L13 General Equilibrium (cont) Edgeworth Box ( 6 ,1 ) ( 4 , 4 ) (1 0 , 5 ) A B OA A OB Desirable Allocation: Pareto Efficient Allocation x Pareto efficient, if there does not exist allocation y that is A) at least as good as x for all B) is strictly better for at least one All Pareto efficient allocations=contract curve Pareto efficiency ( 6 ,1 ) ( 4 , 4 ) (1 0 , 5 ) B A OA A OB Competitive equilibrium Definition: Competitive equilibrium x * A , x * B , p * *A *B * x 1 , x 1 optimal given p 1) * 2) p such that markets clear Two tricks 1) Only relative price p 1 / p 2 determined 2) Walras Law: second market will clear auctomatically Cobb-Douglass example (6 ,1), (4 , 4 ) A B U ( x 1 , x 2 ) ln x 1 ln x 1 i A , B i Geometry (6 ,1), (4 , 4 ) A B U ( x 1 , x 2 ) ln x 1 ln x 1 i A , B i OB OA A Invisible Hand (Adam Smith) Are markets (Pareto) efficient? First Welfare Theorem: allocation in Competitive equilibrium is Pareto optimal Proof OB OA A Perfect substitutes: Efficiency A ( 6 ,1 ), B ( 4 , 4 ), u ( x 1 , x 2 ) x 1 x 2 OA A OB Perfect substitutes: Equilibrium ( 6 ,1), ( 4 , 4 ), u ( x1 , x 2 ) x1 x 2 A B Competitive equilibrium: i A, B Perfect substitutes: Equilibrium A ( 6 ,1 ), B ( 4 , 4 ), u ( x 1 , x 2 ) x 1 x 2 OB OA A Other Preferences Quasilinear A ( 6 ,1 ), B ( 4 , 4 ), u ( x 1 , x 2 ) x 1 ln x 2 Perfect complements ( 6 ,1 ), ( 4 , 4 ), u ( x 1 , x 2 ) min( x 1 , x 2 ) A B Application: Irving Fisher r1 A (10,0), B (0,10), u ( x1 , x2 ) ln x1 ln x2 1 Determination of competitive interest rate Application: Irving Fisher r 1 (10,0 ), ( 0,10 ), u ( x1 , x 2 ) ln x1 A B Competitive equilibrium 3 u ( x1 , x 2 ) ln x1 0 .25 ln x 2 1 ln x 2 Geometry (10,0 ), (0,10 ), u ( x1 , x 2 ) ln x1 0 .25 ln x 2 A B OB OA A Application: Uncertainty B (10,0 ), (0,10 ), u () 0 .5 ln x1 0 .5 ln x 2 A Arrow Securities: No idiosyncratic risk in equilibrium Geometry (10,0 ), ( 0,10 ), u ( x1 , x 2 ) 0 .5 ln x1 0 .5 ln x 2 A B OB OA A
© Copyright 2026 Paperzz