Supporting Online Material for

Journal of Geophysical Research: Earth Surface
Supporting Information for
Mechanics and rates of tidal inlet migration: modeling and application to natural examples
Jaap H. Nienhuis1, 2,*, Andrew D. Ashton1
1Department
2Earth,
of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA
Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA
* Corresponding author: 204 Blessey Hall, Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, [email protected]
Contents of this file
Tables S1 to S3
Figure S1 and S2
Additional Supporting Information
Captions for Animation S1
Introduction
Supplementary information includes table S1 of the Delft3D-SWAN model settings, table S2 of the Delft3D-SWAN model
experiments and results, table S3 of the analyzed natural tidal inlets, figure S1 of the grid resolution test, figure S2 is of the
morphologic scaling factor test, and animation S1 of the model experiments mentioned in the article.
1
Supplementary Table 1. Overview of the Delft3D and
SWAN model parameters.
Parameter
Value
Units
Description
General
Parameter
Value
Quadruplts
false
Units
Description
Include quadruplets
Refraction
true
Include refraction
FreqShift
true
Include frequency shifting in frequency space
WaveForces
rad stress
Method of wave force computation
FlowBedLevel 1
use
Use bed level from FLOW in WAVE domain but do not extend
FlowWaterLevel 1
use / extend
Use water level from FLOW and extend across WAVE domain
Tstart
0
min
Start time
FlowVelocity 1
use / extend
Use water level from FLOW and extend across WAVE domain
Tstop
41760
min
Stop time
FlowBedLevel 2
use / extend
Use bed level from FLOW and extend across WAVE domain
Dt
0.2
min
Timestep
FlowWaterLevel 2
use / extend
Use water level from FLOW and extend across WAVE domain
Ag
9.81
ms-2
Gravitational Acceleration
FlowVelocity 2
use / extend
Use flow velocity from FLOW and extend across WAVE domain
DirSpace
circle
Default directional space
Flow
Rhow
1025
kgm-3
Water Density
Ndir
36
Tempw
15
C
Water Temperature
FreqMin
0.05
s-1
Minimum frequency
Salw
31
ppt
Salinity
FreqMax
1
s-1
Maximum frequency
Bottom Stress formulation due to wave action
Nfreq
24
Number of frequencies
parametric
Spectrum type
Rouwav
FR84
Number of directional bins
Rhoa
1
kgm
Air Density
SpectrumSpec
Ccofu
65
m0.5s-1
Chezy roughness u
SpShapeType
jonswap
Spectrum shape
Ccofv
65
m0.5s-1
Chezy roughness v
PeriodType
peak
Wave period type
Vicouv
2
Uniform horizontal eddy viscosity
DirSpreadType
degrees
Directional spreading type
Dicouv
10
Uniform vertical eddy diffusivity
PeakEnhanceFac
3.3
Roughness length vertical side walls
WaveHeight
var
m
Wave height at boundaries
var
s
Wave period at boundaries
Z0v
0.1
-3
m
Peak enhancement factor
Dryflc
0.1
m
Threshold depth for drying and flooding
PeriodType
Tlfsmo
60
s
Time interval to smooth hydrodynamic boundary conditions
Direction
50
deg
Wave direction at boundaries (North = 0, East = 90)
North
neumann
North boundary condition
DirSpreading
10
deg
Directional spreading
RettisNorth
-1
s
North Thatcher Harlemann return time
Morphology
East
water level
m
East boundary condition, M2 Tide
EpsPar
false
Vertical mixing distribution according to van Rijn
South
neumann
South boundary condition
MorFac
90
RettisEast
-1
MorStt
1440
min
Morphological scale factor
Spin-up interval from TStart to the start of morphological
changes
Thresh
0.05
m
Threshold sediment thickness for transport and erosion reduction
Minimum depth
MorUpd
true
Update bathymetry during FLOW simulation
s
South Thatcher Harlemann return time
Waves
MinimumDepth
0.05
m
GenModePhysics
3
Generation mode of physics
CMPUds
true
Update bed composition during flow run
Breaking
true
Include wave breaking
EqmBc
true
Equilibrium sand concentration profile at inflow boundaries
BreakAlpha
1
Alpha coefficient for wave breaking
DensIn
false
Include effect of sediment concentration on fluid density
BreakGamma
0.73
Gamma coefficient for wave breaking
AksFac
0.5
van Rijn's reference height
BedFriction
jonswap
Bed friction type
Rwave
2
Wave related roughness. Van Rijn recommends range 1-3
BedFricCoef
0.067
Bed friction coefficient
AlfaBS
1
Streamwise bed gradient factor for bed load transport
Diffraction
false
Include diffraction
AlfaBT
20
Transverse bed gradient factor for bed load transport
WindGrowth
false
Include wind growth
Sus
1
Multiplication factor for suspended sediment ref. concentration
WhiteCapping
Komen
White capping formulation
Bed
1
Multiplication factor for bed-load transport vector magnitude
2
Parameter
Value
SusW
0.15
Units
Description
BedW
0.15
SedThr
0.1
ThetSD
0.8
HMaxTH
1.5
FWFac
1
Tuning parameter for wave streaming
UpdBaseLyr
1
Update option for composition and thickness of base layer
UpdInf
true
Update bed levels at inflow boundaries
Islope
2
Bedslope formulation
IUnderLyr
2
Flag for underlayer concept
TTLForm
constant
ThTrLyr
0.2
MxNULyr
25
ThUnLyr
0.2
m
Thickness of each underlayer
1600
kgm-3
CSoil Reference density for hindered settling calculations
RhoSol
2650
kgm-3
Specific density
SedDia (1)
0.0002
m
Median sediment diameter (D50), fraction 1
SedDia (2)
0.0001999
m
Median sediment diameter (D50), fraction 2
SedDia (3)
0.00020001
m
Median sediment diameter (D50), fraction 3
CdryB
0.0016
kgm-3
Dry bed density
IniSedThick (1)
sand1.sdb
m
Initial sediment sand 1 layer thickness at bed, updrift sediments
IniSedThick (2)
sand2.sdb
m
Initial sediment sand 2 layer thickness, downdrift sediments
IniSedThick (3)
sand3.sdb
m
Initial sediment sand 3 layer thickness, tidal basin sediments
FacDSS
1
Wave-related suspended sed. transport factor
Wave-related bed-load sed. transport factor
m
Minimum water depth for sediment computations
Factor for erosion of adjacent dry cells
m
Max depth for variable THETSD.
Transport layer thickness formulation
m
Thickness of the transport layer
Underlayers (excl transp & base lyrs)
Sediment
Cref
Sediment sand
FacDss * SedDia = Initial suspended sediment diameter.
Sediment mud
RhoSol
2650
kgm-3
Specific density
SalMax
0
ppt
Salinity for saline settling velocity
WS0
0.00025
ms-1
Settling velocity fresh water
WSM
0.00025
ms-1
Settling velocity saline water
TcrSed
1000
Nm-2
Critical bed shear stress for sedimentation
TcrEro
0.5
Nm-2
Critical bed shear stress for erosion
EroPar
0.0001
kgm-2s-1
Erosion parameter
CDryB
500
kgm-3
Dry bed density
IniSedThick
0
ms-1
Initial sediment layer thickness at bed
FacDSS
1
FacDss * SedDia = Initial suspended sediment diameter.
3
Supplementary Table 2. Boundary conditions and resulting morphological characteristics of the 23 model experiments. Wbarrier is
the initial barrier width, Winlet in the inlet width, Dinlet is the inlet depth, AI is the inlet cross-sectional area, P is the tidal prism, Hs is the
offshore wave height, Mt is the tidal momentum flux, Mw is the wave momentum flux. Reported values are averages except where
noted. The tidal prism and migration rate for experiment #3 are for the 4 years before closure.
r

d
Norm.
migr.
rate
(+d)
0.32 0.32 0.13 0.44
0.36
0.12
0.48
251
0.43
0.15 0.37 0.12 0.38
0.49
0.23
0.72
234
8.5E+02
0.00
0
0
0
0
0
2.3E+08
3.8E+02
3.47
0.87 0.01 0.59 0.86
0.12
0.17
0.29
49
46
2.4E+08
3.8E+02
1.76
0.37 0.11 0.26 0.67
0.52
0.34
0.86
86
1.2
9
2.1E+08
8.5E+02
1.15
0.45 0.15 0.16 0.59
0.4
0.22
0.62
351
1.2
11
2.2E+08
8.5E+02
0.77
0.22 0.24 0.17 0.5
0.53
0.23
0.76
199
1.7E+07 1.4E-02
1.2
25
9.5E+08
8.5E+02
1.56
0.4
0.51
0.33
0.84
190
0.5
5.3E+06 1.4E-02
1.2
7
9.0E+07
8.5E+02
0.33
0.14 0.86 0.04 0
0
0
0
0
9
0.5
7.5E+06 1.4E-02
1.2
10
1.8E+08
8.5E+02
0.59
0.24 0.72 0.06 0.01
0.04
0.01
0.05
9
1220
177
0.5
8.6E+06 1.4E-02
1.2
12
2.3E+08
8.5E+02
0.84
0.2
0.49
0.18
0.67
181
44700
1060
154
0.5
8.7E+06 1.4E-02
1.2
12
2.4E+08
8.5E+02
0.83
0.22 0.33 0.15 0.4
0.45
0.16
0.61
154
554
44700
1060
154
0.5
8.4E+06 1.4E-02
1.2
11
2.2E+08
8.5E+02
0.59
0.09 0.33 0.1
0.41
0.58
0.29
0.87
123
3.0
998
44700
2060
298
0.5
8.2E+06 7.7E-03
1
21
2.1E+08
5.9E+02
1.44
0.72 0.01 0.34 0.75
0.27
0.32
0.59
190
3.3
1374
44700
4100
594
0.8
1.3E+07 1.7E-02
1.2
14
5.2E+08
8.5E+02
1.77
0.73 0
0.27
0.17
0.44
290
230
4.3
988
44700
1700
246
0.8
1.4E+07 1.6E-02
1.2
16
5.8E+08
8.5E+02
1.39
0.33 0.16 0.15 0.56
0.5
0.24
0.74
178
800
141
6.0
844
44700
500
72
0.8
1.4E+07 1.7E-02
1.2
16
5.9E+08
8.5E+02
1.03
0.19 0.43 0.07 0.27
0.38
0.13
0.51
56
18 3
500
639
3.7
2342
44700
1300
188
0.9
3.1E+07 1.8E-02
1.2
33
3.0E+09
8.5E+02
3.04
0.57 0.01 0.3
0.65
0.42
0.36
0.78
239
19 3
800
430
5.5
2348
44700
940
136
1
3.6E+07 1.8E-02
1.2
38
4.0E+09
8.5E+02
2.52
0.3
0.09 0.24 0.66
0.61
0.43
1.04
136
20 3
100
436
2.6
1142
44700
1020
145
0.3
4.1E+06 1.3E-02
1.2
6
2.7E+07
8.5E+02
0.20
0.16 0.84 0.02 0
0
0
0
0
21 3
100
725
3.2
2379
44700
1160
570
0.5
7.2E+06 1.3E-02
1.2
10
8.5E+07
8.5E+02
0.42
0.67 0
0.32
0.12
0.44
571
Ai (m2)
Tidal
Cycle
(s)
Migr.
rate
Migr (myr. (m) 1)
Tidal
Amp
. (m) P (m3)
3.2
417
44700
1580
229
0.3
4.9E+06 1.3E-02
1.2
142
2.7
383
44700
1420
206
0.3
4.7E+06 1.4E-02
800
131
2.0
262
44700
100
24
0.3
3
250
284
2.5
704
44700
740
107
5
3
500
319
2.3
737
44700
900
6
3
250
230
3.8
870
44700
7
3
500
182
3.6
656
44700
8
3
500
381
3.8
1433
9
1
500
200
3.2
10 2
500
155
11 4
500
12 5
#
Basin
dept Wbarrier Winlet
h (m) (m)
(m)
Mt
(kgm-1s-2)
Mw
(kgm-1s-2)
Inlet
balance

I
Dinlet
(m)
1
3
250
130
7
7.7E+07
8.5E+02
0.86
2
3
500
1.2
6
7.0E+07
8.5E+02
3
3
4.0E+06 2.6E-02
1.2
3
1.9E+03
4
0.5
8.6E+06 3.3E-03
0.8
49
130
0.5
8.8E+06 3.7E-03
0.8
2100
304
0.5
8.2E+06 1.7E-02
1500
217
0.5
8.3E+06 1.5E-02
44700
1700
246
0.5
634
44700
-60
-9
4.6
709
44700
60
200
3.3
652
44700
500
196
3.4
670
13 3
800
141
3.9
14 3
250
332
15 3
250
422
16 3
500
17 3
Qs (m3s-1) Hs (m)

1
d
0
d
0
0.09 0.16 0.73
0.31 0.15 0.41
0.43 0.52
0.20 0
Migr.
rate
(myr-1)
4
#
Basin
dept Wbarrier Winlet
h (m) (m)
(m)
Dinlet
(m)
Ai (m2)
Tidal
Cycle
(s)
r
Migr.
rate
Migr (myr. (m) 1)
Tidal
Amp
. (m) P (m3)
Qs (m3s-1) Hs (m)
Mt
(kgm-1s-2)
Mw
(kgm-1s-2)
Inlet
balance
I


d
d

d
Norm.
migr.
rate
(+d)
Migr.
rate
(myr-1)
22 3
250
109
6.9
761
44700
240
37
0.5
8.8E+06 7.2E-04
0.5
233
1.3E+08
1.4E+02
9.09
0.27 0.24 0.59 0.26
0.48
0.59
1.07
14
23 3
500
169
4.8
828
44700
40
8
0.5
8.9E+06 6.6E-04
0.5
257
1.3E+08
1.4E+02
3.97
0.21 0.54 0.29 0.27
0.31
0.25
0.56
5
5
Supplementary Table 3. Morphological characteristics and estimated sediment distribution of 57 natural tidal inlets along
the US coastline and the observed migration for 21 natural tidal inlets. Years bracketed behind the inlet names indicate
the range the migration rate was averaged across. Wbarrier is the subaerial barrier island width, Winlet in the inlet width, Dinlet
is the inlet depth, AI is the inlet cross-sectional area. P is the tidal prism, Qs is the alongshore sediment transport, positive
towards to right looking offshore, Hs is the offshore waveheight, Mt is the tide momentum flux, Mw is the wave momentum
flux, I is the inlet momentum flux balance. All data is from the USACE Tidal Inlet Database [Carr and Kraus, 2002] unless
specified otherwise. The normalized predicted migration is the sum of  andd. The normalized observed migration is the
observed migration rate multiplied by Ab/Qs. Notes refer to the following: (1) Inlet migration estimated from Google Earth®
or NASA Landsat images (2) Inlet geometry estimated based on inlet width using [Stive et al., 2010]. (3) Alongshore
sediment transport calculated using the CERC equation [Komar, 1971], with data from NOAA wavewatch hindcast
[Chawla et al., 2013], assuming shoreline parallel contours [see Nienhuis et al., 2015]. (4) Tidal prism estimated based on
inlet geometry using [Stive et al., 2010]. Migration rate from: (5) [Inman and Dolan, 1989], (6) [Hasbrouck, 2007], (7)
[Aubrey and Speer, 1984], (8) [Giese, 1988], (9) [Everts et al., 1974], (10) [Kennish, 2001], (11) [State of Florida, 2009],
(12) [DeAlteris et al., 1976], (13) [Cleary and FitzGerald, 2003], (14) [Mallinson et al., 2010], (15) [Stone et al., 1992], (16)
[Mason, 1981].
Wbarrie Winlet Dinlet
(m)
(m) (m)
Norm.
Norm.
pref.
Pred. obs.
migr.
d
d  d


migr. migr.
(fit) (fit) (fit) (fit) (fit) (fit) (+d) (m/yr)
Notes
Tidal
cycle
2
AI(m ) (s)
Migr.
dist.
(m)
Migr.
rate
(m/yr) P (m3)
Qs
(m3s-1) r
183
2
4.2E+7
6.0E-3 221 1.1 3.0E+6 1.4E+6 1.4E+0
0.61 0.03 0.37 0.69 0.36 0.21 0.57
24.3
1.0E+7
2.1E-2 15
1.2 1.3E+6 2.6E+5 1.3E+0
0.43 0.04 0.26 0.62 0.53 0.32 0.85
364.2
Inlet Name
State Lat. Lon.
Absecon (1840 - 1935)
NJ
39.4 -74.4 1000
650
4.5
2909
44700
Bakers Haulover
FL
25.9 -80.1 350
91
4.5
407
44700
Barnegat (1839 - 1939)
NJ
39.8 -74.1 600
500
3.0
860
44700
Boca Grande Pass (1995 - 2016) FL
26.7 -82.3 400
Bogue (1984 - 2012)
NC
34.6 -77.1 650
Breach
SC
32.8 -79.8 400
Hs Mt
Mw
I
0.0
9
3
1200
11
1.4E+7
2.4E-3 181 1.6 1.1E+6 2.4E+6 3.9E-1
0.07 0.56 0.04 0.06 0.37 0.22 0.59
25.1
0.3
10
1300 11.9 15428 89400
-60
-3
3.6E+8
-2.0E-2 560 1.0 1.0E+7 2.3E+6 1.5E+1
1.00 0.00 0.60 0.90 0.00 0.00 0.00
-0.2
0.0
1,3
630
20.2 12739 44700
0
0
2.0E+8
-1.6E-2 400 1.2 1.6E+7 1.6E+6 9.7E+0
1.00 0.00 0.60 0.90 0.00 0.00 0.00
-0.2
0.0
1,2
750
2.4
2.8E+7
7.0E-3 127 1.2 2.2E+6 2.1E+6 1.9E+0
0.72 0.01 0.43 0.80 0.27 0.16 0.43
98.6
1796
44700
2,3
6
Wbarrie Winlet Dinlet
(m)
(m) (m)
Tidal
cycle
AI(m2) (s)
Migr.
dist.
(m)
Migr.
rate
(m/yr) P (m3)
Norm.
Norm.
pref.
Pred. obs.
migr.
d
d  d


migr. migr.
(fit) (fit) (fit) (fit) (fit) (fit) (+d) (m/yr)
Notes
Qs
(m3s-1) r
Hs Mt
1.5E+7
1.2E-2 40
0.9 1.1E+6 4.9E+5 3.5E+0
0.94 0.00 0.56 0.88 0.06 0.03 0.09
54.6
2,3
5.4E+7
7.1E-3 242 1.2 1.0E+6 1.7E+6 2.1E+0
0.77 0.01 0.46 0.82 0.22 0.13 0.35
80.4
2, 3
1.5E+7
1.6E-2 30
1.2 1.5E+5 8.9E+5 2.9E-1
0.06 0.73 0.03 0.02 0.21 0.13 0.34
39.6
5.3E+7
6.3E-3 263 1.2 4.1E+6 8.1E+5 6.0E+0
0.99 0.00 0.59 0.90 0.01 0.01 0.02
1.4
0.2
1,2
0
7.8E+5
-3.1E-3 8
1.1 1.3E+3 2.6E+5 2.0E-3
0.05 0.90 0.03 0.00 0.05 0.03 0.08
-5.3
0.0
1,2,3,11
125
1.6E+7
1.1E-2 47
1.3 1.3E+6 1.6E+6 1.6E+0
0.61 0.02 0.36 0.74 0.37 0.22 0.60
398.5 0.2
2,3
4.6E+7
7.0E-3 207 1.2 8.9E+5 5.2E+5 7.0E-1
0.15 0.20 0.09 0.25 0.65 0.39 1.04
32.0
2,3
44700
3.0E+7
1.8E-4 5309 0.6 2.4E+6 5.4E+5 1.4E+1
1.00 0.00 0.60 0.90 0.00 0.00 0.00
0.0
2,3
1115
44700
1.8E+7
-1.0E-3 563 1.4 1.4E+6 9.3E+5 1.6E+0
0.58 0.02 0.35 0.73 0.40 0.24 0.64
-18.4
3
6.3
2445
89400
3.8E+7
1.0E-2 121 1.2 7.4E+5 1.1E+6 1.1E+0
0.32 0.07 0.19 0.51 0.61 0.37 0.98
198.2
2,3
1300 2.8
3607
44700
5.7E+7
1.1E-2 157 0.7 4.4E+6 1.3E+6 5.7E+0
0.98 0.00 0.59 0.90 0.01 0.01 0.02
4.1
2
366
10.4 3820
44700
2.4E+7
1.7E-2 45
0.9 7.7E+5 5.8E+5 8.8E-1
0.22 0.12 0.13 0.39 0.66 0.40 1.05
99.2
3,4
280
4.7
1320
44700
3.4E+7
1.6E-2 68
1.1 4.3E+6 6.1E+5 4.3E+0
0.97 0.00 0.58 0.89 0.03 0.02 0.05
12.3
3
CA
39.0 -74.8 450
40.8 124.2 800
609
11.5 7017
89400
9.6E+7
8.8E-4 3459 0.9 1.6E+6 8.3E+5 1.5E+0
0.55 0.03 0.33 0.71 0.42 0.25 0.67
2.0
3
Indian River
DE
38.6 -75.1 300
152
5.9
44700
1.5E+7
-1.9E-3 248 1.3 1.2E+6 5.0E+5 1.2E+0
0.42 0.04 0.25 0.61 0.54 0.32 0.86
-29.1
Little Egg (1843 - 1934)
NJ
39.5 -74.3 400
1200 15.0 18000 44700
4.9E+7
4.8E-3 325 1.2 6.5E+5 3.2E+6 6.1E-1
0.80 0.01 0.48 0.84 0.19 0.11 0.30
27.7
Little River
SC
33.8 -78.5 250
305
3.0
929
44700
2.8E+5
1.1E-2 1
0.9 4.2E+2 4.5E+5 1.1E-3
0.05 0.90 0.03 0.00 0.05 0.03 0.08
35.9
Lockwoods Folly (1993 - 2014) NC
33.9 -78.2 250
150
4.2
625
44700
9.8E+6
3.9E-3 80
0.9 7.6E+5 2.3E+5 2.0E+0
0.75 0.01 0.45 0.81 0.24 0.14 0.38
45.0
Longboat Pass
FL
27.4 -82.7 250
282
3.8
1060
89400
1.4E+7
-5.2E-3 85
0.7 2.2E+5 2.5E+5 1.0E+0
0.29 0.08 0.17 0.47 0.63 0.38 1.01
-175.4
Mason (1974 - 1997)
NC
34.2 -77.8 200
150
6.0
121
44700
1.9E+6
2.2E-3 28
0.8 1.5E+5 1.7E+5 6.6E-1
0.13 0.23 0.08 0.22 0.63 0.38 1.01
57.7
Masonboro
NC
34.2 -77.8 350
381
3.1
1180
44700
2.4E+7
1.5E-3 502 1.6 2.5E+6 1.8E+6 1.5E+0
0.55 0.03 0.33 0.71 0.43 0.26 0.68
30.4
3
Matanzas Pass
FL
29.7 -81.2 300
270
3.1
828
44700
1.3E+7
7.9E-3 52
0.7 1.0E+6 2.6E+5 3.6E+0
0.94 0.00 0.56 0.88 0.06 0.03 0.09
25.0
2
Moriches
NY
40.8 -72.8 300
244
7.7
1868
44700
2.4E+7
7.3E-3 104 1.3 1.5E+6 7.4E+5 1.7E+0
0.62 0.02 0.37 0.75 0.36 0.21 0.57
57.0
Murrells
SC
33.5 -79.0 300
183
1.8
334
44700
2.1E+6
1.6E-2 4
1.1 6.7E+4 4.4E+5 9.3E-2
0.05 0.89 0.03 0.00 0.06 0.03 0.09
81.5
2,3,4
New Pass
FL
27.3 -82.6 350
217
2.7
592
89400
8.7E+6
7.8E-3 35
1.2 1.6E+5 6.1E+5 1.6E-1
0.05 0.86 0.03 0.00 0.08 0.05 0.13
34.5
3
New Pass, Lee County
FL
26.4 -81.9 100
180
16.6 2994
89400
4.7E+7
-7.9E-3 188 1.1 9.1E+5 4.2E+5 3.9E+0
0.95 0.00 0.57 0.89 0.04 0.03 0.07
-10.7
New River (1993 - 2015)
NC
34.5 -77.3 350
750
7.5
5625
44700
190
9
3.6E+7
2.2E-2 51
0.7 1.1E+6 6.0E+5 4.1E+0
0.96 0.00 0.58 0.89 0.04 0.02 0.06
16.9
0.0
1,2,4
New Topsail (1984 - 2012)
NC
34.3 -77.7 400
480
4.8
2304
44700
1000
36
1.5E+7
6.3E-3 73
0.7 4.6E+5 4.6E+5 1.2E+0
0.39 0.05 0.24 0.59 0.56 0.33 0.89
92.6
0.3
1,2,4
Inlet Name
State Lat. Lon.
Brigantine
NJ
39.4 -74.3 200
300
3.1
943
44700
Captiva Pass
FL
26.6 -82.2 200
700
4.9
3427
89400
Carolina Beach
NC
34.1 -77.9 200
329
21.5 7063
44700
Corson (1991 - 2015)
NJ
39.2 -74.6 250
300
11.2 3355
44700
300
13
Delnor-Wiggins Pass
FL
26.3 -81.8 300
115
5.0
425
89400
0
Drum (1984 - 2012)
NC
34.9 -76.3 250
500
2.1
1050
44700
3500
East Pass - Destin
FL
30.4 -86.5 450
183
16.0 2924
89400
Essex Bay
MA 42.7 -70.7 290
900
2.2
1936
Fort Pierce
FL
27.5 -80.3 250
251
4.4
Gasparilla Pass
FL
26.8 -82.3 250
390
Great Egg Harbor
NJ
39.3 -74.5 750
Hampton Harbor
NH
42.9 -70.8 550
Hereford
NJ
Humboldt Bay
898
1274
14
120
6
1200
52
Mw
I
0.6
2,3,12
2, 3
0.0
1,2
3,4
0.9
2,3,13
2,3
7
Wbarrie Winlet Dinlet
(m)
(m) (m)
Tidal
cycle
AI(m2) (s)
Migr.
dist.
(m)
Migr.
rate
(m/yr) P (m3)
Norm.
Norm.
pref.
Pred. obs.
migr.
d
d  d


migr. migr.
(fit) (fit) (fit) (fit) (fit) (fit) (+d) (m/yr)
Notes
Qs
(m3s-1) r
Hs Mt
3.0E+7
1.1E-2 86
0.9 2.3E+6 5.0E+5 4.1E+0
0.96 0.00 0.58 0.89 0.04 0.02 0.06
10.0
2,3
5.7E+6
3.6E-3 50
1.4 1.8E+5 1.1E+6 1.6E-1
0.05 0.86 0.03 0.00 0.09 0.05 0.14
17.4
2,3,4
0
5.7E+7
9.5E-3 191 1.2 1.8E+6 5.4E+6 1.0E+0
0.51 0.03 0.30 0.68 0.46 0.28 0.74
108.7 0.0
4,14
23
1.1E+8
1.6E-2 226 1.2 1.0E+7 2.3E+6 9.0E+0
1.00 0.00 0.60 0.90 0.00 0.00 0.01
1.0
0.1
5
6
2.7E+8
4.8E-3 1784 1.2 8.5E+7 3.9E+5 1.3E+2
1.00 0.00 0.60 0.90 0.00 0.00 0.00
0.0
0.1
3,15
44700
3.7E+7
1.1E-2 107 0.9 2.9E+6 2.3E+6 5.6E+0
0.98 0.00 0.59 0.90 0.02 0.01 0.03
16.3
2, 3
44700
1.8E+7
-4.0E-2 14
1.2 1.4E+6 1.2E+6 9.4E-1
0.26 0.10 0.16 0.44 0.65 0.39 1.03
-940.6
3
484
89400
1.4E+7
-9.2E-4 483 0.8 5.0E+5 2.5E+5 2.2E+0
0.80 0.01 0.48 0.83 0.20 0.12 0.31
-20.7
2,3
1053
89400
1.7E+7
1.1E-2 46
1.2 3.2E+5 2.4E+6 2.2E-1
0.05 0.83 0.03 0.01 0.12 0.07 0.18
13.1
2,3,16
3000 3.7
11038 44700
1.7E+8
1.0E-2 525 1.2 1.3E+7 7.8E+6 6.5E+0
0.99 0.00 0.59 0.90 0.01 0.01 0.02
1.8
2
175
2.4
424
44700
6.7E+6
8.8E-3 24
1.1 5.2E+5 3.7E+5 1.6E+0
0.60 0.02 0.36 0.74 0.38 0.23 0.60
458.1
2,3
40.8 -72.5 300
244
2.1
511
44700
6.2E+6
7.3E-3 27
0.7 3.7E+5 2.3E+5 1.3E+0
0.45 0.04 0.27 0.63 0.51 0.31 0.82
301.1
FL
31.0 -81.4 750
732
14.8 10828 44700
1.7E+8
1.3E-2 425 3.0 1.3E+7 1.2E+7 1.1E+0
0.32 0.07 0.19 0.51 0.61 0.37 0.98
35.3
2
St. Augustine
FL
29.9 -81.3 700
732
7.3
5351
44700
3.7E+7
1.3E-2 93
1.2 1.3E+6 2.1E+6 6.4E-1
0.12 0.25 0.07 0.20 0.62 0.37 1.00
77.9
2
Stump Pass
FL
26.9 -82.3 150
119
1.2
142
89400
4.3E+8
-4.2E-3 3250 0.7 1.6E+9 1.2E+5 1.1E+4
1.00 0.00 0.60 0.90 0.00 0.00 0.00
0.0
2,3
Townsend
NJ
39.1 -74.7 450
200
5.0
1003
44700
1.6E+7
4.4E-3 112 1.2 1.2E+6 5.4E+5 1.0E+0
0.29 0.08 0.18 0.48 0.63 0.38 1.00
62.2
2
Venice
FL
27.1 -82.5 200
79
1.9
149
89400
2.4E+6
-9.6E-3 8
0.9 4.8E+4 1.2E+5 1.6E-1
0.05 0.87 0.03 0.00 0.08 0.05 0.13
-104.8
3
New 1 (1945 - 1998)
NC
33.9 -78.0 250
300
1.4
414
44700
6254
118
6.5E+6
1.6E-2 13
0.7 5.0E+5 2.9E+5 2.1E+0
0.76 0.01 0.46 0.82 0.23 0.14 0.37
529.9 0.1
2,3, 6
New 2 (1938 - 1954)
NC
33.9 -78.0 250
200
4.5
892
44700
704
44
1.4E+7
1.6E-2 28
0.9 1.1E+6 3.0E+5 2.9E+0
0.90 0.00 0.54 0.87 0.10 0.06 0.16
72.4
0.1
2,3, 6
Katama (2007 - 2015)
MA 41.4 -70.5 120
400
4.0
1600
44700
-3000
-375
1.0E+7
-6.3E-3 51
1.2 3.2E+5 1.1E+6 9.4E-1
0.10 0.36 0.06 0.13 0.54 0.33 0.87
-484.4 0.9
1,2,3
Nauset 1 (1972 - 1995)
MA 41.8 -69.9 200
250
2.5
2500
44700
-2300
-100
4.0E+6
-3.8E-3 33
0.9 1.3E+5 3.8E+5 4.1E-1
0.07 0.53 0.04 0.07 0.40 0.24 0.64
-153.9 0.4
2,3,4,7
Nauset 2 (1995 - 2015)
MA 41.8 -69.9 200
250
2.5
625
44700
-3860
-193
4.0E+6
-3.8E-3 33
0.9 1.3E+5 3.8E+5 4.1E-1
0.07 0.53 0.04 0.07 0.40 0.24 0.64
-153.9 0.8
2,3,4,7
Chatham (1846 - 1987)
MA 41.7 -69.9 300
250
2.5
3600
44700
8460
60
4.0E+6
3.8E-3 33
0.7 1.3E+5 2.4E+5 4.3E-1
0.07 0.51 0.04 0.07 0.42 0.25 0.67
107.4 0.4
2,3,4, 8
Inlet Name
State Lat. Lon.
Newburyport Harbor
MA 42.8 -70.8 350
305
6.3
1911
44700
Ocean City
MD 38.3 -75.1 300
300
3.0
900
44700
Ocracoke
NC
35.1 -76.0 700
2100 4.3
8996
44700
0
Oregon (1849 - 1975)
NC
35.8 -75.5 450
900
6.9
6190
44700
2898
Pensacola Bay (1771 - 1981)
FL
30.3 -87.3 250
152
6.8
1041
89400
1250
Plum Island Sound
MA 42.7 -70.8 320
1400 1.7
2381
Ponce de Leon
FL
29.1 -80.9 550
426
2.5
1069
Redfish Pass
FL
26.6 -82.2 200
220
2.2
San Luis Pass
TX
29.1 -95.1 550
900
1.2
Sapelo Sound
GA
31.5 -81.2 800
Sebastian
FL
27.9 -80.4 150
Shinnecock
NY
St. Andrews Pass
Mw
I
References for the natural tidal inlets
Aubrey, D. G., and P. E. Speer (1984), Updrift Migration of Tidal Inlets, J. Geol., 92(5), 531–545.
Carr, E. E., and N. C. Kraus (2002), Federal Inlets Database, Vicksburg, MS.
8
Chawla, A., D. M. Spindler, and H. L. Tolman (2013), Validation of a thirty year wave hindcast using the Climate Forecast System
Reanalysis winds, Ocean Model., 70, 189–206, doi:10.1016/j.ocemod.2012.07.005.
Cleary, W. J., and D. M. FitzGerald (2003), Tidal Inlet Response to Natural Sedimentation Processes and Dredging-Induced Tidal
Prism Changes: Mason Inlet, North Carolina, J. Coast. Res., 19(4), 1018–1025.
DeAlteris, J., T. McKinney, and J. Roney (1976), Beach Haven and Little Egg Inlet, a case study, Coast. Eng., 15, 1881–1898,
doi:10.9753/icce.v15.%25p.
Everts, C. H., A. E. Dewall, and M. T. Czemiak (1974), Behavior of Beach Fill at Atlantic City, New Jersey, in Coastal Engineering
1974, pp. 1370–1388, American Society of Civil Engineers, Copenhagen, Denmark.
Giese, G. S. (1988), Cyclical Behavior of the Tidal Inlet at Nauset Beach, Chatham, Massachusetts, in Lecture Notes on Coastal
Estuarine Studies, vol. 29, edited by D. G. Aubrey and L. Weishar, pp. 269–283, Springer-Verlag, New York, USA.
Hasbrouck, E. G. (2007), The influence of tidal inlet migration and closure on barrier planform changes: Federal Beach, NC,
University of North Carolina Wilmington.
Inman, D. L., and R. Dolan (1989), The Outer Banks of North Carolina: Budget of sediment and inlet dynamics along a migrating
barrier system, J. Coast. Res., 5(2), 193–237.
Kennish, M. J. (2001), Physical Description of the Barnegat Bay — Little Egg Harbor Estuarine System, J. Coast. Res., 32(SI), 13–27.
Komar, P. D. (1971), Mechanics of Sand Transport on Beaches, J. Geophys. Res., 76(3), 713–721, doi:10.1029/Jc076i003p00713.
Mallinson, D. J., C. W. Smith, S. J. Culver, S. R. Riggs, and D. Ames (2010), Geological characteristics and spatial distribution of
paleo-inlet channels beneath the outer banks barrier islands, North Carolina, USA, Estuar. Coast. Shelf Sci., 88(2), 175–189,
doi:10.1016/j.ecss.2010.03.024.
Mason, C. (1981), Hydraulics and Stability of Five Texas Inlets, Fort Belvoir, VA.
Nienhuis, J. H., A. D. Ashton, and L. Giosan (2015), What makes a delta wave-dominated?, Geology, 43(6), 511–514,
doi:10.1130/G36518.1.
State of Florida (2009), Delnor-Wiggins Pass State Park Unit Management Plan, Tallahassee, FL.
Stive, M. J. F., L. Ji, R. L. Brouwer, J. C. van de Kreeke, and R. Ranasinghe (2010), Empirical Relationship between Inlet Crosssectional Area and Tidal Prism: A Re-evaluation, in Proceedings of the 32nd International Conference in Coastal Engineering,
edited by J. McKee Smith and P. Lynett, pp. 1–10, Coastal Engineering Research Council, Shanghai.
Stone, G. W., F. W. Stapor Jr., J. P. May, and J. P. Morgan (1992), Multiple sediment sources and a cellular, non-integrated, longshore
drift system: Northwest Florida and southeast Alabama coast , USA, Mar. Geol., 105, 141–154, doi:10.1016/00253227(92)90186.
9
Figure S1. An example model result for (A) a regular grid (25x40 m close to the inlet) and (D) a refined grid (15x20 m close to the
inlet). Both model results show roughly similar ebb and flood-tidal delta morphology, and nearly identical (B) inlet cross-sectional
areas and (C) depths. The sediment partitioning (E-F) varies slightly between the model experiments.
10
Figure S2. Inlet bathymetry after 0.7 years for (A) a morfac of 90, (B) a morfac of 45, and (C) a morfac of 10. The simulations show
qualitatively similar inlet morphologies. (D) Inlet migration for 3 different morphologic scaling factors. There is a 5% increase in the
migration rate of the 45 morfac compared to the 90 morfac, thought to be caused by the more frequent updating between the SWAN
and FLOW modules of the model.
11
Animation S1. Bathymetry, updrift sediment thickness and inlet sediment partitioning fractions of model experiment #7: Movie S1
H0.5_Hs1.2_500m.gif
12