Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 33, 2006, Pages 154–173 ISSN: 1223-6934 Regular graphs in which every pair of points is missed by some longest cycle Boris Schauerte and Carol T. Zamfirescu Abstract. In Petersen’s well-known cubic graph every vertex is missed by some longest cycle. Thomassen produced a planar graph with this property. Grünbaum found a cubic graph, in which any two vertices are missed by some longest cycle. In this paper we present a cubic planar graph fulfilling this condition. 2000 Mathematics Subject Classification. 05C38. Key words and phrases. Planar, cubic, 3-connected, graph. 1. Introduction The large group of automorphisms and the hypohamiltonicity of Petersen’s graph are notorious. It is understandable that many other hypohamiltonian graphs have been discovered, and generalizations of hypohamiltonicity have been proposed. Such a generalization was given by T. Zamfirescu, who asked whether there exist graphs G such that for any k vertices of G there is a longest cycle of G avoiding those vertices. He called this property Ck [7] and asked for j-connected graphs with the property Ck and as small as possible [4]. Among planar 2-connected graphs the best known example for k = 2 was presented in [5] and has 138 vertices. Among 3-connected graphs the smallest example verifying C2 published so far has 75 vertices [6], while among planar 3-connected graphs the first example appeared in [6] and had 14818 vertices, and a smaller one appears in [3] and has 4277 vertices. Neither one is regular. For k = 1, Petersen’s graph is cubic, but non-planar. In 1978 C. Thomassen found an infinite family of cubic planar hypohamiltonian graphs [2]. It is our main goal here to provide planar graphs which enjoy property C2 and are also regular. 2. Two-Connected Graphs We start with the following result concerning cubic planar graphs with property C1. Theorem 1. There exists a cubic 2-connected planar graph on 30 vertices such that any vertex is missed by some longest cycle. Proof. The graph of Fig. 1, being a straightforward modification of an example due to Thomassen and published in [6], enjoys the required properties. Received: July 15, 2005. 154 REGULAR GRAPHS 155 Fig. 1 Theorem 2. There exists a cubic 2-connected planar graph on 250 vertices such that any pair of vertices is missed by some longest cycle. Proof. We construct the graph G in the following way. First, consider the graph G1 of Fig. 2: Fig. 2 Each of its vertices will be replaced by a graph G2 , see Fig. 3, respecting the location of the arrow-marked edges. Fig. 3 We obtain a graph G3 . The intersection of any longest cycle of G3 with a G2 -copy is a path with 20 vertices if the arrow-marked edge of that copy is used, or with 24 vertices if the other two end-edges of the G2 -copy are used. Suppose we intercalate between ai and ai+1 (indices mod 5) and between a′i and ′ ai+1 (indices mod 5) isomorphic copies of a graph with m vertices, and between ai and a′i isomorphic copies of a graph with n vertices, thus obtaining G. 156 B. SCHAUERTE AND C. T. ZAMFIRESCU Then each cycle of the type a1 a2 a′2 a′3 a3 a4 a5 a′5 a′4 a′3 a′2 a′1 a1 in G1 induces in G a cycle of length 5 · 20 + 4 · 24 + 5m + 4n. Each cycle of type a1 a2 a3 a4 a5 a′5 a′4 a′3 a′2 a′1 a1 in G1 induces in G a cycle of length 8 · 20 + 2 · 24 + 8m + 2n. Both types of cycles of G must be longest cycles. So we must have 5 · 20 + 4 · 24 + 5m + 4n=8 · 20 + 2 · 24 + 8m + 2n, which yields 2n=12 + 3m. To choose a small example, we consider the situation m = 0 and n = 6, so we intercalate nothing between ai and ai+1 and between a′i and a′i+1 , while between ai and a′i (1 ≤ i ≤ 5) we intercalate the graph of Fig. 4: Fig. 4 The resulting 2-connected graph has 250 vertices, verifies C2, and is cubic. 3. Three-Connected Graphs The first example of a 3-connected graph such that any pair of vertices is missed by some longest cycle was given by Grünbaum [1] in 1974. It has 90 vertices and is cubic. Theorem 3. There exists a cubic 3-connected planar graph on 9120 vertices such that any pair of vertices is missed by some longest cycle. Proof. We take Thomassen’s graph T from [2] (94 vertices, Fig. 5), open it up at some vertex, and introduce it at every vertex of T . We have to prove that every pair of edges in T is avoided by some longest cycle of T [6]. This turned out to be a tedious task - therefore we worked using a computer. At the end of the paper we provide a table which associates to every pair of edges a cycle omitting it. It uses the following notation for edges (defined as pairs of numbers corresponding to the vertices of T , see Fig. 5): 0 : (1, 0), 1 : (2, 0), 2 : (0, 92), 3 : (2, 3), 4 : (3, 4), 5 : (4, 5), 6 : (5, 6), 7 : (1, 6), 8 : (2, 7), 9 : (7, 8), 10 : (8, 9), 11 : (3, 9), 12 : (9, 10), 13 : (10, 11), 14 : (4, 11), 15 : (11, 12), 16 : (12, 13), 17 : (5, 13), 18 : (13, 14), 19 : (14, 15), 20 : (6, 15), 21 : (8, 16), 22 : (16, 17), 23 : (10, 17), 24 : (12, 18), 25 : (18, 19), 26 : (14, 19), 27 : (16, 23), 28 : (23, 24), 29 : (20, 24), 30 : (17, 20), 31 : (20, 21), 32 : (21, 22), 33 : (18, 22), 34 : (22, 25), 35 : (25, 26), 36 : (19, 26), 37 : (24, 27), 38 : (27, 28), 39 : (21, 28), 40 : (28, 29), 41 : (25, 29), 42 : (27, 31), 43 : (30, 31), 44 : (23, 30), 45 : (29, 32), 46 : (32, 33), 47 : (26, 33), 48 : (31, 34), 49 : (34, 35), 50 : (35, 36), 51 : (32, 36), 52 : (34, 39), 53 : (39, 40), 54 : (37, 40), 55 : (35, 37), 56 : (37, 41), 57 : (41, 42), 58 : (36, 42), 59 : (42, 43), 60 : (33, 43), 61 : (30, 38), 62 : (38, 39), 63 : (38, 45), 64 : (44, 45), 65 : (7, 44), 66 : (40, 46), 67 : (46, 47), 68 : (41, 47), 69 : (43, 48), 70 : (48, 49), 71 : (15, 49), 72 : (45, 50), 73 : (50, 51), 74 : (51, 52), 75 : (46, 52), 76 : (47, 53), 77 : (53, 54), 78 : (54, 55), 79 : (48, 55), 80 : (52, 56), 81 : (53, 56), 82 : (51, 57), 83 : (57, 58), 84 : (56, 58), 85 : (58, 59), 86 : (54, 59), 87 : (55, 63), 88 : (50, 60), 89 : (60, 61), 90 : (57, 61), 91 : (59, 62), 92 : (62, 63), 93 : (61, 64), 94 : (64, 65), 95 : (65, 66), 96 : (62, 66), 97 : (64, 68), 98 : (67, 68), 99 : (60, 67), 100 : (68, 71), 101 : (71, 72), 102 : (65, 72), 103 : (72, 73), 104 : (69, 73), 105 : (66, 69), 106 : (69, 70), 107 : (63, 70), 108 : (67, 74), 109 : (74, 75), 110 : (71, 75), 111 : (73, 76), 112 : (76, 77), 113 : (70, 77), 114 : (74, 79), 115 : (79, 80), 116 : (80, 81), 117 : (75, 81), 118 : (81, 82), 119 : (82, 83), 120 : (76, 83), 121 : (83, 84), 122 : (84, 85), 123 : (77, 85), 124 : (85, 86), 125 : (49, 86), 126 : (44, 78), 127 : (78, 79), 128 : (78, 87), 129 : (87, 88), 130 : (80, 88), 131 : (88, 89), 132 : (82, 89), 133 : (89, 90), 134 : (84, 90), 135 : (90, 91), 136 : (86, 91), 137 : (87, 92), 138 : (91, 93), 139 : (92, 93), 140 : (1, 93). REGULAR GRAPHS Fig. 5 157 158 B. SCHAUERTE AND C. T. ZAMFIRESCU Now we associate to the numbers in the table the corresponding cycles: 1: 92,87,88,80,81,82,89,90,84,83,76,77,70,63,55,48,49,86,91,93,1,6,15,14,19,18,22,25,26,33,43,42,41,47,53,54, 59,62,66,69,73,72,65,64,61,60,67,68,71,75,74,79,78,44,45,50,51,57,58,56,52,46,40,37,35,36,32,29,28,21,20,24,27,31, 34,39,38,30,23,16,17,10,11,12,13,5,4,3,9,8,7,2,0 2: 92,87,78,79,74,67,60,50,51,52,56,53,47,46,40,39,38,45,44,7,2,3,4,5,6,15,14,13,12,11,10,9,8,16,17,20,21,22, 18,19,26,25,29,28,27,24,23,30,31,34,35,37,41,42,36,32,33,43,48,49,86,85,84,83,76,77,70,69,73,72,65,66,62,63,55,54, 59,58,57,61,64,68,71,75,81,80,88,89,90,91,93,1,0 3: 0,1,93,91,90,84,83,76,73,69,70,77,85,86,49,48,43,33,32,36,42,41,37,35,34,39,40,46,47,53,56,52,51,57,58,59, 54,55,63,62,66,65,72,71,75,74,67,68,64,61,60,50,45,38,30,31,27,28,29,25,26,19,18,22,21,20,24,23,16,17,10,11,12,13, 14,15,6,5,4,3,9,8,7,44,78,79,80,81,82,89,88,87,92 4: 0,2,7,44,45,38,39,34,31,30,23,24,27,28,29,32,36,35,37,40,46,52,56,53,47,41,42,43,33,26,25,22,21,20,17,16,8, 9,10,11,4,5,13,12,18,19,14,15,6,1,93,91,90,84,85,86,49,48,55,54,59,58,57,51,50,60,61,64,65,72,73,69,66,62,63,70,77, 76,83,82,89,88,80,81,75,71,68,67,74,79,78,87,92 5: 0,2,3,9,8,16,23,30,38,39,40,37,41,47,46,52,51,50,45,44,78,87,88,89,90,91,86,85,84,83,82,81,80,79,74,75,71, 72,73,76,77,70,69,66,65,64,68,67,60,61,57,58,56,53,54,59,62,63,55,48,49,15,14,13,12,18,19,26,25,22,21,28,29,32,33, 43,42,36,35,34,31,27,24,20,17,10,11,4,5,6,1,93,92 6: 0,2,7,44,78,79,74,67,60,61,57,58,59,62,66,69,70,63,55,54,53,56,52,51,50,45,38,30,23,24,20,17,16,8,9,10,11, 4,5,6,15,14,13,12,18,19,26,33,32,29,25,22,21,28,27,31,34,39,40,46,47,41,37,35,36,42,43,48,49,86,91,90,89,82,83,84, 85,77,76,73,72,65,64,68,71,75,81,80,88,87,92,93,1 7: 92,0,2,7,8,16,17,20,24,23,30,38,39,40,46,52,56,58,59,62,63,70,69,66,65,64,68,67,60,61,57,51,50,45,44,78,87, 88,80,79,74,75,71,72,73,76,77,85,84,83,82,89,90,91,86,49,48,55,54,53,47,41,37,35,34,31,27,28,21,22,25,29,32,36,42, 43,33,26,19,18,12,11,10,9,3,4,5,13,14,15,6,1,93 8: 0,1,93,91,90,84,83,76,73,69,70,77,85,86,49,48,43,33,32,36,42,41,37,35,34,39,40,46,47,53,56,52,51,57,58,59, 54,55,63,62,66,65,72,71,75,74,67,68,64,61,60,50,45,38,30,31,27,28,29,25,26,19,14,15,6,5,13,12,18,22,21,20,24,23,16, 8,9,10,11,4,3,2,7,44,78,79,80,81,82,89,88,87,92 9: 0,2,3,9,10,11,12,13,5,6,1,93,91,90,84,85,86,49,15,14,19,18,22,21,20,17,16,8,7,44,45,38,39,34,31,30,23,24, 27,28,29,25,26,33,32,36,35,37,40,46,52,56,53,47,41,42,43,48,55,54,59,58,57,51,50,60,61,64,65,72,73,69,66,62,63,70, 77,76,83,82,89,88,80,81,75,71,68,67,74,79,78,87,92 10: 0,2,3,9,10,11,4,5,13,12,18,19,26,33,43,48,49,15,6,1,93,91,86,85,77,76,73,69,70,63,55,54,53,47,41,42,36,32, 29,25,22,21,28,27,31,30,23,24,20,17,16,8,7,44,45,38,39,34,35,37,40,46,52,56,58,59,62,66,65,72,71,68,64,61,57,51,50, 60,67,74,75,81,82,83,84,90,89,88,80,79,78,87,92 11: 0,1,93,92,87,88,89,82,83,76,77,85,84,90,91,86,49,48,55,54,59,58,57,51,50,60,61,64,65,66,62,63,70,69,73,72, 71,68,67,74,75,81,80,79,78,44,7,8,16,17,20,24,23,30,38,39,34,31,27,28,21,22,25,29,32,36,35,37,40,46,52,56,53,47,41, 42,43,33,26,19,18,12,13,14,15,6,5,4,11,10,9,3,2 12: 0,2,7,8,9,3,4,5,13,14,19,26,25,29,28,27,24,20,21,22,18,12,11,10,17,16,23,30,31,34,39,38,45,44,78,79,80,81, 82,83,76,77,70,69,73,72,65,66,62,63,55,54,59,58,57,61,64,68,71,75,74,67,60,50,51,52,56,53,47,46,40,37,41,42,36,32, 33,43,48,49,15,6,1,93,91,86,85,84,90,89,88,87,92 13: 0,2,3,4,5,13,14,19,18,12,11,10,17,20,24,27,31,30,23,16,8,7,44,45,38,39,34,35,37,40,46,52,56,58,59,62,66,65, 72,71,68,64,61,57,51,50,60,67,74,75,81,82,83,84,90,89,88,80,79,78,87,92,93,91,86,85,77,76,73,69,70,63,55,54,53,47, 41,42,36,32,29,28,21,22,25,26,33,43,48,49,15,6,1 14: 0,2,7,44,45,38,30,23,16,17,10,9,3,4,11,12,13,5,6,1,93,91,86,85,84,90,89,88,80,81,82,83,76,77,70,63,55,54,59, 62,66,69,73,72,65,64,61,57,58,56,53,47,41,37,35,36,42,43,48,49,15,14,19,18,22,25,26,33,32,29,28,21,20,24,27,31,34, 39,40,46,52,51,50,60,67,68,71,75,74,79,78,87,92 15: 0,1,93,91,90,89,82,83,84,85,86,49,15,6,5,4,11,12,13,14,19,18,22,21,20,17,10,9,3,2,7,8,16,23,24,27,28,29,25, 26,33,43,48,55,63,62,66,69,70,77,76,73,72,65,64,61,60,50,51,57,58,59,54,53,56,52,46,47,41,42,36,35,37,40,39,34,31, 30,38,45,44,78,79,74,67,68,71,75,81,80,88,87,92 16: 93,92,87,88,89,90,91,86,49,48,55,54,53,56,58,59,62,63,70,69,66,65,64,68,67,74,75,71,72,73,76,77,85,84,83,82, 81,80,79,78,44,45,50,60,61,57,51,52,46,47,41,42,43,33,32,36,35,37,40,39,38,30,31,27,28,29,25,26,19,14,15,6,5,13,12, 18,22,21,20,24,23,16,17,10,11,4,3,9,8,7,2,0,1 17: 0,2,3,9,10,17,20,21,22,25,26,19,18,12,11,4,5,13,14,15,6,1,93,91,90,89,88,80,81,82,83,84,85,86,49,48,55,54, 53,56,58,59,62,63,70,77,76,73,69,66,65,72,71,68,64,61,57,51,52,46,47,41,37,40,39,38,30,31,34,35,36,42,43,33,32,29, 28,27,24,23,16,8,7,44,45,50,60,67,74,79,78,87,92 18: 92,87,88,80,81,82,83,84,90,91,93,1,6,5,13,14,15,49,86,85,77,76,73,72,71,75,74,79,78,44,45,50,51,57,61,60, 67,68,64,65,66,69,70,63,62,59,58,56,52,46,40,37,41,47,53,54,55,48,43,42,36,35,34,39,38,30,31,27,28,21,22,25,29,32, 33,26,19,18,12,11,4,3,9,10,17,20,24,23,16,8,7,2,0 19: 92,93,91,86,49,15,14,19,26,33,32,36,35,34,31,27,24,23,30,38,39,40,37,41,42,43,48,55,63,70,69,73,76,77,85, 84,83,82,89,88,87,78,79,80,81,75,74,67,60,61,64,68,71,72,65,66,62,59,54,53,47,46,52,56,58,57,51,50,45,44,7,2,3,4, 11,10,9,8,16,17,20,21,28,29,25,22,18,12,13,5,6,1,0 20: 0,1,93,91,90,89,82,83,84,85,86,49,15,14,13,5,4,3,2,7,8,9,10,11,12,18,19,26,25,22,21,20,17,16,23,24,27,28, 29,32,33,43,48,55,63,62,66,69,70,77,76,73,72,65,64,61,60,50,51,57,58,59,54,53,56,52,46,47,41,42,36,35,37,40,39, 34,31,30,38,45,44,78,79,74,67,68,71,75,81,80,88,87,92 21: 0,2,7,8,16,17,10,9,3,4,11,12,13,14,19,18,22,21,20,24,23,30,38,39,40,46,52,56,53,47,41,37,35,34,31,27,28, 29,25,26,33,32,36,42,43,48,49,15,6,1,93,91,86,85,77,70,69,73,76,83,84,90,89,82,81,75,74,67,60,61,64,68,71,72,65, 66,62,63,55,54,59,58,57,51,50,45,44,78,79,80,88,87,92 22: 0,2,7,44,78,87,88,89,90,84,85,77,76,83,82,81,80,79,74,75,71,72,73,69,70,63,55,54,59,62,66,65,64,68,67,60, 61,57,58,56,53,47,46,52,51,50,45,38,39,40,37,41,42,36,35,34,31,30,23,16,8,9,3,4,11,10,17,20,24,27,28,21,22,18, 12,13,5,6,15,14,19,26,25,29,32,33,43,48,49,86,91,93,1 23: 0,2,3,9,8,7,44,45,38,30,31,27,28,29,25,22,21,20,24,23,16,17,10,11,4,5,6,1,93,91,86,49,15,14,13,12,18,19,26, 33,32,36,35,34,39,40,37,41,42,43,48,55,54,59,58,56,53,47,46,52,51,50,60,61,64,65,66,62,63,70,69,73,72,71,68,67,74, 75,81,82,83,76,77,85,84,90,89,88,80,79,78,87,92 24: 0,1,93,91,86,85,77,76,73,69,70,63,55,54,53,47,41,37,35,34,31,30,23,24,27,28,29,25,26,33,32,36,42,43,48,49, 15,6,5,13,14,19,18,22,21,20,17,16,8,9,10,11,4,3,2,7,44,45,38,39,40,46,52,56,58,59,62,66,65,72,71,68,64,61,57,51,50, 60,67,74,75,81,82,83,84,90,89,88,80,79,78,87,92 25: 0,1,6,15,14,13,5,4,3,9,8,16,17,10,11,12,18,19,26,25,22,21,20,24,23,30,31,27,28,29,32,33,43,42,36,35,34,39, 38,45,50,60,61,57,51,52,46,40,37,41,47,53,56,58,59,54,55,48,49,86,85,84,83,82,89,90,91,93,92,87,88,80,81,75,71,72, 73,76,77,70,63,62,66,65,64,68,67,74,79,78,44,7,2 26: 92,93,1,6,5,4,11,12,13,14,15,49,86,85,84,90,89,88,87,78,79,80,81,82,83,76,77,70,69,73,72,71,75,74,67,68,64, 65,66,62,63,55,48,43,33,32,29,25,26,19,18,22,21,28,27,31,30,38,39,34,35,36,42,41,37,40,46,47,53,54,59,58,56,52,51, 57,61,60,50,45,44,7,8,16,23,24,20,17,10,9,3,2,0 27: 0,2,3,9,10,17,16,8,7,44,45,50,51,52,56,58,57,61,60,67,68,64,65,66,69,73,72,71,75,74,79,78,87,92,93,91,86,85, 84,90,89,88,80,81,82,83,76,77,70,63,62,59,54,53,47,46,40,39,38,30,23,24,20,21,28,27,31,34,35,37,41,42,36,32,29,25, 22,18,12,11,4,5,13,14,19,26,33,43,48,49,15,6,1 REGULAR GRAPHS 159 28: 0,1,6,5,13,12,18,19,14,15,49,48,55,54,53,56,58,59,62,63,70,69,66,65,64,68,71,72,73,76,77,85,86,91,93,92,87, 78,79,80,88,89,90,84,83,82,81,75,74,67,60,61,57,51,52,46,47,41,42,43,33,26,25,22,21,28,29,32,36,35,37,40,39,34,31, 27,24,20,17,10,11,4,3,9,8,16,23,30,38,45,44,7,2 29: 92,93,91,90,89,88,87,78,44,45,50,51,52,56,58,57,61,60,67,68,64,65,66,69,70,77,76,73,72,71,75,74,79,80,81,82, 83,84,85,86,49,48,55,63,62,59,54,53,47,46,40,39,38,30,31,34,35,37,41,42,43,33,32,29,28,27,24,23,16,8,7,2,3,9,10,17, 20,21,22,25,26,19,18,12,11,4,5,13,14,15,6,1,0 30: 0,2,7,8,9,3,4,5,13,14,19,18,12,11,10,17,16,23,24,20,21,22,25,26,33,32,29,28,27,31,30,38,39,34,35,36,42,43, 48,55,63,62,59,54,53,47,41,37,40,46,52,56,58,57,51,50,45,44,78,79,80,81,82,89,88,87,92,93,91,90,84,83,76,73,72,71, 75,74,67,60,61,64,65,66,69,70,77,85,86,49,15,6,1 31: 92,87,78,44,45,50,51,57,61,60,67,68,64,65,66,62,59,58,56,52,46,40,37,41,47,53,54,55,63,70,69,73,72,71,75, 74,79,80,81,82,89,90,84,83,76,77,85,86,91,93,1,6,5,13,14,15,49,48,43,42,36,35,34,39,38,30,31,27,28,21,22,25,29,32, 33,26,19,18,12,11,4,3,9,10,17,20,24,23,16,8,7,2,0 32: 0,2,3,9,10,11,4,5,6,15,49,48,55,54,53,47,41,37,40,46,52,56,58,59,62,63,70,77,76,73,69,66,65,64,68,71,75, 74,67,60,61,57,51,50,45,38,39,34,35,36,42,43,33,32,29,25,26,19,14,13,12,18,22,21,28,27,31,30,23,24,20,17,16,8,7,44, 78,79,80,81,82,83,84,85,86,91,90,89,88,87,92,93,1 33: 0,92,87,78,79,74,75,71,68,67,60,50,51,52,46,40,37,35,36,32,33,26,25,29,28,27,24,23,30,31,34,39,38,45,44, 7,2,3,9,8,16,17,20,21,22,18,19,14,13,12,11,4,5,6,15,49,48,43,42,41,47,53,56,58,57,61,64,65,72,73,69,66,62,59,54,55, 63,70,77,76,83,82,81,80,88,89,90,84,85,86,91,93,1 34: 0,2,7,8,16,23,30,38,39,40,37,41,47,46,52,51,50,45,44,78,87,88,89,90,91,86,85,84,83,82,81,80,79,74,75,71, 72,73,76,77,70,69,66,65,64,68,67,60,61,57,58,56,53,54,59,62,63,55,48,49,15,14,13,12,18,19,26,25,22,21,28,29,32,33, 43,42,36,35,34,31,27,24,20,17,10,9,3,4,5,6,1,93,92 35: 1,0,92,93,91,90,89,82,81,75,74,79,80,88,87,78,44,45,50,51,57,58,59,54,55,63,62,66,65,64,61,60,67,68,71, 72,73,69,70,77,76,83,84,85,86,49,15,14,19,18,22,25,26,33,43,42,36,32,29,28,21,20,24,27,31,34,35,37,41,47,53,56,52, 46,40,39,38,30,23,16,17,10,9,8,7,2,3,4,11,12,13,5,6 36: 0,2,3,9,8,7,44,45,38,39,34,31,30,23,24,27,28,29,32,36,35,37,40,46,52,56,53,47,41,42,43,33,26,25,22,21, 20,17,10,11,4,5,13,12,18,19,14,15,6,1,93,91,90,84,85,86,49,48,55,54,59,58,57,51,50,60,61,64,65,72,73,69,66,62,63, 70,77,76,83,82,89,88,80,81,75,71,68,67,74,79,78,87,92 37: 0,1,6,15,49,86,91,90,89,88,80,79,74,75,81,82,83,84,85,77,76,73,72,71,68,67,60,50,51,57,61,64,65,66,69, 70,63,62,59,58,56,52,46,47,53,54,55,48,43,42,41,37,40,39,34,35,36,32,33,26,19,14,13,5,4,11,12,18,22,25,29,28,21, 20,17,10,9,3,2,7,8,16,23,24,27,31,30,38,45,44,78,87,92 38: 92,87,78,44,7,2,3,4,5,13,14,19,18,12,11,10,9,8,16,17,20,21,22,25,26,33,43,42,36,32,29,28,27,24,23,30,31, 34,35,37,41,47,46,40,39,38,45,50,51,52,56,53,54,59,58,57,61,60,67,74,79,80,88,89,82,81,75,71,68,64,65,72,73,76,83, 84,90,91,86,85,77,70,69,66,62,63,55,48,49,15,6,1,93 39: 0,92,93,91,86,49,15,6,5,4,3,9,8,16,17,10,11,12,13,14,19,18,22,21,20,24,23,30,38,39,34,31,27,28,29,25,26, 33,32,36,35,37,40,46,47,41,42,43,48,55,54,53,56,52,51,57,58,59,62,63,70,77,85,84,90,89,82,83,76,73,69,66,65,72,71, 75,81,80,88,87,78,79,74,67,68,64,61,60,50,45,44,7,2 40: 0,1,6,5,4,3,9,8,16,17,10,11,12,18,22,25,29,32,33,26,19,14,15,49,48,43,42,36,35,37,41,47,53,56,58,57,61, 64,65,72,73,69,66,62,59,54,55,63,70,77,76,83,82,81,80,88,89,90,84,85,86,91,93,92,87,78,79,74,75,71,68,67,60,50,51, 52,46,40,39,34,31,27,28,21,20,24,23,30,38,45,44,7,2 41: 0,1,6,15,14,19,18,22,25,26,33,43,42,41,47,53,54,59,62,66,65,72,73,69,70,63,55,48,49,86,91,93,92,87,88, 89,90,84,85,77,76,83,82,81,75,71,68,64,61,60,67,74,79,78,44,45,50,51,57,58,56,52,46,40,37,35,36,32,29,28,21,20,24, 27,31,34,39,38,30,23,16,17,10,11,12,13,5,4,3,9,8,7,2 42:0,2,3,4,11,12,13,5,6,1,93,91,90,84,83,76,73,72,65,64,68,71,75,81,82,89,88,80,79,74,67,60,61,57,58,59, 54,53,56,52,51,50,45,38,39,34,35,37,40,46,47,41,42,36,32,29,25,26,33,43,48,55,63,62,66,69,70,77,85,86,49,15,14,19, 18,22,21,28,27,31,30,23,24,20,17,10,9,8,7,44,78,87,92 43: 1,6,5,13,14,19,26,33,43,42,41,37,40,46,47,53,54,55,48,49,86,91,90,89,88,87,78,79,80,81,82,83,84,85,77,76, 73,72,71,75,74,67,68,64,65,66,69,70,63,62,59,58,56,52,51,57,61,60,50,45,44,7,8,9,10,17,16,23,24,20,21,28,27,31,30, 38,39,34,35,36,32,29,25,22,18,12,11,4,3,2,0,92,93 44: 0,2,3,4,5,13,12,11,10,9,8,7,44,45,38,30,23,16,17,20,24,27,31,34,39,40,46,47,53,56,52,51,50,60,67,74,75,81, 80,79,78,87,88,89,82,83,76,73,72,71,68,64,61,57,58,59,54,55,63,62,66,69,70,77,85,84,90,91,86,49,48,43,42,41,37,35, 36,32,33,26,25,29,28,21,22,18,19,14,15,6,1,93,92 45: 0,1,6,15,14,19,26,25,22,18,12,13,5,4,11,10,9,3,2,7,8,16,17,20,21,28,29,32,33,43,48,49,86,85,77,76,73,72,71, 75,81,80,79,74,67,68,64,65,66,69,70,63,62,59,54,53,56,58,57,61,60,50,51,52,46,47,41,42,36,35,37,40,39,34,31,27,24, 23,30,38,45,44,78,87,88,89,82,83,84,90,91,93,92 46: 0,92,87,88,80,81,75,71,68,67,74,79,78,44,45,38,30,31,34,39,40,37,35,36,42,41,47,46,52,56,53,54,59,58,57,51, 50,60,61,64,65,72,73,76,77,70,69,66,62,63,55,48,43,33,32,29,28,27,24,23,16,17,20,21,22,25,26,19,14,13,12,11,10,9,8, 7,2,3,4,5,6,15,49,86,85,84,83,82,89,90,91,93,1 47: 7,2,3,4,11,12,13,5,6,15,14,19,18,22,25,29,28,21,20,17,10,9,8,16,23,24,27,31,30,38,45,50,60,61,64,68,67,74, 75,71,72,65,66,62,63,55,54,59,58,57,51,52,56,53,47,46,40,39,34,35,37,41,42,36,32,33,43,48,49,86,85,77,70,69,73,76, 83,84,90,91,93,1,0,92,87,88,89,82,81,80,79,78,44 48: 15,6,5,4,11,10,9,3,2,7,8,16,17,20,24,27,28,21,22,18,12,13,14,19,26,25,29,32,33,43,48,55,63,62,66,69,70,77, 76,73,72,65,64,61,60,50,51,57,58,59,54,53,56,52,46,47,41,42,36,35,37,40,39,34,31,30,38,45,44,78,79,74,67,68,71,75, 81,80,88,87,92,0,1,93,91,90,89,82,83,84,85,86,49 49: 0,92,87,88,80,79,78,44,45,50,51,57,58,59,54,55,63,62,66,65,72,71,68,64,61,60,67,74,75,81,82,89,90,84,83,76, 73,69,70,77,85,86,91,93,1,6,5,13,14,15,49,48,43,42,36,32,33,26,25,29,28,27,31,34,35,37,41,47,53,56,52,46,40,39,38, 30,23,24,20,21,22,18,12,11,4,3,9,10,17,16,8,7,2 50: 0,92,87,78,79,74,67,68,71,75,81,80,88,89,82,83,76,77,70,63,62,66,69,73,72,65,64,61,60,50,51,57,58,59,54,55, 48,49,86,85,84,90,91,93,1,6,15,14,13,5,4,11,12,18,19,26,33,43,42,41,47,53,56,52,46,40,37,35,36,32,29,25,22,21,28, 27,24,23,30,31,34,39,38,45,44,7,8,16,17,10,9,3,2 51: 0,92,87,88,89,82,81,80,79,78,44,7,2,3,9,8,16,23,30,38,45,50,60,61,64,68,67,74,75,71,72,65,66,62,63,55,54,59, 58,57,51,52,56,53,47,46,40,39,34,31,27,28,29,25,22,21,20,17,10,11,4,5,6,15,14,13,12,18,19,26,33,32,36,35,37,41,42, 43,48,49,86,85,77,70,69,73,76,83,84,90,91,93,1 52: 0,1,93,91,90,89,82,83,84,85,86,49,15,6,5,13,14,19,26,33,43,48,55,63,62,66,69,70,77,76,73,72,65,64,61,60,50, 51,57,58,59,54,53,56,52,46,47,41,42,36,32,29,28,27,24,20,21,22,18,12,11,4,3,2,7,8,9,10,17,16,23,30,31,34,35,37,40, 39,38,45,44,78,79,74,67,68,71,75,81,80,88,87,92 53: 0,2,3,4,5,6,1,93,91,90,84,85,86,49,15,14,13,12,11,10,9,8,7,44,45,38,39,34,31,30,23,16,17,20,24,27,28,29,25, 22,18,19,26,33,32,36,35,37,40,46,52,56,53,47,41,42,43,48,55,54,59,58,57,51,50,60,61,64,65,72,73,69,66,62,63,70,77, 76,83,82,89,88,80,81,75,71,68,67,74,79,78,87,92 54: 0,2,7,8,9,3,4,11,10,17,16,23,30,38,39,40,46,52,56,53,47,41,37,35,34,31,27,24,20,21,28,29,25,26,33,32,36,42, 43,48,49,15,14,19,18,12,13,5,6,1,93,91,86,85,77,70,69,73,76,83,84,90,89,82,81,75,74,67,60,61,64,68,71,72,65,66,62, 63,55,54,59,58,57,51,50,45,44,78,79,80,88,87,92 55: 0,1,93,91,90,84,83,76,73,69,70,77,85,86,49,48,43,33,32,36,42,41,37,35,34,39,40,46,47,53,56,52,51,57,58,59, 54,55,63,62,66,65,72,71,75,74,67,68,64,61,60,50,45,38,30,31,27,28,21,22,25,26,19,18,12,13,14,15,6,5,4,11,10,17,20, 24,23,16,8,9,3,2,7,44,78,79,80,81,82,89,88,87,92 160 B. SCHAUERTE AND C. T. ZAMFIRESCU 56: 0,92,87,88,80,81,75,71,68,67,74,79,78,44,45,38,30,31,34,39,40,37,35,36,42,41,47,46,52,56,53,54,59,58,57,51, 50,60,61,64,65,72,73,76,77,70,69,66,62,63,55,48,43,33,32,29,28,21,20,24,23,16,17,10,9,8,7,2,3,4,11,12,18,22,25,26, 19,14,13,5,6,15,49,86,85,84,83,82,89,90,91,93,1 57: 0,2,3,4,11,12,13,5,6,1,93,91,86,85,77,76,73,69,70,63,55,54,53,47,41,42,36,32,29,25,26,33,43,48,49,15,14,19, 18,22,21,20,24,27,31,30,23,16,17,10,9,8,7,44,45,38,39,34,35,37,40,46,52,56,58,59,62,66,65,72,71,68,64,61,57,51,50, 60,67,74,75,81,82,83,84,90,89,88,80,79,78,87,92 58: 0,1,93,91,90,84,83,76,73,69,70,77,85,86,49,48,43,33,32,36,42,41,37,35,34,39,40,46,47,53,56,52,51,57,58,59, 54,55,63,62,66,65,72,71,75,74,67,68,64,61,60,50,45,38,30,23,24,27,28,29,25,26,19,18,22,21,20,17,16,8,9,10,11,12,13, 14,15,6,5,4,3,2,7,44,78,79,80,81,82,89,88,87,92 59: 0,92,87,78,79,74,67,68,71,75,81,80,88,89,82,83,76,77,70,63,62,66,69,73,72,65,64,61,60,50,51,57,58,59,54,55, 48,49,86,85,84,90,91,93,1,6,15,14,13,5,4,11,12,18,19,26,33,43,42,41,47,53,56,52,46,40,37,35,36,32,29,25,22,21,28,27, 31,34,39,38,45,44,7,8,16,23,24,20,17,10,9,3,2 60: 1,93,91,86,85,77,70,69,73,76,83,84,90,89,82,81,75,74,67,60,61,64,68,71,72,65,66,62,63,55,54,59,58,57,51,50, 45,44,78,79,80,88,87,92,0,2,7,8,9,3,4,11,10,17,16,23,30,38,39,40,46,52,56,53,47,41,37,35,34,31,27,24,20,21,28,29,32, 36,42,43,48,49,15,14,19,26,25,22,18,12,13,5,6 61: 92,93,1,6,5,13,12,18,22,25,26,19,14,15,49,48,55,63,62,59,54,53,56,58,57,51,52,46,47,41,37,40,39,34,35,36,42, 43,33,32,29,28,21,20,17,16,23,24,27,31,30,38,45,50,60,61,64,65,66,69,70,77,76,73,72,71,68,67,74,75,81,82,83,84,85, 86,91,90,89,88,80,79,78,44,7,8,9,10,11,4,3,2,0 62: 93,91,90,84,85,77,70,63,55,54,53,56,52,46,47,41,42,43,48,49,15,6,5,4,3,2,7,8,9,10,11,12,13,14,19,18,22,21, 20,17,16,23,24,27,28,29,25,26,33,32,36,35,37,40,39,34,31,30,38,45,44,78,79,80,81,75,74,67,68,71,72,65,64,61,60,50, 51,57,58,59,62,66,69,73,76,83,82,89,88,87,92,0,1 63: 0,2,7,8,16,23,30,38,45,44,78,79,80,81,82,83,76,77,70,69,73,72,65,66,62,63,55,54,59,58,57,61,64,68,71,75,74, 67,60,50,51,52,56,53,47,46,40,37,41,42,36,35,34,31,27,24,20,17,10,9,3,4,11,12,18,19,26,25,22,21,28,29,32,33,43,48, 49,15,14,13,5,6,1,93,91,86,85,84,90,89,88,87,92 64: 1,6,15,14,19,26,33,43,48,49,86,85,84,83,82,81,75,74,67,68,71,72,65,64,61,60,50,51,57,58,59,62,66,69,73,76, 77,70,63,55,54,53,56,52,46,47,41,37,40,39,34,35,36,32,29,25,22,18,12,13,5,4,11,10,17,16,23,24,20,21,28,27,31,30,38, 45,44,7,8,9,3,2,0,92,87,78,79,80,88,89,90,91,93 65: 0,2,7,44,45,38,39,40,46,52,56,53,47,41,42,43,33,26,19,18,12,11,10,17,20,24,27,28,21,22,25,29,32,36,35,34, 31,30,23,16,8,9,3,4,5,13,14,15,6,1,93,91,90,84,85,86,49,48,55,54,59,58,57,51,50,60,61,64,65,72,73,69,66,62,63,70, 77,76,83,82,89,88,80,81,75,71,68,67,74,79,78,87,92 66: 92,87,78,44,45,50,51,52,46,40,37,41,47,53,54,55,63,70,77,76,83,82,81,75,71,68,64,65,72,73,69,66,62,59,58, 57,61,60,67,74,79,80,88,89,90,84,85,86,91,93,1,6,5,13,14,15,49,48,43,42,36,35,34,39,38,30,31,27,28,21,22,25,29,32, 33,26,19,18,12,11,4,3,9,10,17,20,24,23,16,8,7,2,0 67: 92,93,91,90,89,88,80,79,74,75,81,82,83,76,73,69,66,62,63,70,77,85,86,49,48,55,54,59,58,56,53,47,41,37,35, 34,31,27,28,21,22,25,29,32,36,42,43,33,26,19,18,12,11,10,9,3,4,5,13,14,15,6,1,0,2,7,8,16,17,20,24,23,30,38,39,40, 46,52,51,57,61,64,65,72,71,68,67,60,50,45,44,78,87 68: 0,2,7,8,16,23,30,38,45,44,78,79,80,81,82,83,76,77,70,69,73,72,65,66,62,63,55,54,59,58,57,61,64,68,71,75,74, 67,60,50,51,52,56,53,47,41,42,36,35,37,40,39,34,31,27,24,20,17,10,9,3,4,11,12,18,19,26,25,22,21,28,29,32,33,43,48, 49,15,14,13,5,6,1,93,91,86,85,84,90,89,88,87,92 69: 0,1,93,91,90,89,82,83,84,85,86,49,15,6,5,4,11,12,13,14,19,18,22,21,20,17,10,9,3,2,7,8,16,23,24,27,28,29,25, 26,33,32,36,35,37,41,42,43,48,55,63,62,66,69,70,77,76,73,72,65,64,61,60,50,51,57,58,59,54,53,56,52,46,40,39,34,31, 30,38,45,44,78,79,74,67,68,71,75,81,80,88,87,92 70: 0,2,3,9,10,11,4,5,6,15,14,13,12,18,19,26,33,32,29,25,22,21,28,27,31,30,23,24,20,17,16,8,7,44,78,79,80,81,75, 74,67,68,71,72,73,69,70,63,62,66,65,64,61,60,50,45,38,39,34,35,36,42,41,37,40,46,47,53,56,52,51,57,58,59,54,55,48, 49,86,91,90,84,85,77,76,83,82,89,88,87,92,93,1 71: 1,6,5,13,12,11,4,3,2,7,8,9,10,17,16,23,30,31,27,24,20,21,28,29,32,33,26,25,22,18,19,14,15,49,86,85,84,83,76, 77,70,69,73,72,71,68,67,60,61,64,65,66,62,63,55,48,43,42,36,35,34,39,40,37,41,47,46,52,56,53,54,59,58,57,51,50,45, 44,78,87,88,80,79,74,75,81,82,89,90,91,93,92,0 72: 92,87,78,44,45,50,60,67,74,75,81,80,88,89,82,83,84,90,91,93,1,6,15,14,13,5,4,3,9,10,11,12,18,19,26,33,43,42, 36,32,29,25,22,21,28,27,31,34,35,37,41,47,53,56,58,59,54,55,48,49,86,85,77,76,73,69,70,63,62,66,65,72,71,68,64,61, 57,51,52,46,40,39,38,30,23,24,20,17,16,8,7,2,0 73: 32,29,25,22,21,28,27,31,30,23,24,20,17,16,8,7,44,78,79,80,81,75,74,67,68,71,72,73,69,70,63,62,66,65,64,61, 60,50,45,38,39,34,35,37,40,46,47,53,56,52,51,57,58,59,54,55,48,49,86,91,90,84,85,77,76,83,82,89,88,87,92,93,1,0,2, 3,9,10,11,4,5,6,15,14,13,12,18,19,26,33,43,42,36 74: 31,27,24,20,21,28,29,32,33,26,25,22,18,19,14,15,49,86,85,84,83,76,77,70,69,73,72,71,68,67,60,61,64,65,66, 62,63,55,48,43,42,36,35,37,41,47,46,52,56,53,54,59,58,57,51,50,45,44,78,87,88,80,79,74,75,81,82,89,90,91,93,92,0,1, 6,5,13,12,11,4,3,2,7,8,9,10,17,16,23,30,38,39,34 75: 0,2,7,8,16,17,20,24,23,30,38,45,50,51,52,56,53,54,55,63,70,69,66,62,59,58,57,61,60,67,74,79,78,87,88,80, 81,75,71,68,64,65,72,73,76,77,85,84,83,82,89,90,91,86,49,48,43,42,36,35,37,41,47,46,40,39,34,31,27,28,21,22,25,29, 32,33,26,19,18,12,11,10,9,3,4,5,13,14,15,6,1,93,92 76: 1,6,15,14,19,18,22,25,26,33,43,48,55,54,53,56,52,51,50,60,67,68,64,61,57,58,59,62,63,70,77,85,86,91,90,84, 83,76,73,69,66,65,72,71,75,74,79,80,81,82,89,88,87,78,44,45,38,39,34,35,37,40,46,47,41,42,36,32,29,28,21,20,24,27, 31,30,23,16,17,10,11,12,13,5,4,3,9,8,7,2,0,92,93 77: 92,87,78,79,74,67,60,50,45,44,7,8,9,10,11,12,18,19,26,25,22,21,28,29,32,33,43,42,36,35,34,31,27,24,20,17,16, 23,30,38,39,40,37,41,47,46,52,56,53,54,59,58,57,61,64,68,71,75,81,80,88,89,82,83,76,77,70,69,73,72,65,66,62,63,55, 48,49,86,85,84,90,91,93,1,6,15,14,13,5,4,3,2,0 78: 92,93,1,6,15,14,19,18,22,25,26,33,43,42,41,47,53,56,58,57,61,60,67,68,64,65,66,69,70,63,62,59,54,55,48,49, 86,91,90,84,85,77,76,73,72,71,75,74,79,80,81,82,89,88,87,78,44,45,50,51,52,46,40,37,35,36,32,29,28,21,20,24,27,31, 34,39,38,30,23,16,17,10,11,12,13,5,4,3,9,8,7,2,0 79: 61,64,68,71,72,65,66,62,63,70,69,73,76,77,85,86,49,15,14,13,12,18,19,26,25,22,21,20,24,23,30,31,27,28,29, 32,33,43,48,55,54,59,58,56,53,47,46,40,37,41,42,36,35,34,39,38,45,44,7,2,3,9,8,16,17,10,11,4,5,6,1,0,92,93,91,90, 84,83,82,89,88,87,78,79,80,81,75,74,67,60,50,51,57 80: 62,66,69,73,72,65,64,61,60,67,68,71,75,74,79,78,44,7,8,9,10,17,16,23,24,20,21,22,25,26,33,32,29,28,27,31, 30,38,45,50,51,57,58,56,52,46,47,41,37,40,39,34,35,36,42,43,48,49,15,6,5,13,14,19,18,12,11,4,3,2,0,1,93,92,87,88, 80,81,82,89,90,91,86,85,84,83,76,77,70,63,55,54,59 81: 93,91,86,85,77,70,63,55,48,49,15,14,13,12,11,10,17,16,23,24,20,21,28,27,31,30,38,39,34,35,36,32,29,25,22, 18,19,26,33,43,42,41,37,40,46,47,53,56,52,51,57,58,59,62,66,69,73,76,83,84,90,89,82,81,75,74,67,68,71,72,65,64,61, 60,50,45,44,78,79,80,88,87,92,0,2,7,8,9,3,4,5,6,1 82:92,87,78,79,80,88,89,90,84,85,77,70,69,66,65,64,68,71,72,73,76,83,82,81,75,74,67,60,61,57,51,50,45,44, 7,8,9,10,11,12,18,19,26,25,22,21,28,29,32,33,43,42,36,35,34,31,27,24,20,17,16,23,30,38,39,40,37,41,47,46,52,56,53, 54,59,62,63,55,48,49,86,91,93,1,6,15,14,13,5,4,3,2,0 83: 0,1,6,5,4,3,2,7,44,45,38,39,40,37,35,34,31,30,23,24,27,28,29,25,26,19,18,22,21,20,17,16,8,9,10,11,12,13, 14,15,49,48,43,33,32,36,42,41,47,46,52,51,50,60,61,57,58,56,53,54,55,63,62,66,65,64,68,67,74,79,78,87,88,80,81,75, 71,72,73,69,70,77,76,83,82,89,90,84,85,86,91,93,92 REGULAR GRAPHS 161 84: 92,0,2,7,8,16,23,24,20,17,10,9,3,4,11,12,18,19,26,33,32,29,25,22,21,28,27,31,30,38,39,34,35,36,42,43,48, 49,15,14,13,5,6,1,93,91,86,85,84,90,89,82,83,76,77,70,63,55,54,53,47,41,37,40,46,52,56,58,59,62,66,69,73,72,65,64, 61,57,51,50,45,44,78,79,74,67,68,71,75,81,80,88,87 85: 92,93,1,6,5,13,12,18,22,25,26,19,14,15,49,48,55,63,62,59,54,53,56,58,57,51,52,46,47,41,37,40,39,34,35,36, 42,43,33,32,29,28,21,20,17,16,23,24,27,31,30,38,45,50,60,67,68,64,65,66,69,70,77,76,73,72,71,75,74,79,80,81,82,83, 84,85,86,91,90,89,88,87,78,44,7,8,9,10,11,4,3,2,0 86: 92,93,1,6,5,4,11,12,13,14,15,49,86,91,90,89,82,83,84,85,77,76,73,72,71,75,81,80,88,87,78,79,74,67,68,64, 65,66,69,70,63,55,48,43,33,32,29,25,26,19,18,22,21,28,27,31,30,38,39,34,35,36,42,41,37,40,46,47,53,54,59,58,56,52, 51,57,61,60,50,45,44,7,8,16,23,24,20,17,10,9,3,2,0 87: 93,1,6,15,14,19,26,25,22,18,12,13,5,4,11,10,17,16,23,30,31,27,24,20,21,28,29,32,33,43,42,36,35,34,39,38, 45,44,7,8,9,3,2,0,92,87,78,79,80,88,89,82,81,75,74,67,60,50,51,52,46,40,37,41,47,53,56,58,57,61,64,68,71,72,65,66, 62,59,54,55,48,49,86,85,77,70,69,73,76,83,84,90,91 88: 92,0,2,3,9,10,17,20,24,23,16,8,7,44,45,50,60,61,57,51,52,56,58,59,54,53,47,46,40,37,41,42,36,35,34,39,38, 30,31,27,28,21,22,18,19,26,25,29,32,33,43,48,55,63,62,66,65,72,71,68,67,74,75,81,80,79,78,87,88,89,82,83,76,73,69, 70,77,85,84,90,91,86,49,15,14,13,12,11,4,5,6,1,93 89: 92,93,1,6,5,13,12,18,22,25,26,19,14,15,49,48,55,63,62,59,54,53,56,58,57,51,52,46,47,41,37,40,39,34,35,36, 42,43,33,32,29,28,21,20,17,16,23,24,27,31,30,38,45,50,60,61,64,65,72,73,69,70,77,76,83,84,85,86,91,90,89,82,81,75, 71,68,67,74,79,80,88,87,78,44,7,8,9,10,11,4,3,2,0 90: 86,91,90,89,82,81,80,88,87,78,79,74,75,71,68,64,65,72,73,76,83,84,85,77,70,69,66,62,63,55,48,43,33,32,29, 25,26,19,18,22,21,28,27,31,30,38,39,34,35,36,42,41,37,40,46,47,53,54,59,58,56,52,51,57,61,60,50,45,44,7,8,16,23, 24,20,17,10,9,3,2,0,92,93,1,6,5,4,11,12,13,14,15,49 91: 78,87,88,89,82,83,84,90,91,86,85,77,76,73,69,66,65,72,71,75,81,80,79,74,67,68,64,61,60,50,45,38,30,31,27, 24,23,16,17,20,21,28,29,32,33,43,42,36,35,34,39,40,37,41,47,46,52,51,57,58,56,53,54,59,62,63,55,48,49,15,14,19, 26,25,22,18,12,13,5,6,1,93,92,0,2,3,4,11,10,9,8,7,44 92: 92,0,2,7,8,16,23,24,20,17,10,9,3,4,11,12,18,19,26,33,32,29,25,22,21,28,27,31,30,38,39,34,35,36,42,43,48, 49,15,14,13,5,6,1,93,91,86,85,84,90,89,82,83,76,77,70,63,55,54,53,47,41,37,40,46,52,56,58,59,62,66,69,73,72,65, 64,68,67,60,61,57,51,50,45,44,78,79,74,75,81,80,88,87 93: 92,87,78,79,80,88,89,82,81,75,74,67,60,50,51,52,46,40,37,41,47,53,56,58,57,61,64,68,71,72,65,66,69,70,63, 62,59,54,55,48,49,86,85,77,76,83,84,90,91,93,1,6,15,14,19,26,25,22,18,12,13,5,4,11,10,17,16,23,30,31,27,24,20, 21,28,29,32,33,43,42,36,35,34,39,38,45,44,7,8,9,3,2,0 94: 92,87,88,80,79,78,44,45,50,51,57,61,60,67,68,64,65,66,62,59,58,56,52,46,40,37,41,47,53,54,55,63,70,69,73, 72,71,75,81,82,89,90,84,83,76,77,85,86,91,93,1,6,5,13,14,15,49,48,43,42,36,35,34,39,38,30,31,27,28,21,22,25,29, 32,33,26,19,18,12,11,4,3,9,10,17,20,24,23,16,8,7,2,0 95: 92,0,2,3,9,10,17,20,24,23,16,8,7,44,45,50,60,61,57,51,52,56,58,59,54,53,47,46,40,37,41,42,36,35,34,39,38, 30,31,27,28,21,22,18,19,26,25,29,32,33,43,48,55,63,62,66,65,64,68,67,74,75,71,72,73,69,70,77,85,84,83,82,81,80, 79,78,87,88,89,90,91,86,49,15,14,13,12,11,4,5,6,1,93 96: 92,0,2,3,9,8,7,44,45,38,39,34,35,36,42,43,33,32,29,28,21,20,24,27,31,30,23,16,17,10,11,4,5,13,12,18,22,25, 26,19,14,15,6,1,93,91,90,84,85,86,49,48,55,54,59,62,63,70,69,66,65,64,61,57,58,56,53,47,41,37,40,46,52,51,50,60, 67,68,71,72,73,76,83,82,89,88,80,81,75,74,79,78,87 97: 92,87,88,80,79,74,67,60,50,51,52,56,53,47,46,40,39,38,45,44,7,2,3,4,5,6,15,14,13,12,11,10,9,8,16,17,20,21, 22,18,19,26,25,29,28,27,24,23,30,31,34,35,37,41,42,36,32,33,43,48,49,86,85,84,83,76,77,70,69,73,72,65,66,62,63, 55,54,59,58,57,61,64,68,71,75,81,82,89,90,91,93,1,0 Acknowledgement. We are indebted to T. Zamfirescu for some valuable suggestions. References [1] B. Grünbaum, Vertices missed by longest paths or circuits. J. Comb. Theory A 17, 31-38 (1974) [2] C. Thomassen, Planar cubic hypohamiltonian and hypotraceable graphs. J. Comb. Theory B 30, 36-44 (1981) [3] C. T. Zamfirescu and T. I. Zamfirescu, A planar hypohamiltonian graph with 48 vertices. J. Graph Theory, to appear [4] T. Zamfirescu, A two-connected planar graph without concurrent longest paths. J. Comb. Theory B 13, 116-121 (1972) [5] T. Zamfirescu, L’histoire et l’état présent des bornes connues pour Pkj , Ckj , Pkj et Ckj . Cahiers du CERO 17, 427-439 (1975) [6] T. Zamfirescu, On longest paths and circuits in graphs. Math. Scand. 38, 211-239 (1976) [7] T. Zamfirescu, Intersecting longest Paths or Cycles: A short Survey. Ana. Univ. Craiova 28, 1-9 (2001) (Boris Schauerte) Hoddenfeld 21, 44149 Dortmund, Germany E-mail address: [email protected] (Carol T. Zamfirescu) Südwall 31, 44137 Dortmund, Germany E-mail address: [email protected] 162 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 B. SCHAUERTE AND C. T. ZAMFIRESCU 0 + 38 38 1 4 9 1 39 5 4 7 4 1 14 1 4 7 5 1 10 5 1 5 4 1 12 5 4 1 4 1 5 1 4 9 7 1 7 1 4 7 1 4 1 17 9 1 1 37 + 38 3 15 8 20 2 3 2 15 2 3 15 2 8 20 2 8 15 19 3 8 2 2 8 2 2 35 2 3 48 19 20 2 19 15 3 19 2 48 20 2 19 3 2 15 2 37 37 + 6 6 16 13 6 11 6 11 6 13 27 13 6 13 6 16 13 28 16 13 6 41 16 6 6 13 38 16 6 27 6 16 6 13 6 13 16 6 13 22 6 16 16 11 3 19 22 5 + 4 14 1 3 3 4 7 4 1 14 1 4 7 3 1 12 14 1 18 4 1 12 3 4 1 4 1 6 1 4 3 6 1 3 1 3 6 1 4 1 3 3 1 4 25 2 26 26 + 9 4 6 5 4 9 4 5 15 9 4 17 5 4 10 5 23 5 4 9 27 5 4 5 4 23 5 27 4 9 6 4 6 5 4 6 4 4 5 15 9 4 5 13 1 26 19 26 + 21 8 9 8 9 8 16 14 9 8 18 21 8 21 9 14 8 8 9 8 18 9 14 9 8 18 14 18 8 18 9 8 14 8 18 14 9 14 8 8 28 6 19 2 5 5 2 19 + 20 10 4 7 4 1 17 1 4 7 21 1 10 20 1 13 4 1 12 7 4 1 4 1 7 1 4 12 7 1 7 1 4 7 1 4 1 17 12 1 7 19 3 11 19 3 19 19 + 3 2 11 2 3 15 2 6 20 2 8 15 20 3 8 2 2 8 2 2 22 2 3 6 47 6 2 6 15 3 47 2 6 20 2 6 3 2 11 8 13 2 5 5 2 10 2 18 + 5 9 13 3 17 3 5 13 3 9 10 5 3 5 9 3 27 3 9 5 9 3 5 27 5 3 10 9 3 5 3 10 5 9 5 3 3 10 9 25 1 6 7 15 1 6 18 18 + 14 2 5 14 2 4 24 2 4 24 5 14 5 2 2 8 2 2 5 2 8 5 14 4 2 6 4 6 5 2 6 4 2 5 8 2 4 10 19 3 5 5 3 12 5 3 5 31 + 13 13 14 7 10 7 11 9 10 9 14 13 7 9 27 7 7 13 9 14 7 14 7 9 7 9 7 13 9 7 13 9 7 15 9 7 11 13 2 37 61 2 10 2 4 2 31 31 + 13 35 2 4 13 2 4 13 19 20 8 2 2 8 2 2 13 2 8 6 19 4 2 6 4 6 13 2 6 4 2 6 8 2 4 12 25 1 6 61 3 1 6 3 12 1 3 61 + 33 1 5 12 3 1 12 5 1 5 33 1 12 3 25 1 33 1 5 1 5 3 23 1 3 1 3 22 1 12 1 3 3 1 13 29 22 5 5 29 22 5 38 5 7 5 31 97 + 34 34 17 15 14 15 14 14 15 33 14 27 17 21 14 15 14 18 14 17 15 18 14 18 14 15 18 14 15 14 15 15 15 Table 1. Rows 0-46; Columns 0-17 14 13 2 26 19 2 10 2 4 2 39 19 2 97 97 + 34 7 2 1 12 9 1 13 2 1 12 2 2 1 2 1 7 1 7 2 7 1 3 1 2 7 1 2 1 3 2 1 15 13 10 5 5 62 10 5 38 5 21 5 10 12 5 10 + 24 5 4 10 5 16 5 4 24 8 5 4 5 4 8 5 19 4 8 6 4 6 5 4 6 4 4 5 8 8 4 16 19 1 6 7 62 1 6 11 16 1 11 23 1 7 19 62 + 40 40 12 18 12 13 7 24 12 7 7 12 17 12 7 27 7 12 7 13 7 13 12 7 13 12 7 17 12 7 17 25 1 5 5 2 1 2 4 2 1 5 2 1 5 2 5 1 + 40 15 5 3 5 2 2 32 2 2 5 2 3 5 40 5 2 6 15 3 5 2 6 5 2 5 3 2 11 REGULAR GRAPHS 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 0 5 10 1 7 5 5 1 7 5 1 5 1 10 9 4 14 1 38 1 5 1 12 1 9 1 4 17 1 12 5 4 1 10 5 1 5 7 4 1 7 4 1 10 1 4 1 5 1 2 3 15 2 15 2 33 2 19 15 24 19 2 19 2 3 19 3 15 15 24 2 29 15 2 2 3 15 2 15 2 15 2 33 19 2 24 2 19 24 37 19 2 3 2 19 29 2 16 13 6 13 6 16 11 6 22 11 6 11 13 6 13 6 11 6 16 16 11 22 11 30 6 11 16 11 6 6 11 27 6 16 13 6 13 6 22 6 11 6 13 11 11 6 6 3 3 3 1 3 6 7 1 3 12 1 6 1 3 6 4 3 1 3 1 16 1 3 1 18 1 4 3 1 3 6 3 1 3 14 1 6 7 3 1 6 4 1 12 1 3 1 6 4 5 10 4 10 5 5 4 6 5 4 5 4 10 6 4 6 5 6 5 5 4 23 4 9 4 4 17 4 6 5 4 5 6 5 10 5 10 4 5 6 4 5 10 4 4 6 5 5 8 8 9 8 14 16 9 8 18 9 14 9 8 9 9 8 16 8 16 16 9 8 16 9 8 9 8 9 8 16 8 19 8 14 18 14 16 8 14 16 9 18 14 8 8 14 16 6 12 10 1 7 17 7 1 7 12 1 7 1 10 21 4 20 1 25 1 17 1 12 1 20 1 4 17 1 12 17 4 1 10 17 1 12 7 4 1 7 4 1 10 1 4 1 7 7 2 3 6 2 6 2 11 2 22 11 6 11 2 6 2 3 11 3 15 15 11 2 11 15 2 2 3 11 2 6 2 15 2 16 24 2 16 2 22 6 11 6 2 3 2 6 6 8 3 3 9 3 5 5 9 3 5 9 5 9 3 9 9 3 5 3 5 5 9 3 5 9 3 9 3 9 3 5 3 5 3 5 10 5 10 3 5 10 9 5 10 3 3 10 5 9 2 8 4 2 5 2 4 2 5 4 5 4 2 6 2 6 5 6 5 5 4 2 4 19 2 2 8 4 2 5 2 5 2 5 19 2 24 2 5 6 4 5 2 4 2 6 5 10 17 10 9 7 14 7 9 7 17 9 7 9 10 9 9 14 7 11 7 15 7 26 7 9 7 9 17 7 26 15 9 15 10 14 7 14 7 9 14 7 7 7 10 9 9 10 7 11 2 8 4 2 6 2 4 2 19 4 6 4 2 6 2 6 19 6 20 19 4 2 4 19 2 2 8 4 2 6 2 19 2 61 13 2 13 2 19 6 4 6 2 4 2 6 6 163 12 3 3 1 3 5 5 1 3 5 1 5 1 3 23 12 3 1 3 1 5 1 3 1 23 1 12 3 1 3 5 3 1 3 5 1 5 13 3 1 13 16 1 12 1 3 1 5 13 17 18 14 21 14 17 18 14 17 15 14 29 15 14 33 14 17 42 15 15 14 26 17 15 17 14 17 15 26 15 14 15 14 14 18 14 17 15 14 17 17 18 14 15 15 14 18 Table 2. Rows 47-93; Columns 0-17 14 2 3 1 2 20 2 1 2 12 1 7 1 2 9 2 3 1 3 1 20 1 2 1 9 1 2 3 1 2 20 2 1 2 25 1 2 7 2 1 7 7 1 2 1 2 1 7 15 5 8 4 8 5 5 4 6 5 4 5 4 8 6 4 6 5 6 5 5 4 8 4 19 4 4 8 4 6 5 4 5 6 5 10 5 10 4 5 6 4 5 10 4 4 6 5 16 12 13 12 7 17 7 12 7 12 13 7 29 12 18 12 20 7 25 7 17 7 12 7 18 7 12 17 7 12 17 12 20 12 17 7 12 7 12 27 7 7 7 12 20 12 13 7 17 2 3 6 2 5 2 11 2 5 11 5 11 2 6 2 3 5 3 5 5 11 2 5 15 2 2 3 11 2 5 2 5 2 5 26 2 23 2 5 6 11 5 2 3 2 6 5 164 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 B. SCHAUERTE AND C. T. ZAMFIRESCU 0 10 1 5 1 10 4 5 1 5 10 5 10 1 5 1 4 10 1 21 7 10 1 7 1 4 1 5 4 1 1 1 5 4 5 1 4 5 1 5 4 5 1 4 5 5 1 39 1 2 15 29 15 2 3 3 2 29 3 15 2 33 2 29 2 19 2 3 19 3 2 24 3 2 2 15 33 3 2 19 24 2 29 3 2 3 15 2 3 2 19 2 19 37 2 19 2 13 6 16 11 6 11 16 6 11 13 6 11 25 30 22 6 11 11 30 6 11 6 13 16 6 30 6 11 13 25 6 13 13 22 6 13 11 6 13 11 6 13 25 22 6 22 13 3 3 1 7 1 6 3 3 1 7 3 6 3 1 3 1 4 21 1 3 6 3 1 7 1 4 1 6 4 1 1 1 12 4 7 1 4 3 1 12 3 6 1 3 7 6 1 25 4 10 4 5 4 6 4 5 4 5 10 5 10 4 5 5 4 10 4 51 6 10 4 10 5 4 51 5 4 10 4 6 5 4 5 6 4 5 6 5 4 5 10 4 5 5 4 27 5 8 9 16 9 19 8 8 9 16 8 16 8 9 8 14 9 19 9 8 16 8 9 21 8 9 8 16 9 8 9 16 14 9 22 8 9 8 18 14 8 16 14 8 19 16 8 19 6 10 1 7 1 10 4 7 1 7 10 7 10 1 12 1 4 10 1 21 7 10 1 7 1 4 1 7 4 1 1 1 10 4 7 1 4 12 1 10 4 7 1 4 7 7 1 13 7 2 6 16 11 2 3 3 2 11 3 6 2 32 2 22 2 11 2 3 6 3 2 24 3 2 2 6 11 3 2 6 24 2 22 3 2 3 6 2 3 2 22 2 22 6 2 39 8 3 9 5 9 10 3 3 9 5 3 5 3 9 3 5 9 10 9 3 10 3 9 10 3 9 3 5 9 3 5 11 5 9 5 3 9 3 80 5 3 5 10 3 5 5 3 13 9 2 4 5 4 2 4 5 2 5 8 5 2 4 2 5 2 19 2 8 6 8 2 24 5 2 2 5 4 8 2 6 5 2 5 6 2 5 6 2 4 2 14 2 5 5 2 19 10 10 9 7 9 10 9 7 9 7 10 7 10 9 15 7 9 10 9 21 7 10 9 7 7 7 21 7 9 10 9 7 10 9 7 11 9 11 7 10 9 7 10 9 7 7 9 13 11 2 4 43 4 2 4 8 2 35 8 6 2 4 2 35 2 13 2 8 6 8 2 13 8 2 2 6 4 8 2 6 13 2 35 6 2 8 6 2 4 2 13 2 19 6 2 13 12 3 1 5 1 12 3 3 1 5 3 5 3 1 3 1 25 13 1 3 13 3 1 13 1 25 1 5 12 1 1 1 5 13 5 1 13 3 1 5 3 5 1 3 5 5 1 13 13 17 14 17 14 17 15 18 14 18 17 15 21 14 15 14 15 17 14 21 18 21 14 21 14 15 21 15 14 18 14 37 14 14 29 15 14 26 15 14 18 15 14 15 26 26 14 27 Table 3. Rows 94-140; Columns 0-17 14 2 1 7 1 2 3 3 1 7 3 7 2 1 2 1 2 13 1 3 7 3 1 7 1 2 1 7 9 1 1 1 12 2 7 1 2 3 1 2 3 2 1 2 7 7 1 13 15 8 4 5 4 6 4 5 4 5 8 5 8 4 5 5 4 10 4 8 6 8 4 10 5 4 8 5 4 8 4 6 5 4 5 6 4 5 6 5 4 5 10 4 5 5 4 19 16 12 20 7 20 12 20 7 12 7 13 7 12 17 12 7 17 13 12 30 7 12 17 7 7 7 30 7 12 13 12 7 12 13 7 12 13 12 7 12 18 7 12 17 7 7 12 13 17 2 6 5 11 2 3 3 2 5 3 5 2 32 2 5 2 11 2 3 6 3 2 21 3 2 2 5 11 3 2 6 5 2 5 3 2 3 6 2 3 2 21 2 5 5 2 39 REGULAR GRAPHS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 18 13 1 38 45 3 1 67 3 10 1 3 10 1 31 10 10 1 1 + 10 9 1 8 4 1 8 10 4 1 4 1 10 1 4 8 10 1 8 1 4 10 1 4 1 8 8 1 19 27 4 11 22 4 12 67 4 12 39 11 4 11 22 4 12 11 4 67 + 43 12 13 10 15 12 10 10 12 15 12 10 27 10 12 10 13 10 13 12 10 13 12 21 15 12 10 20 13 10 5 5 15 10 5 18 5 6 5 10 6 5 10 5 6 5 10 78 + 14 5 9 9 19 5 9 5 9 14 5 14 5 9 18 9 18 5 9 18 5 9 5 18 9 28 21 30 1 38 35 2 1 2 3 2 1 3 2 1 31 2 21 1 1 1 78 78 + 36 20 1 12 3 36 1 20 1 42 1 20 3 23 1 3 1 3 42 1 12 1 3 3 1 22 19 2 6 7 2 19 2 4 2 6 11 2 6 7 2 62 6 2 45 4 6 2 + 8 15 8 5 36 5 15 8 5 37 5 8 18 13 8 5 8 18 5 15 5 8 8 13 23 27 1 5 5 3 1 5 3 5 1 3 14 1 5 14 5 1 1 1 12 5 1 7 + 2 8 2 2 44 2 8 6 19 4 2 6 4 6 19 2 6 4 2 6 8 2 4 24 13 10 7 7 35 10 7 38 10 7 41 10 21 7 10 10 7 35 10 23 7 21 7 7 + 46 2 2 1 2 1 26 1 46 2 47 1 3 1 2 26 1 2 1 3 2 1 25 25 1 6 39 2 1 2 4 2 1 41 2 1 98 2 14 1 1 1 4 6 1 2 1 41 + 49 19 12 19 8 22 19 46 8 19 49 8 19 8 22 45 12 19 8 8 27 26 13 3 11 19 3 10 16 3 10 21 3 10 3 98 10 10 11 12 3 11 10 3 11 3 10 98 + 2 5 2 3 5 53 5 2 6 49 3 5 2 6 5 2 5 3 2 7 27 13 10 6 7 18 10 6 11 10 6 11 10 6 7 10 10 6 96 10 11 6 31 6 7 7 6 10 + 48 2 21 6 19 4 2 6 4 6 19 2 6 4 2 6 48 2 4 28 30 3 38 39 3 21 67 3 67 21 3 38 3 38 39 21 39 96 3 39 95 3 39 3 21 39 3 96 + 51 1 5 1 5 12 51 1 51 1 12 22 1 12 1 48 12 1 29 27 1 11 22 2 1 2 4 2 1 11 2 1 22 2 12 1 1 1 4 95 1 2 1 23 1 11 11 95 + 50 50 19 4 2 19 4 51 19 2 50 4 2 19 15 2 4 165 30 13 10 11 19 17 10 17 11 10 21 11 10 11 35 10 10 11 17 10 11 10 21 11 17 10 17 10 10 21 11 + 50 1 23 3 23 1 3 1 3 27 1 12 1 3 3 1 31 25 2 6 39 2 39 2 4 2 6 41 2 6 38 2 38 6 2 38 4 6 2 2 17 38 2 94 6 38 2 17 + 53 5 22 6 13 6 5 53 6 5 22 5 18 44 7 Table 4. Rows 0-46; Columns 18-35 32 27 1 5 5 18 1 5 18 5 1 5 14 1 5 14 5 1 1 1 14 5 1 7 1 7 1 94 7 67 1 35 94 + 54 54 19 1 27 1 53 27 1 53 1 37 19 1 33 29 2 5 5 2 12 2 3 2 15 3 2 3 5 2 5 44 2 3 12 5 2 2 3 21 2 3 91 3 2 21 2 5 + 54 6 4 6 5 4 6 4 4 5 17 23 4 34 25 1 32 39 4 1 17 4 14 1 32 4 1 66 4 14 1 1 1 4 17 1 4 1 64 1 32 91 39 1 17 4 1 91 + 52 9 3 44 2 22 52 2 21 3 2 15 35 13 2 11 19 2 10 2 3 2 21 3 2 3 22 2 10 11 2 3 11 10 2 2 3 10 2 3 10 3 2 10 2 22 2 25 + 47 6 19 23 6 52 50 6 18 19 7 166 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 B. SCHAUERTE AND C. T. ZAMFIRESCU 18 8 8 1 8 14 16 1 8 19 1 14 1 8 9 4 8 1 8 1 16 1 8 1 9 1 4 8 1 8 16 4 1 8 14 1 14 10 4 1 10 4 1 10 1 4 1 16 19 12 10 12 10 15 21 10 21 12 10 21 33 10 21 10 15 21 32 12 15 10 12 32 15 43 10 39 10 12 15 12 15 10 33 10 12 10 12 27 10 27 21 10 15 12 10 27 20 5 18 9 35 5 5 9 14 5 9 5 9 20 9 9 14 5 42 5 5 9 19 5 9 43 9 26 9 26 5 9 5 14 5 18 5 18 9 5 18 9 5 14 9 9 14 5 21 3 3 1 3 14 16 1 3 12 1 14 1 3 14 12 3 1 3 1 16 1 3 1 20 1 12 3 1 3 16 3 1 3 14 1 12 16 3 1 16 16 1 12 1 3 1 16 22 5 8 15 8 5 5 13 8 5 13 5 28 8 18 13 8 5 8 5 5 13 8 5 15 8 13 8 13 8 5 8 5 8 5 13 5 13 8 5 13 17 5 13 8 8 13 5 23 2 8 4 2 6 2 4 2 19 4 6 4 2 6 2 6 7 6 7 19 4 2 4 9 2 2 8 4 2 6 2 19 2 33 7 2 7 2 19 6 4 6 2 4 2 6 6 24 2 3 1 2 14 2 1 2 26 1 14 1 2 9 2 3 1 3 1 15 1 2 1 9 1 2 3 1 2 15 2 1 2 14 1 2 24 2 1 24 9 1 2 1 2 1 26 25 8 8 12 8 22 16 12 8 12 16 32 16 8 19 12 8 16 8 12 16 32 8 16 19 8 12 8 19 8 16 8 19 8 16 19 12 16 8 19 16 16 19 12 8 8 19 16 26 2 3 6 2 5 2 10 2 5 10 5 11 2 6 2 3 5 3 5 5 7 2 5 18 2 2 3 7 2 5 2 5 2 5 7 2 7 2 5 6 7 5 2 3 2 6 5 27 2 10 4 2 6 2 4 2 19 4 6 4 2 6 2 6 7 6 7 19 4 2 4 9 2 2 25 4 2 6 2 19 2 25 7 2 7 2 19 6 4 6 2 4 2 6 6 28 5 13 1 12 5 5 1 14 5 1 5 1 12 14 12 14 1 22 1 5 1 12 1 35 1 12 28 1 12 5 12 1 12 5 1 5 13 12 1 13 28 1 12 1 12 1 5 29 2 37 4 2 15 2 4 2 17 4 17 4 2 9 2 15 17 38 15 15 4 2 4 9 2 2 17 4 2 15 2 15 2 17 19 2 17 2 19 17 4 19 2 4 2 19 29 30 3 3 1 3 14 16 1 3 12 1 14 1 3 14 12 3 1 3 1 16 1 3 1 23 1 12 3 1 3 16 3 1 3 14 1 12 16 3 1 16 16 1 12 1 3 1 16 31 5 10 6 7 5 5 10 6 5 10 5 11 10 6 10 6 5 6 5 5 7 22 5 18 6 10 26 7 6 5 11 5 6 5 7 5 7 6 5 6 7 5 10 11 11 6 5 Table 5. Rows 47-93; Columns 18-35 32 45 37 1 27 14 19 1 14 19 1 14 1 27 14 53 14 1 47 1 19 1 19 1 19 1 14 43 1 27 45 14 1 14 14 1 14 37 35 1 37 27 1 14 1 35 1 27 33 5 10 4 7 5 5 4 6 5 4 5 4 10 6 4 6 5 6 5 5 4 23 4 18 4 4 17 4 6 5 4 5 6 5 7 5 7 4 5 6 4 5 10 4 4 6 5 34 2 3 9 2 15 2 9 2 12 9 21 9 2 9 2 3 16 3 12 15 9 2 16 9 2 2 3 9 2 15 2 15 2 16 24 2 16 2 22 16 9 21 2 3 2 22 16 35 47 10 6 7 6 7 10 6 18 10 6 11 10 6 10 6 7 6 7 19 7 19 7 18 6 10 43 7 6 6 11 19 6 23 7 6 7 6 19 6 7 6 10 11 11 6 6 REGULAR GRAPHS 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 18 8 1 16 1 10 4 8 1 16 8 16 8 1 8 1 4 10 1 8 10 8 1 10 1 4 1 10 4 1 1 1 10 4 22 1 4 8 1 10 4 16 1 4 19 16 1 19 19 10 15 27 15 10 15 27 12 27 10 15 10 27 12 27 15 10 12 21 10 10 15 10 12 15 21 10 12 10 12 37 10 10 37 12 10 12 15 10 30 15 10 15 39 32 10 13 20 19 9 5 9 19 9 5 9 5 19 5 19 9 5 5 9 19 9 42 18 19 9 23 5 9 31 5 9 18 5 19 5 9 5 18 9 5 18 5 9 5 14 9 5 5 9 19 21 3 1 16 1 12 3 3 1 16 3 16 3 1 3 1 20 23 1 3 16 3 1 23 1 20 1 16 12 1 1 1 12 14 35 1 14 3 1 12 3 16 1 3 35 16 1 30 22 8 15 5 15 13 8 5 15 5 8 5 8 17 5 5 15 13 22 8 13 8 15 13 5 15 8 5 22 8 5 22 5 13 5 8 13 5 15 5 8 5 13 8 5 5 8 13 23 2 4 7 4 2 4 7 2 7 8 6 2 4 2 7 2 10 2 8 6 8 2 7 7 2 2 6 4 8 2 6 10 2 7 6 2 8 6 2 4 2 10 2 7 6 2 19 24 2 1 39 1 2 3 3 1 26 3 15 2 1 2 1 2 21 1 3 24 3 1 21 1 2 1 15 9 1 1 1 14 2 35 1 2 3 1 2 3 2 1 2 26 26 1 35 25 8 40 16 37 12 8 8 12 16 8 16 8 27 8 22 45 19 12 8 16 8 27 37 8 19 8 16 12 8 12 16 12 19 22 8 27 8 46 12 8 16 12 8 19 16 8 19 26 2 6 5 11 2 3 3 2 5 3 5 2 17 2 5 2 10 2 3 6 3 2 7 3 2 2 5 11 3 2 6 5 2 5 3 2 3 6 2 3 2 10 2 5 5 2 25 27 2 4 7 4 2 4 7 2 7 10 6 2 4 2 7 2 10 2 21 6 10 2 7 7 2 2 6 4 10 2 6 10 2 7 6 2 11 6 2 4 2 10 2 7 6 2 19 28 12 1 5 1 12 48 5 1 5 13 5 12 1 5 1 41 13 1 44 13 12 1 13 1 44 1 5 12 1 1 1 5 13 5 1 13 5 1 5 44 5 1 35 5 5 1 13 29 2 4 17 4 2 4 29 2 29 17 15 2 4 2 29 2 17 2 38 19 19 2 24 17 2 2 15 4 24 2 19 24 2 29 15 2 19 15 2 4 2 19 2 19 37 2 19 167 30 3 1 16 1 12 3 3 1 16 3 16 3 1 3 1 25 21 1 3 16 3 1 21 1 25 1 16 12 1 1 1 12 14 35 1 14 3 1 12 3 16 1 3 35 16 1 25 31 10 6 5 11 6 11 5 6 5 10 5 10 32 5 5 6 10 11 42 6 10 6 7 5 6 31 5 11 10 5 6 5 10 5 6 10 5 6 5 11 5 10 18 5 5 10 13 Table 6. Rows 94-140; Columns 18-35 32 19 1 27 1 19 43 27 1 27 19 37 19 1 35 1 41 19 1 47 19 19 1 35 1 19 1 19 14 1 1 1 14 14 35 1 14 19 1 14 19 19 1 35 19 37 1 19 33 10 4 5 4 6 4 5 4 5 10 5 10 4 5 5 4 10 4 30 6 10 4 7 5 4 30 5 4 10 4 6 5 4 5 6 4 5 6 5 4 5 10 4 5 5 4 13 34 2 9 16 9 2 3 3 2 16 3 15 2 9 2 22 2 21 2 3 16 3 2 21 3 2 2 15 9 3 2 16 12 2 22 3 2 3 15 2 3 2 12 2 22 16 2 39 35 10 6 7 11 6 11 7 6 7 10 6 10 27 47 7 6 10 11 47 6 10 6 7 7 6 31 6 11 10 27 6 10 10 7 6 10 11 6 10 11 6 10 18 7 6 10 19 168 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 B. SCHAUERTE AND C. T. ZAMFIRESCU 36 25 15 5 5 15 28 5 18 5 6 5 28 6 5 28 5 6 5 18 44 5 30 6 5 7 6 16 6 30 93 28 6 5 5 25 25 + 21 1 4 42 1 4 1 15 9 1 37 13 3 32 19 3 10 17 3 10 21 3 10 3 67 10 10 19 17 3 39 10 3 19 3 10 17 3 10 3 93 10 17 67 3 17 3 93 + 56 3 6 25 56 6 3 3 7 38 25 18 5 5 18 22 5 11 5 7 5 23 11 5 23 5 7 5 18 11 5 30 7 5 7 18 11 7 30 11 11 25 5 5 25 11 5 32 + 57 57 1 56 1 37 19 1 39 40 1 6 75 2 1 2 4 2 1 12 2 1 38 2 12 1 1 1 4 6 1 2 1 38 1 12 6 38 1 92 2 1 2 1 2 6 32 32 + 57 4 2 21 3 2 4 40 25 3 5 5 3 22 5 3 5 7 3 27 3 5 26 5 7 5 3 22 5 3 7 3 7 18 3 7 3 22 92 25 5 3 25 3 5 3 5 92 + 55 22 6 18 55 7 41 25 3 11 26 3 23 15 3 16 15 3 4 3 45 4 61 11 4 3 4 15 3 4 3 23 4 3 11 3 4 11 4 90 3 4 3 15 3 11 4 3 + 4 1 17 55 1 42 13 2 6 19 2 10 2 19 2 6 12 2 6 38 2 10 6 2 10 12 6 2 2 12 10 2 10 6 21 2 10 2 90 2 17 2 6 10 28 2 30 90 + 58 15 2 4 43 30 1 11 35 4 1 15 4 14 1 11 4 1 35 4 14 1 1 1 4 15 1 4 1 23 1 11 11 30 1 11 4 1 15 1 11 15 62 11 1 30 4 30 + 59 19 1 44 27 17 5 5 17 27 5 18 5 7 5 17 16 5 17 5 7 5 18 27 5 30 7 5 7 17 16 7 30 27 17 17 5 5 17 89 5 17 5 32 5 16 17 30 + 3 15 45 40 1 6 44 4 1 6 4 14 1 44 4 1 38 4 14 1 1 1 4 6 1 4 1 38 1 44 6 38 1 44 4 1 15 1 89 6 62 44 1 92 4 6 1 89 + 15 46 13 2 44 19 2 10 2 3 2 21 3 2 3 76 2 10 19 2 3 12 10 2 2 3 10 2 3 10 3 2 10 2 76 2 17 2 44 3 44 2 3 3 2 88 17 44 + 47 25 18 5 5 18 22 5 18 5 6 5 27 6 5 26 5 6 5 18 22 5 31 6 5 7 6 16 6 38 22 28 6 5 5 25 22 5 32 5 6 5 16 6 88 5 6 88 48 13 1 6 19 62 1 6 19 10 1 19 10 1 22 10 10 1 1 1 14 6 1 6 1 10 1 10 6 62 1 10 6 1 87 1 10 6 10 22 1 22 62 6 1 86 1 10 49 25 2 11 26 2 12 2 3 2 15 3 2 3 35 2 12 11 2 3 4 15 2 2 3 21 2 3 11 3 2 11 2 35 2 4 2 15 3 11 2 3 3 2 4 86 4 2 Table 7. Rows 0-46; Columns 36-53 50 19 1 11 19 3 1 15 3 23 1 3 4 1 35 4 21 1 1 1 4 15 1 4 1 21 1 3 11 3 1 11 4 1 3 1 3 15 3 11 1 3 3 19 1 30 1 3 51 13 2 37 44 2 10 2 44 2 84 12 2 12 37 2 10 37 2 10 12 10 2 2 12 10 2 10 10 44 2 10 2 14 2 14 2 37 10 37 2 76 84 2 14 17 14 2 52 19 1 5 5 18 1 5 18 5 1 5 27 1 5 19 5 1 1 1 22 5 1 6 1 7 1 19 6 21 1 19 6 1 5 1 19 5 19 5 1 5 84 6 1 5 1 19 53 25 4 7 7 4 23 7 4 16 7 11 4 11 7 4 27 7 4 18 4 7 76 4 7 7 4 11 7 39 4 11 4 7 87 4 11 7 17 7 4 7 4 17 4 7 4 17 REGULAR GRAPHS 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 36 47 13 1 13 14 21 1 14 30 1 14 1 13 9 4 14 1 38 1 15 1 44 1 9 1 4 28 1 38 15 4 1 13 14 1 14 13 4 1 13 4 1 13 1 4 1 28 37 3 3 6 3 6 7 10 3 18 10 6 11 3 6 10 3 7 3 7 16 7 3 7 18 3 10 3 7 3 6 3 26 3 16 7 6 7 3 27 6 7 6 10 3 3 6 6 38 5 13 1 13 5 5 1 14 5 1 5 1 13 14 13 14 1 47 1 5 1 19 1 19 1 13 28 1 44 5 14 1 13 5 1 5 13 35 1 13 28 1 13 1 35 1 5 39 2 3 4 2 15 2 4 2 12 4 17 4 2 9 2 3 16 3 12 15 4 2 4 9 2 2 3 4 2 15 2 15 2 16 24 2 16 2 29 16 4 21 2 3 2 24 16 40 22 10 6 7 6 7 10 6 18 10 6 11 10 6 10 6 7 6 7 22 7 22 7 18 6 10 26 7 6 6 11 26 6 22 7 6 7 6 22 6 7 6 10 11 11 6 6 41 5 13 1 13 5 5 1 14 5 1 5 1 13 14 4 14 1 25 1 5 1 29 1 20 1 4 17 1 29 5 4 1 13 5 1 5 13 4 1 13 4 1 13 1 4 1 5 42 2 58 4 2 15 2 4 2 12 4 17 4 2 9 2 15 17 22 12 15 4 2 4 9 2 2 17 4 2 15 2 15 2 17 24 2 17 2 22 17 4 22 2 4 2 22 22 43 5 58 1 7 5 5 1 6 5 1 5 1 27 6 59 6 1 6 1 5 1 19 1 19 1 11 28 1 6 5 11 1 6 5 1 5 7 6 1 6 7 1 14 1 11 1 5 44 3 3 15 3 15 16 18 3 17 15 17 16 3 18 59 3 16 3 15 15 18 3 16 15 3 15 3 15 3 15 3 15 3 16 18 23 16 3 29 16 16 18 17 3 3 31 16 45 2 3 9 2 15 2 9 2 12 9 21 9 2 9 2 3 16 3 12 15 9 2 16 9 2 2 3 9 2 15 2 15 2 16 19 2 16 2 19 16 9 19 2 3 2 19 16 46 60 10 1 7 15 7 1 7 43 1 7 1 10 60 4 15 1 11 1 15 1 27 1 15 1 4 28 1 27 15 4 1 10 28 1 27 7 4 1 7 4 1 10 1 4 1 7 47 + 3 12 2 5 2 12 2 5 16 5 16 2 60 2 3 5 3 5 5 25 2 5 20 2 2 3 20 2 5 2 5 2 5 26 2 16 2 5 16 16 5 2 3 2 22 5 169 48 6 + 16 3 18 16 10 3 18 10 18 16 3 18 10 3 16 3 16 16 10 3 16 18 3 10 3 10 3 16 3 26 3 16 10 23 10 3 30 10 16 18 10 3 3 10 16 49 25 86 + 12 6 16 1 6 12 1 6 1 12 6 4 6 1 6 1 15 1 12 1 9 1 4 16 1 6 6 4 1 6 14 1 6 16 4 1 6 4 1 12 1 4 1 6 Table 8. Rows 47-93; Columns 36-53 50 85 1 3 + 29 2 10 2 12 10 7 29 2 21 2 3 7 3 7 52 7 2 7 35 2 2 3 7 2 38 2 27 2 67 7 2 7 2 27 7 7 7 2 3 2 10 7 51 85 10 2 85 + 5 18 6 5 15 5 29 15 6 22 6 5 6 5 5 14 22 5 15 6 14 17 15 6 5 14 5 6 5 18 5 17 6 5 6 17 5 14 15 15 6 5 52 5 1 21 1 84 + 63 2 5 16 5 16 2 19 2 63 5 22 5 5 7 2 5 19 2 2 16 7 2 5 2 5 2 5 7 2 7 2 5 7 7 5 2 19 2 19 5 53 7 87 4 4 17 7 + 74 12 1 18 1 10 9 4 63 1 11 1 74 1 12 1 9 1 4 25 1 12 39 4 1 10 25 1 12 10 4 1 10 4 1 10 1 4 1 18 170 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 B. SCHAUERTE AND C. T. ZAMFIRESCU 36 13 1 28 1 13 4 30 1 28 13 15 13 1 15 1 4 13 1 21 13 13 1 13 1 4 1 13 4 1 1 1 13 4 35 1 4 30 1 13 4 15 1 4 35 38 1 13 37 3 6 7 11 6 3 3 6 7 3 6 3 25 3 7 6 10 11 3 6 3 6 7 3 6 3 6 11 3 25 6 10 10 7 3 10 3 6 10 3 6 10 3 7 6 3 25 38 13 1 5 1 13 45 5 1 5 13 5 13 1 5 1 41 13 1 44 13 13 1 13 1 19 1 5 14 1 1 1 5 13 5 1 13 5 1 5 19 5 1 35 5 5 1 13 39 2 4 16 4 2 3 3 2 16 3 15 2 4 2 29 2 17 2 3 16 3 2 21 3 2 2 15 4 3 2 16 12 2 29 3 2 3 15 2 3 2 12 2 29 16 2 25 40 10 6 7 11 6 11 7 6 7 10 6 10 27 26 7 6 10 11 42 6 10 6 7 7 6 31 6 11 10 26 6 10 10 7 6 10 11 6 10 11 6 10 18 7 6 10 27 41 13 1 5 1 13 4 5 1 5 13 5 13 1 5 1 4 13 1 30 13 13 1 13 1 4 1 5 4 1 1 1 5 4 5 1 4 5 1 5 4 5 1 4 5 5 1 13 42 2 4 17 4 2 4 22 2 22 17 15 2 4 2 22 2 17 2 38 22 12 2 24 12 2 2 15 4 24 2 22 12 2 22 12 2 12 15 2 4 2 12 2 22 38 2 29 43 19 1 5 1 6 11 5 1 5 19 5 11 1 5 1 6 11 1 21 6 11 1 7 1 6 1 5 11 1 1 1 5 14 5 1 14 5 1 5 11 5 1 35 5 5 1 19 44 3 15 16 15 17 3 3 15 16 3 15 3 17 3 18 15 17 23 3 16 3 15 23 3 15 3 15 23 3 15 16 31 17 29 3 17 3 15 16 3 15 23 3 26 16 3 29 45 2 9 16 9 2 3 3 2 16 3 15 2 9 2 33 2 19 2 3 16 3 2 21 3 2 2 15 9 3 2 16 12 2 37 3 2 3 15 2 3 2 12 2 19 16 2 19 46 10 1 7 1 10 4 7 1 7 10 7 10 1 15 1 4 10 1 38 7 10 1 7 1 4 1 7 4 1 1 1 10 4 7 1 4 11 1 10 4 7 1 4 7 7 1 13 47 2 20 5 20 2 3 3 2 5 3 5 2 17 2 5 2 17 2 3 16 3 2 60 3 2 2 5 12 3 2 16 5 2 5 3 2 3 20 2 3 2 12 2 5 5 2 25 48 3 42 16 23 10 3 3 32 16 3 16 3 25 3 18 25 10 23 3 10 3 18 10 3 25 3 10 23 3 25 16 10 10 31 3 10 3 18 10 3 16 10 3 26 16 3 13 49 12 1 16 1 6 4 16 1 11 39 6 11 1 12 1 4 11 1 39 6 11 1 28 1 4 1 6 4 1 1 1 12 4 45 1 4 11 1 12 4 6 1 4 39 6 1 28 Table 9. Rows 94-140; Columns 36-53 50 2 38 7 35 2 3 3 2 7 3 7 2 27 2 7 2 10 2 3 7 3 2 7 3 2 2 7 12 3 2 7 10 2 7 3 2 3 7 2 3 2 10 2 7 7 2 13 51 17 6 5 14 6 15 5 6 5 17 5 22 14 5 5 6 17 14 30 6 26 6 61 5 6 30 5 14 18 5 6 5 14 5 6 14 5 6 5 18 5 14 15 5 5 14 25 52 2 38 5 35 2 16 5 2 5 17 5 2 17 2 5 2 17 2 21 7 16 2 7 5 2 2 5 22 21 2 7 5 2 5 16 2 5 7 2 19 2 19 2 5 5 2 19 53 10 1 18 1 10 4 18 1 11 10 18 10 1 12 1 4 10 1 30 10 10 1 10 1 4 1 10 4 1 1 1 10 4 31 1 4 11 1 10 4 25 1 4 26 11 1 13 REGULAR GRAPHS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 54 13 10 6 7 17 10 6 18 10 6 16 10 6 7 10 10 6 17 10 39 6 31 6 7 7 6 10 6 39 31 10 6 7 83 17 10 6 10 7 6 7 16 6 37 7 6 10 55 19 1 5 5 29 1 5 19 5 1 5 14 1 5 14 5 1 1 1 14 5 1 19 1 41 1 19 19 30 1 19 41 1 5 1 19 5 19 5 1 5 45 19 1 5 1 19 56 35 2 6 35 2 12 2 3 2 6 3 2 3 35 2 12 6 2 3 4 6 2 2 3 21 2 3 6 3 2 11 2 35 2 4 2 6 3 11 2 3 3 2 4 39 4 2 57 13 10 7 7 17 10 7 18 10 7 16 10 16 7 10 10 7 17 10 23 7 31 7 7 7 17 10 7 67 23 10 17 7 26 17 10 7 10 7 32 7 16 10 23 7 67 10 58 27 2 5 5 2 12 2 38 2 6 5 2 6 5 2 5 6 2 38 12 5 2 2 5 23 2 12 6 38 2 23 2 5 2 14 2 5 76 5 2 5 23 2 14 5 6 2 59 13 1 7 7 18 1 7 18 10 1 19 10 1 7 10 10 1 1 1 26 7 1 7 1 7 1 10 7 30 1 10 41 1 26 1 10 7 10 7 1 7 26 10 1 7 1 10 60 25 14 5 5 17 14 5 45 5 25 5 14 16 5 14 5 16 5 28 14 5 78 25 5 23 14 16 16 67 14 17 17 5 5 14 22 5 17 5 14 5 16 17 14 5 14 17 61 13 2 6 22 2 10 2 3 2 6 3 2 3 22 2 10 6 2 3 12 6 2 2 3 10 2 3 6 3 2 10 2 14 2 14 2 6 3 22 2 3 3 2 14 27 6 2 62 19 1 5 5 15 1 5 19 5 1 5 27 1 5 19 5 1 1 1 26 5 1 15 1 38 1 19 19 30 1 19 15 1 5 1 19 5 19 5 1 5 15 19 1 5 1 19 63 25 2 11 22 2 12 2 3 2 21 3 2 3 22 2 12 11 2 3 4 25 2 2 3 21 2 3 11 3 2 11 2 14 2 4 2 25 3 11 2 3 3 2 4 78 4 2 64 28 15 5 5 15 28 5 38 5 6 5 17 6 5 17 5 6 5 28 39 5 38 6 5 28 6 16 6 38 71 17 6 5 5 17 71 5 17 5 6 5 15 6 15 5 6 17 65 27 2 6 26 2 12 2 3 2 6 3 2 3 29 2 12 6 2 3 12 6 2 2 3 38 2 3 6 3 2 44 2 27 2 27 2 6 3 26 2 3 3 2 70 27 6 2 171 66 13 1 7 7 4 1 7 4 10 1 11 4 1 7 4 10 1 1 1 4 7 1 4 1 7 1 10 7 21 1 10 4 1 15 1 10 7 10 7 1 7 4 10 1 7 1 10 67 25 3 16 26 3 26 16 3 16 25 3 17 3 67 17 28 16 17 3 26 16 3 25 3 28 17 3 16 3 26 17 17 67 3 17 3 16 3 16 77 3 3 17 61 16 67 3 Table 10. Rows 0-46; Columns 54-71 68 13 2 11 44 2 10 2 4 2 15 11 2 11 37 2 10 11 2 10 4 10 2 2 12 10 2 10 10 44 2 10 2 14 2 4 2 15 10 11 2 45 4 2 4 28 4 2 69 25 1 6 7 2 1 2 3 2 1 3 2 1 7 2 76 1 1 1 4 6 1 2 1 7 1 3 6 3 1 11 2 1 2 1 2 6 3 7 1 3 3 2 1 7 1 2 70 19 9 26 19 9 19 15 9 18 15 19 9 15 35 9 76 19 9 18 9 15 30 9 18 23 9 19 18 30 9 19 9 18 15 9 19 15 19 18 9 18 9 19 9 18 9 19 172 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 B. SCHAUERTE AND C. T. ZAMFIRESCU 54 6 6 83 39 10 6 7 + 65 65 6 29 2 6 2 3 7 3 7 74 7 2 7 35 2 2 3 7 2 6 2 27 2 14 7 2 7 2 14 6 7 6 2 3 2 6 6 55 5 1 83 1 14 1 27 83 + 65 5 19 12 18 12 23 5 22 5 5 18 12 5 18 17 12 17 18 12 5 12 5 12 5 18 5 17 12 5 17 17 5 12 19 12 19 5 56 6 6 2 3 2 6 4 6 82 + 73 1 10 9 4 15 1 11 1 15 1 73 1 9 1 4 16 1 39 15 4 1 10 16 1 33 10 4 1 10 4 1 10 1 4 1 16 57 7 10 23 23 10 7 7 7 82 82 + 64 64 6 24 6 5 6 5 5 7 73 5 18 6 14 17 7 6 5 14 5 6 5 7 5 7 6 5 6 7 5 14 21 21 6 5 58 5 6 2 23 2 5 23 6 5 2 23 + 64 9 4 23 1 11 1 16 1 19 1 9 1 4 16 1 29 16 4 1 33 16 1 23 16 4 1 16 4 1 33 1 4 1 16 59 7 1 26 1 10 1 7 7 1 66 7 27 + 70 2 3 26 3 12 15 10 2 70 15 2 2 3 10 2 15 2 15 2 22 10 2 10 2 22 10 27 22 2 3 2 10 22 60 5 14 23 23 14 5 16 16 5 66 16 5 66 + 9 6 18 6 18 19 9 19 70 9 6 9 39 9 6 6 9 19 6 14 18 6 18 6 14 6 9 6 14 9 9 6 6 61 6 6 2 3 2 6 27 6 14 2 10 2 10 14 + 71 71 22 12 22 4 2 4 9 2 2 25 4 2 38 2 38 2 22 10 2 10 2 22 10 4 22 2 4 2 10 22 62 5 1 15 1 77 1 27 81 1 15 26 5 1 5 27 + 71 3 15 15 14 3 28 15 3 14 3 15 3 6 3 15 3 14 37 6 23 3 14 6 23 6 14 3 3 6 6 63 22 14 2 3 2 21 4 81 14 2 23 2 80 14 2 81 + 11 1 5 1 19 1 18 1 11 16 1 26 5 11 1 21 5 1 5 7 11 1 7 7 1 17 1 11 1 5 64 5 6 15 15 17 5 16 6 5 6 16 5 80 5 6 5 80 + 75 22 11 3 11 42 3 11 3 11 3 6 3 38 3 22 32 6 25 3 22 6 11 6 85 3 3 6 6 65 6 6 2 3 2 6 27 6 27 2 26 2 26 79 2 26 2 6 + 5 1 12 1 15 1 12 16 1 12 5 12 1 12 5 1 5 7 12 1 7 7 1 12 1 12 1 5 66 7 1 4 1 10 1 4 7 1 4 7 77 1 79 10 1 4 15 79 + 68 19 5 15 16 15 16 15 68 5 22 5 22 5 19 5 16 15 5 16 16 5 17 15 15 19 5 67 16 81 3 3 17 28 16 16 61 3 16 77 26 16 3 26 3 16 3 77 + 69 1 9 1 4 25 1 68 69 4 1 10 14 1 14 7 4 1 7 4 1 10 1 4 1 7 68 28 10 2 4 2 28 4 10 14 2 10 2 10 14 2 15 2 15 2 4 28 + 29 19 2 2 3 19 2 69 2 19 2 22 19 2 23 2 19 37 23 19 2 3 2 19 22 Table 11. Rows 47-93; Columns 54-71 69 6 1 2 1 2 1 4 6 1 2 7 2 1 16 2 1 2 6 2 1 3 2 + 35 1 4 16 1 29 5 4 1 35 5 1 5 7 4 1 7 4 1 17 1 4 1 5 70 18 19 9 9 37 18 9 18 19 9 18 23 18 23 35 15 9 15 26 9 26 9 76 + 76 9 26 9 26 15 9 15 35 23 18 23 18 9 19 18 9 18 37 9 9 19 18 REGULAR GRAPHS 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 54 2 6 7 14 2 3 3 2 7 3 6 2 14 2 7 2 21 2 3 6 3 2 7 3 2 2 6 14 3 2 6 14 2 7 3 2 3 6 2 3 2 14 2 7 6 2 27 55 12 64 5 23 12 23 5 12 5 17 5 12 17 5 5 17 17 12 30 18 12 17 23 5 19 30 5 12 18 5 19 5 17 5 12 17 5 18 5 18 5 12 17 5 5 12 19 56 10 1 16 1 10 4 16 1 11 10 15 10 1 15 1 4 10 1 39 10 10 1 10 1 4 1 10 4 1 1 1 10 4 42 1 4 11 1 10 4 15 1 4 39 11 1 13 57 17 6 5 14 6 25 5 6 5 17 5 21 14 5 5 6 17 14 21 6 21 6 7 5 6 21 5 14 18 5 6 5 14 5 6 14 5 6 5 18 5 14 17 5 5 14 25 58 19 1 16 1 19 4 16 1 11 19 16 11 1 29 1 4 11 1 39 11 11 1 23 1 4 1 16 4 1 1 1 28 4 29 1 4 11 1 16 4 16 1 4 19 11 1 19 59 2 15 27 15 2 3 3 2 22 3 15 2 27 2 22 2 10 2 3 10 3 2 10 3 2 2 10 12 3 2 22 10 2 22 3 2 3 15 2 3 2 10 2 22 26 2 13 60 19 6 18 9 6 9 18 6 18 19 6 19 9 21 14 6 19 9 21 6 19 6 21 14 6 21 6 9 18 9 6 14 9 31 6 9 19 6 14 9 6 14 9 19 6 9 19 61 2 4 32 4 2 4 22 2 22 10 25 2 4 2 22 2 10 2 38 10 10 2 10 12 2 2 10 4 10 2 22 10 2 22 12 2 12 25 2 4 2 10 2 22 32 2 13 62 3 6 28 14 6 3 3 6 23 3 6 3 14 3 14 6 23 14 3 6 3 6 23 3 6 3 6 14 3 14 6 14 14 37 3 14 3 6 14 3 6 14 3 44 6 3 28 63 17 1 5 1 17 11 5 1 5 17 5 11 1 5 1 17 11 1 21 7 11 1 7 1 7 1 5 11 1 1 1 5 17 5 1 17 5 1 5 11 5 1 17 5 5 1 19 64 3 6 32 11 6 3 3 6 11 3 6 3 25 3 22 6 11 11 3 6 3 6 38 3 6 3 6 11 3 25 6 32 75 22 3 38 3 6 22 3 6 22 3 22 6 3 25 65 12 1 5 1 12 15 5 1 5 21 5 12 1 5 1 15 21 1 21 7 12 1 7 1 7 1 5 12 1 1 1 5 75 5 1 31 5 1 5 18 5 1 15 5 5 1 29 173 66 17 15 5 15 17 15 5 15 5 17 5 19 17 5 5 15 17 22 62 16 16 15 23 5 15 71 5 22 28 5 16 5 17 5 15 17 5 15 5 19 5 19 15 5 5 15 19 67 10 1 7 1 10 4 7 1 7 10 7 10 1 21 1 4 10 1 21 7 10 1 7 1 4 1 7 4 1 1 1 10 4 7 1 4 11 1 10 4 7 1 4 7 7 1 13 68 2 44 27 23 2 3 3 2 22 3 29 2 27 2 22 2 19 2 3 19 3 2 23 3 2 2 19 12 3 2 19 12 2 22 3 2 3 69 2 3 2 12 2 19 26 2 19 Table 12. Rows 94-140; Columns 54-71 69 17 1 5 1 17 4 5 1 5 17 5 11 1 5 1 4 11 1 38 7 11 1 7 1 4 1 5 4 1 1 1 5 4 5 1 4 5 1 5 4 5 1 4 5 5 1 25 70 19 9 18 9 19 9 18 9 18 19 15 19 9 15 18 9 19 9 30 18 19 9 23 18 9 30 15 9 18 9 19 76 9 35 15 9 19 15 18 9 15 19 9 19 26 9 19
© Copyright 2025 Paperzz