural tidal inlets along the US coastline and the observed migration for 21 natural tidal inlets. Years bracketed behind the inlet names indicate the range the migration rate was averaged across. Wbarrier is the subaerial barrier island width, Winlet in the inlet width, Dinlet is the inlet depth, AI is the inlet cross-sectional area. P is the tidal prism, Qs is the alongshore sediment transport, positive towards to right looking offshore, Hs is the offshore waveheight, Mt is the tide momentum flux, Mw is the wave momentum flux, I is the inlet momentum flux balance. All data is from the USACE Tidal Inlet Database [Carr and Kraus, 2002] unless specified otherwise. The normalized predicted migration is the sum of andd. The normalized observed migration is the observed migration rate multiplied by Ab/Qs. Notes refer to the following: (1) Inlet migration estimated from Google Earth® or NASA Landsat images (2) Inlet geometry estimated based on inlet width using [Stive et al., 2010]. (3) Alongshore sediment transport calculated using the CERC equation [Komar, 1971], with data from NOAA wavewatch hindcast [Chawla et al., 2013], assuming shoreline parallel contours [see Nienhuis et al., 2015]. (4) Tidal prism estimated based on inlet geometry using [Stive et al., 2010]. Migration rate from: (5) [Inman and Dolan, 1989], (6) [Hasbrouck, 2007], (7) [Aubrey and Speer, 1984], (8) [Giese, 1988], (9) [Everts et al., 1974], (10) [Kennish, 2001], (11) [State of Florida, 2009], (12) [DeAlteris et al., 1976], (13) [Cleary and FitzGerald, 2003], (14) [Mallinson et al., 2010], (15) [Stone et al., 1992], (16) [Mason, 1981]. Wbarrie Winlet Dinlet (m) (m) (m) Norm. Norm. pref. Pred. obs. migr. d d d migr. migr. (fit) (fit) (fit) (fit) (fit) (fit) (+d) (m/yr) Notes Tidal cycle 2 AI(m ) (s) Migr. dist. (m) Migr. rate (m/yr) P (m3) Qs (m3s-1) r 183 2 4.2E+7 6.0E-3 221 1.1 3.0E+6 1.4E+6 1.4E+0 0.61 0.03 0.37 0.69 0.36 0.21 0.57 24.3 1.0E+7 2.1E-2 15 1.2 1.3E+6 2.6E+5 1.3E+0 0.43 0.04 0.26 0.62 0.53 0.32 0.85 364.2 Inlet Name State Lat. Lon. Absecon (1840 - 1935) NJ 39.4 -74.4 1000 650 4.5 2909 44700 Bakers Haulover FL 25.9 -80.1 350 91 4.5 407 44700 Barnegat (1839 - 1939) NJ 39.8 -74.1 600 500 3.0 860 44700 Boca Grande Pass (1995 - 2016) FL 26.7 -82.3 400 Bogue (1984 - 2012) NC 34.6 -77.1 650 Breach SC 32.8 -79.8 400 Hs Mt Mw I 0.0 9 3 1200 11 1.4E+7 2.4E-3 181 1.6 1.1E+6 2.4E+6 3.9E-1 0.07 0.56 0.04 0.06 0.37 0.22 0.59 25.1 0.3 10 1300 11.9 15428 89400 -60 -3 3.6E+8 -2.0E-2 560 1.0 1.0E+7 2.3E+6 1.5E+1 1.00 0.00 0.60 0.90 0.00 0.00 0.00 -0.2 0.0 1,3 630 20.2 12739 44700 0 0 2.0E+8 -1.6E-2 400 1.2 1.6E+7 1.6E+6 9.7E+0 1.00 0.00 0.60 0.90 0.00 0.00 0.00 -0.2 0.0 1,2 750 2.4 2.8E+7 7.0E-3 127 1.2 2.2E+6 2.1E+6 1.9E+0 0.72 0.01 0.43 0.80 0.27 0.16 0.43 98.6 1796 44700 2,3 6 Wbarrie Winlet Dinlet (m) (m) (m) Tidal cycle AI(m2) (s) Migr. dist. (m) Migr. rate (m/yr) P (m3) Norm. Norm. pref. Pred. obs. migr. d d d migr. migr. (fit) (fit) (fit) (fit) (fit) (fit) (+d) (m/yr) Notes Qs (m3s-1) r Hs Mt 1.5E+7 1.2E-2 40 0.9 1.1E+6 4.9E+5 3.5E+0 0.94 0.00 0.56 0.88 0.06 0.03 0.09 54.6 2,3 5.4E+7 7.1E-3 242 1.2 1.0E+6 1.7E+6 2.1E+0 0.77 0.01 0.46 0.82 0.22 0.13 0.35 80.4 2, 3 1.5E+7 1.6E-2 30 1.2 1.5E+5 8.9E+5 2.9E-1 0.06 0.73 0.03 0.02 0.21 0.13 0.34 39.6 5.3E+7 6.3E-3 263 1.2 4.1E+6 8.1E+5 6.0E+0 0.99 0.00 0.59 0.90 0.01 0.01 0.02 1.4 0.2 1,2 0 7.8E+5 -3.1E-3 8 1.1 1.3E+3 2.6E+5 2.0E-3 0.05 0.90 0.03 0.00 0.05 0.03 0.08 -5.3 0.0 1,2,3,11 125 1.6E+7 1.1E-2 47 1.3 1.3E+6 1.6E+6 1.6E+0 0.61 0.02 0.36 0.74 0.37 0.22 0.60 398.5 0.2 2,3 4.6E+7 7.0E-3 207 1.2 8.9E+5 5.2E+5 7.0E-1 0.15 0.20 0.09 0.25 0.65 0.39 1.04 32.0 2,3 44700 3.0E+7 1.8E-4 5309 0.6 2.4E+6 5.4E+5 1.4E+1 1.00 0.00 0.60 0.90 0.00 0.00 0.00 0.0 2,3 1115 44700 1.8E+7 -1.0E-3 563 1.4 1.4E+6 9.3E+5 1.6E+0 0.58 0.02 0.35 0.73 0.40 0.24 0.64 -18.4 3 6.3 2445 89400 3.8E+7 1.0E-2 121 1.2 7.4E+5 1.1E+6 1.1E+0 0.32 0.07 0.19 0.51 0.61 0.37 0.98 198.2 2,3 1300 2.8 3607 44700 5.7E+7 1.1E-2 157 0.7 4.4E+6 1.3E+6 5.7E+0 0.98 0.00 0.59 0.90 0.01 0.01 0.02 4.1 2 366 10.4 3820 44700 2.4E+7 1.7E-2 45 0.9 7.7E+5 5.8E+5 8.8E-1 0.22 0.12 0.13 0.39 0.66 0.40 1.05 99.2 3,4 280 4.7 1320 44700 3.4E+7 1.6E-2 68 1.1 4.3E+6 6.1E+5 4.3E+0 0.97 0.00 0.58 0.89 0.03 0.02 0.05 12.3 3 CA 39.0 -74.8 450 40.8 124.2 800 609 11.5 7017 89400 9.6E+7 8.8E-4 3459 0.9 1.6E+6 8.3E+5 1.5E+0 0.55 0.03 0.33 0.71 0.42 0.25 0.67 2.0 3 Indian River DE 38.6 -75.1 300 152 5.9 44700 1.5E+7 -1.9E-3 248 1.3 1.2E+6 5.0E+5 1.2E+0 0.42 0.04 0.25 0.61 0.54 0.32 0.86 -29.1 Little Egg (1843 - 1934) NJ 39.5 -74.3 400 1200 15.0 18000 44700 4.9E+7 4.8E-3 325 1.2 6.5E+5 3.2E+6 6.1E-1 0.80 0.01 0.48 0.84 0.19 0.11 0.30 27.7 Little River SC 33.8 -78.5 250 305 3.0 929 44700 2.8E+5 1.1E-2 1 0.9 4.2E+2 4.5E+5 1.1E-3 0.05 0.90 0.03 0.00 0.05 0.03 0.08 35.9 Lockwoods Folly (1993 - 2014) NC 33.9 -78.2 250 150 4.2 625 44700 9.8E+6 3.9E-3 80 0.9 7.6E+5 2.3E+5 2.0E+0 0.75 0.01 0.45 0.81 0.24 0.14 0.38 45.0 Longboat Pass FL 27.4 -82.7 250 282 3.8 1060 89400 1.4E+7 -5.2E-3 85 0.7 2.2E+5 2.5E+5 1.0E+0 0.29 0.08 0.17 0.47 0.63 0.38 1.01 -175.4 Mason (1974 - 1997) NC 34.2 -77.8 200 150 6.0 121 44700 1.9E+6 2.2E-3 28 0.8 1.5E+5 1.7E+5 6.6E-1 0.13 0.23 0.08 0.22 0.63 0.38 1.01 57.7 Masonboro NC 34.2 -77.8 350 381 3.1 1180 44700 2.4E+7 1.5E-3 502 1.6 2.5E+6 1.8E+6 1.5E+0 0.55 0.03 0.33 0.71 0.43 0.26 0.68 30.4 3 Matanzas Pass FL 29.7 -81.2 300 270 3.1 828 44700 1.3E+7 7.9E-3 52 0.7 1.0E+6 2.6E+5 3.6E+0 0.94 0.00 0.56 0.88 0.06 0.03 0.09 25.0 2 Moriches NY 40.8 -72.8 300 244 7.7 1868 44700 2.4E+7 7.3E-3 104 1.3 1.5E+6 7.4E+5 1.7E+0 0.62 0.02 0.37 0.75 0.36 0.21 0.57 57.0 Murrells SC 33.5 -79.0 300 183 1.8 334 44700 2.1E+6 1.6E-2 4 1.1 6.7E+4 4.4E+5 9.3E-2 0.05 0.89 0.03 0.00 0.06 0.03 0.09 81.5 2,3,4 New Pass FL 27.3 -82.6 350 217 2.7 592 89400 8.7E+6 7.8E-3 35 1.2 1.6E+5 6.1E+5 1.6E-1 0.05 0.86 0.03 0.00 0.08 0.05 0.13 34.5 3 New Pass, Lee County FL 26.4 -81.9 100 180 16.6 2994 89400 4.7E+7 -7.9E-3 188 1.1 9.1E+5 4.2E+5 3.9E+0 0.95 0.00 0.57 0.89 0.04 0.03 0.07 -10.7 New River (1993 - 2015) NC 34.5 -77.3 350 750 7.5 5625 44700 190 9 3.6E+7 2.2E-2 51 0.7 1.1E+6 6.0E+5 4.1E+0 0.96 0.00 0.58 0.89 0.04 0.02 0.06 16.9 0.0 1,2,4 New Topsail (1984 - 2012) NC 34.3 -77.7 400 480 4.8 2304 44700 1000 36 1.5E+7 6.3E-3 73 0.7 4.6E+5 4.6E+5 1.2E+0 0.39 0.05 0.24 0.59 0.56 0.33 0.89 92.6 0.3 1,2,4 Inlet Name State Lat. Lon. Brigantine NJ 39.4 -74.3 200 300 3.1 943 44700 Captiva Pass FL 26.6 -82.2 200 700 4.9 3427 89400 Carolina Beach NC 34.1 -77.9 200 329 21.5 7063 44700 Corson (1991 - 2015) NJ 39.2 -74.6 250 300 11.2 3355 44700 300 13 Delnor-Wiggins Pass FL 26.3 -81.8 300 115 5.0 425 89400 0 Drum (1984 - 2012) NC 34.9 -76.3 250 500 2.1 1050 44700 3500 East Pass - Destin FL 30.4 -86.5 450 183 16.0 2924 89400 Essex Bay MA 42.7 -70.7 290 900 2.2 1936 Fort Pierce FL 27.5 -80.3 250 251 4.4 Gasparilla Pass FL 26.8 -82.3 250 390 Great Egg Harbor NJ 39.3 -74.5 750 Hampton Harbor NH 42.9 -70.8 550 Hereford NJ Humboldt Bay 898 1274 14 120 6 1200 52 Mw I 0.6 2,3,12 2, 3 0.0 1,2 3,4 0.9 2,3,13 2,3 7 Wbarrie Winlet Dinlet (m) (m) (m) Tidal cycle AI(m2) (s) Migr. dist. (m) Migr. rate (m/yr) P (m3) Norm. Norm. pref. Pred. obs. migr. d d d migr. migr. (fit) (fit) (fit) (fit) (fit) (fit) (+d) (m/yr) Notes Qs (m3s-1) r Hs Mt 3.0E+7 1.1E-2 86 0.9 2.3E+6 5.0E+5 4.1E+0 0.96 0.00 0.58 0.89 0.04 0.02 0.06 10.0 2,3 5.7E+6 3.6E-3 50 1.4 1.8E+5 1.1E+6 1.6E-1 0.05 0.86 0.03 0.00 0.09 0.05 0.14 17.4 2,3,4 0 5.7E+7 9.5E-3 191 1.2 1.8E+6 5.4E+6 1.0E+0 0.51 0.03 0.30 0.68 0.46 0.28 0.74 108.7 0.0 4,14 23 1.1E+8 1.6E-2 226 1.2 1.0E+7 2.3E+6 9.0E+0 1.00 0.00 0.60 0.90 0.00 0.00 0.01 1.0 0.1 5 6 2.7E+8 4.8E-3 1784 1.2 8.5E+7 3.9E+5 1.3E+2 1.00 0.00 0.60 0.90 0.00 0.00 0.00 0.0 0.1 3,15 44700 3.7E+7 1.1E-2 107 0.9 2.9E+6 2.3E+6 5.6E+0 0.98 0.00 0.59 0.90 0.02 0.01 0.03 16.3 2, 3 44700 1.8E+7 -4.0E-2 14 1.2 1.4E+6 1.2E+6 9.4E-1 0.26 0.10 0.16 0.44 0.65 0.39 1.03 -940.6 3 484 89400 1.4E+7 -9.2E-4 483 0.8 5.0E+5 2.5E+5 2.2E+0 0.80 0.01 0.48 0.83 0.20 0.12 0.31 -20.7 2,3 1053 89400 1.7E+7 1.1E-2 46 1.2 3.2E+5 2.4E+6 2.2E-1 0.05 0.83 0.03 0.01 0.12 0.07 0.18 13.1 2,3,16 3000 3.7 11038 44700 1.7E+8 1.0E-2 525 1.2 1.3E+7 7.8E+6 6.5E+0 0.99 0.00 0.59 0.90 0.01 0.01 0.02 1.8 2 175 2.4 424 44700 6.7E+6 8.8E-3 24 1.1 5.2E+5 3.7E+5 1.6E+0 0.60 0.02 0.36 0.74 0.38 0.23 0.60 458.1 2,3 40.8 -72.5 300 244 2.1 511 44700 6.2E+6 7.3E-3 27 0.7 3.7E+5 2.3E+5 1.3E+0 0.45 0.04 0.27 0.63 0.51 0.31 0.82 301.1 FL 31.0 -81.4 750 732 14.8 10828 44700 1.7E+8 1.3E-2 425 3.0 1.3E+7 1.2E+7 1.1E+0 0.32 0.07 0.19 0.51 0.61 0.37 0.98 35.3 2 St. Augustine FL 29.9 -81.3 700 732 7.3 5351 44700 3.7E+7 1.3E-2 93 1.2 1.3E+6 2.1E+6 6.4E-1 0.12 0.25 0.07 0.20 0.62 0.37 1.00 77.9 2 Stump Pass FL 26.9 -82.3 150 119 1.2 142 89400 4.3E+8 -4.2E-3 3250 0.7 1.6E+9 1.2E+5 1.1E+4 1.00 0.00 0.60 0.90 0.00 0.00 0.00 0.0 2,3 Townsend NJ 39.1 -74.7 450 200 5.0 1003 44700 1.6E+7 4.4E-3 112 1.2 1.2E+6 5.4E+5 1.0E+0 0.29 0.08 0.18 0.48 0.63 0.38 1.00 62.2 2 Venice FL 27.1 -82.5 200 79 1.9 149 89400 2.4E+6 -9.6E-3 8 0.9 4.8E+4 1.2E+5 1.6E-1 0.05 0.87 0.03 0.00 0.08 0.05 0.13 -104.8 3 New 1 (1945 - 1998) NC 33.9 -78.0 250 300 1.4 414 44700 6254 118 6.5E+6 1.6E-2 13 0.7 5.0E+5 2.9E+5 2.1E+0 0.76 0.01 0.46 0.82 0.23 0.14 0.37 529.9 0.1 2,3, 6 New 2 (1938 - 1954) NC 33.9 -78.0 250 200 4.5 892 44700 704 44 1.4E+7 1.6E-2 28 0.9 1.1E+6 3.0E+5 2.9E+0 0.90 0.00 0.54 0.87 0.10 0.06 0.16 72.4 0.1 2,3, 6 Katama (2007 - 2015) MA 41.4 -70.5 120 400 4.0 1600 44700 -3000 -375 1.0E+7 -6.3E-3 51 1.2 3.2E+5 1.1E+6 9.4E-1 0.10 0.36 0.06 0.13 0.54 0.33 0.87 -484.4 0.9 1,2,3 Nauset 1 (1972 - 1995) MA 41.8 -69.9 200 250 2.5 2500 44700 -2300 -100 4.0E+6 -3.8E-3 33 0.9 1.3E+5 3.8E+5 4.1E-1 0.07 0.53 0.04 0.07 0.40 0.24 0.64 -153.9 0.4 2,3,4,7 Nauset 2 (1995 - 2015) MA 41.8 -69.9 200 250 2.5 625 44700 -3860 -193 4.0E+6 -3.8E-3 33 0.9 1.3E+5 3.8E+5 4.1E-1 0.07 0.53 0.04 0.07 0.40 0.24 0.64 -153.9 0.8 2,3,4,7 Chatham (1846 - 1987) MA 41.7 -69.9 300 250 2.5 3600 44700 8460 60 4.0E+6 3.8E-3 33 0.7 1.3E+5 2.4E+5 4.3E-1 0.07 0.51 0.04 0.07 0.42 0.25 0.67 107.4 0.4 2,3,4, 8 Inlet Name State Lat. Lon. Newburyport Harbor MA 42.8 -70.8 350 305 6.3 1911 44700 Ocean City MD 38.3 -75.1 300 300 3.0 900 44700 Ocracoke NC 35.1 -76.0 700 2100 4.3 8996 44700 0 Oregon (1849 - 1975) NC 35.8 -75.5 450 900 6.9 6190 44700 2898 Pensacola Bay (1771 - 1981) FL 30.3 -87.3 250 152 6.8 1041 89400 1250 Plum Island Sound MA 42.7 -70.8 320 1400 1.7 2381 Ponce de Leon FL 29.1 -80.9 550 426 2.5 1069 Redfish Pass FL 26.6 -82.2 200 220 2.2 San Luis Pass TX 29.1 -95.1 550 900 1.2 Sapelo Sound GA 31.5 -81.2 800 Sebastian FL 27.9 -80.4 150 Shinnecock NY St. Andrews Pass Mw I References for the natural tidal inlets Aubrey, D. G., and P. E. Speer (1984), Updrift Migration of Tidal Inlets, J. Geol., 92(5), 531–545. Carr, E. E., and N. C. Kraus (2002), Federal Inlets Database, Vicksburg, MS. 8 Chawla, A., D. M. Spindler, and H. L. Tolman (2013), Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds, Ocean Model., 70, 189–206, doi:10.1016/j.ocemod.2012.07.005. Cleary, W. J., and D. M. FitzGerald (2003), Tidal Inlet Response to Natural Sedimentation Processes and Dredging-Induced Tidal Prism Changes: Mason Inlet, North Carolina, J. Coast. Res., 19(4), 1018–1025. DeAlteris, J., T. McKinney, and J. Roney (1976), Beach Haven and Little Egg Inlet, a case study, Coast. Eng., 15, 1881–1898, doi:10.9753/icce.v15.%25p. Everts, C. H., A. E. Dewall, and M. T. Czemiak (1974), Behavior of Beach Fill at Atlantic City, New Jersey, in Coastal Engineering 1974, pp. 1370–1388, American Society of Civil Engineers, Copenhagen, Denmark. Giese, G. S. (1988), Cyclical Behavior of the Tidal Inlet at Nauset Beach, Chatham, Massachusetts, in Lecture Notes on Coastal Estuarine Studies, vol. 29, edited by D. G. Aubrey and L. Weishar, pp. 269–283, Springer-Verlag, New York, USA. Hasbrouck, E. G. (2007), The influence of tidal inlet migration and closure on barrier planform changes: Federal Beach, NC, University of North Carolina Wilmington. Inman, D. L., and R. Dolan (1989), The Outer Banks of North Carolina: Budget of sediment and inlet dynamics along a migrating barrier system, J. Coast. Res., 5(2), 193–237. Kennish, M. J. (2001), Physical Description of the Barnegat Bay — Little Egg Harbor Estuarine System, J. Coast. Res., 32(SI), 13–27. Komar, P. D. (1971), Mechanics of Sand Transport on Beaches, J. Geophys. Res., 76(3), 713–721, doi:10.1029/Jc076i003p00713. Mallinson, D. J., C. W. Smith, S. J. Culver, S. R. Riggs, and D. Ames (2010), Geological characteristics and spatial distribution of paleo-inlet channels beneath the outer banks barrier islands, North Carolina, USA, Estuar. Coast. Shelf Sci., 88(2), 175–189, doi:10.1016/j.ecss.2010.03.024. Mason, C. (1981), Hydraulics and Stability of Five Texas Inlets, Fort Belvoir, VA. Nienhuis, J. H., A. D. Ashton, and L. Giosan (2015), What makes a delta wave-dominated?, Geology, 43(6), 511–514, doi:10.1130/G36518.1. State of Florida (2009), Delnor-Wiggins Pass State Park Unit Management Plan, Tallahassee, FL. Stive, M. J. F., L. Ji, R. L. Brouwer, J. C. van de Kreeke, and R. Ranasinghe (2010), Empirical Relationship between Inlet Crosssectional Area and Tidal Prism: A Re-evaluation, in Proceedings of the 32nd International Conference in Coastal Engineering, edited by J. McKee Smith and P. Lynett, pp. 1–10, Coastal Engineering Research Council, Shanghai. Stone, G. W., F. W. Stapor Jr., J. P. May, and J. P. Morgan (1992), Multiple sediment sources and a cellular, non-integrated, longshore drift system: Northwest Florida and southeast Alabama coast , USA, Mar. Geol., 105, 141–154, doi:10.1016/00253227(92)90186. 9 Figure S1. An example model result for (A) a regular grid (25x40 m close to the inlet) and (D) a refined grid (15x20 m close to the inlet). Both model results show roughly similar ebb and flood-tidal delta morphology, and nearly identical (B) inlet cross-sectional areas and (C) depths. The sediment partitioning (E-F) varies slightly between the model experiments. 10 Figure S2. Inlet bathymetry after 0.7 years for (A) a morfac of 90, (B) a morfac of 45, and (C) a morfac of 10. The simulations show qualitatively similar inlet morphologies. (D) Inlet migration for 3 different morphologic scaling factors. There is a 5% increase in the migration rate of the 45 morfac compared to the 90 morfac, thought to be caused by the more frequent updating between the SWAN and FLOW modules of the model. 11 Animation S1. Bathymetry, updrift sediment thickness and inlet sediment partitioning fractions of model experiment #7: Movie S1 H0.5_Hs1.2_500m.gif 12
© Copyright 2026 Paperzz