Newton’s Method for Systems of Non Linear Equations Given: X 0 an initial guess of the root of F ( x) 0 Newton' s Iteration X k 1 X k F ' ( X k ) F ( X k ) 1 f1 ( x1 , x2 ,...) F ( X ) f 2 ( x1 , x2 ,...) , f1 x 1 f 2 F'(X ) x1 f1 x2 f 2 x2 1 Example • Solve the following system of equations: y x 2 0.5 x 0 x 2 5 xy y 0 Initial guess x 1, y 0 y x 2 0.5 x 1 2x 1 1 F 2 , X0 , F ' x 5 xy y 2 x 5 y 5 x 1 0 2 Solution Using Newton’s Method Iteration 1 : 1 1 1 y x 2 0.5 x 0.5 2x 1 F 2 , F ' 1 2 x 5 y 5 x 1 2 6 x 5 xy y 1 1 1 X1 0 2 6 Iteration 2 : 1 0.5 1.25 1 0.25 1 0.0625 1.5 F , F ' 0.25 1 . 25 7 . 25 1 1.25 1.5 X2 0.25 1.25 7.25 1 0.0625 1.2332 - 0.25 0.2126 3 Example Try this • Solve the following system of equations: y x2 1 x 0 x2 2 y 2 y 0 Initial guess x 0, y 0 1 y x 2 1 x 2 x 1 0 F 2 , X0 , F ' 2 4 y 1 2x 0 x 2y y 4 Example Solution Iteration 0 1 2 3 4 5 _____________________________________________________________ Xk 0 0 1 0 0.6 0.2 0.5287 0.1969 0.5257 0.1980 0.5257 0.1980 5 Comparison of Root Finding Methods Advantages/disadvantages Examples 6 Summary Method Pros Cons Bisection - Easy, Reliable, Convergent - One function evaluation per iteration - No knowledge of derivative is needed - Slow - Needs an interval [a,b] containing the root, i.e., f(a)f(b)<0 Newton - Fast (if near the root) - Two function evaluations per iteration - May diverge - Needs derivative and an initial guess x0 such that f’(x0) is nonzero Secant - Fast (slower than Newton) - One function evaluation per iteration - No knowledge of derivative is needed - May diverge - Needs two initial points guess x0, x1 such that f(x0)- f(x1) is nonzero 7 Example Use Secant method to find the root of : f ( x) x 6 x 1 Two initial points x0 1 and x1 1.5 ( xi xi 1 ) xi 1 xi f ( xi ) f ( xi ) f ( xi 1 ) 8 Solution _______________________________ k xk f(xk) _______________________________ 0 1.0000 -1.0000 1 1.5000 8.8906 2 1.0506 -0.7062 3 1.0836 -0.4645 4 1.1472 0.1321 5 1.1331 -0.0165 6 1.1347 -0.0005 9 Example Use Newton' s Method to find a root of : f ( x) x 3 x 1 Use the initial point : x0 1. Stop after three iterations , or if xk 1 xk 0.001, or if f ( xk ) 0.0001. 10 Five Iterations of the Solution • k xk f(xk) f’(xk) ERROR • ______________________________________ • • • • • • 0 1 2 3 4 5 1.0000 1.5000 1.3478 1.3252 1.3247 1.3247 -1.0000 0.8750 0.1007 0.0021 0.0000 0.0000 2.0000 5.7500 4.4499 4.2685 4.2646 4.2646 0.1522 0.0226 0.0005 0.0000 0.0000 11 Example Use Newton' s Method to find a root of : f ( x) e x x Use the initial point : x0 1. Stop after three iterations , or if xk 1 xk 0.001, or if f ( xk ) 0.0001. 12 Example Use Newton' s Method to find a root of : f ( x ) e x x, xk f ( xk ) f ' ( x ) e x 1 f ' ( xk ) f ( xk ) f ' ( xk ) 1.0000 - 0.6321 - 1.3679 0.4621 0.5379 0.0461 - 1.5840 - 0.0291 0.5670 0.0002 - 1.5672 - 0.0002 0.5671 0.0000 - 1.5671 - 0.0000 13 Example Estimates of the root of: x-cos(x)=0. 0.60000000000000 0.74401731944598 0.73909047688624 0.73908513322147 0.73908513321516 Initial guess 1 correct digit 4 correct digits 10 correct digits 14 correct digits 14 Example In estimating the root of: x-cos(x)=0, to get more than 13 correct digits: • 4 iterations of Newton (x0=0.8) • 43 iterations of Bisection method (initial interval [0.6, 0.8]) • 5 iterations of Secant method ( x0=0.6, x1=0.8) 15
© Copyright 2026 Paperzz