Hiroshima Math. J. 33 (2003), 433–443 Radial growth of C 2 functions satisfying Bloch type condition Dedicated to Professor Makoto Sakai on the occasion of his sixtieth birthday Toshihide Futamura and Yoshihiro Mizuta (Received May 27, 2003) Abstract. The aim of this paper is to give a simple proof of results by GonzálezKoskela concerning the radial growth of C 2 functions satisfying Bloch type condition. Our results also give generalizations of their results. 1. Introduction Denote by B the Bloch space of all holomorphic functions f on the unit disk U which satisfy k f kB ¼ j f ð0Þj þ supð1 jzj 2 Þj f 0 ðzÞj < y: zAU The radial growth of Bloch functions was extensively discussed by ClunieMacGregor [2], Korenblum [4], Makarov [5] and Pommerenke [7]. The law of the iterated logarithm of Makarov [5] states that if f A B, then j f ðrzÞj lim sup qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a Ck f kB 1 1 r!1 log log log 1r log 1r ð1Þ for almost every z A qU, where C is a universal constant. Pommerenke [7] proved that this inequality is true for C ¼ 1 and this inequality is false for C a 0:685. Recently, González and Koskela studied the radial growth of C 2 functions on the unit ball B n of R n which satisfy j‘uðxÞj 2 þ juðxÞDuðxÞj a ð1 jxjÞ for all x A B n , where c > 0 and g a 1. Theorem 1.2]). 2 c log 2 1jxj g ð2Þ They showed the following result ([3, 2000 Mathematics Subject Classification. Primary 31B25. Key words and phrases. radial growth, Bloch condition, law of the iterated logarithm, Hausdor¤ measures. 434 Toshihide Futamura and Yoshihiro Mizuta Theorem A. Let u be a C 2 function on B n satisfying (2). almost all z, jzj ¼ 1, Then, for juðrzÞj lim sup qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a c1 r!1 1 1g 1 log 1r log log 1r if g < 1; and lim sup r!1 if g ¼ 1. juðrzÞj a c2 1 log log 1r Here the constants c1 and c2 depend only on n; c; g. We denote by Bðx; rÞ and Sðx; rÞ the open ball and the sphere of center x and radius r, respectively. We set B n ¼ Bð0; 1Þ and S n1 ¼ Sð0; 1Þ. The Hausdor¤ measure with a measure function h is written as Hh . In case hðrÞ ¼ r a , we write Ha for Hh . Our first aim in the present note is to extend Theorem A by GonzálezKoskela. For this purpose, let j be a positive, continuous and non-decreasing function on the interval ½0; 1Þ satisfying jð1 r=2Þ a Ajð1 rÞ for every r A ð0; 1Þ ð3Þ with a constant A b 1 and ð1 ð1 tÞjðtÞdt ¼ y: ð4Þ 0 Set FðrÞ ¼ ðr ð1 tÞjðtÞdt: 0 Theorem 1. Let u be a C 2 function on B n with uð0Þ ¼ 0 such that Au ðxÞ ¼ j‘uðxÞj 2 þ juðxÞDuðxÞj a jðjxjÞ for all x A B n : ð5Þ Then for Hn1 -a.e. z A S n1 , pffiffiffiffi juðrzÞj lim sup qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a A: 1 r!1 FðrÞ log log 1r Remark 1. If we take jðrÞ ¼ cð1 rÞ2 flogð2=ð1 rÞÞgg for c > 0 and g a 1, then Theorem 1 gives Theorem A. On the other hand, we have the lower limit result as follows: Theorem 2. If u is as in Theorem 1, then Radial growth of C 2 functions 435 juðrzÞj lim inf pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a 2 r!1 FðrÞ log log FðrÞ for Hn1 -a.e. z A S n1 . By Theorems 1 and 2, we have the following corollary. Corollary 1. Let u be a C 2 function on B n satisfying 1 1 g 1 1 1 Au ðxÞ a cð1 jxjÞ2 logð1Þ . . . logðl1Þ logðlÞ ; 1 jxj 1 jxj 1 jxj where c > 0, g a 1 and logðkþ1Þ ðtÞ ¼ logðkÞ logð1Þ ðtÞ with logð1Þ ðtÞ ¼ logðe þ tÞ. Then for Hn1 -a.e. z A S n1 , juðrzÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi lim sup r a c1 1g r!1 1 1 logðlÞ 1r logð2Þ 1r and juðrzÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi a c2 lim inf r 1g r!1 1 1 logðlÞ 1r logðlþ2Þ 1r when g < 1; juðrzÞj lim sup qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a c3 1 1 r!1 logðlþ1Þ 1r logð2Þ 1r and juðrzÞj lim inf qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a c4 r!1 1 1 logðlþ3Þ 1r logðlþ1Þ 1r when g ¼ 1. 2. Here c1 ; c2 ; c3 and c4 are constants depending only on c; g and l. Exponential integral In this section, we present an exponential estimate for C 2 functions satisfying (5). For this we prepare the following lemma, which is a generalization of [3, Theorem 2.2]. Lemma 1. Let j be a positive continuous function on ½0; 1Þ, and set ðr FðrÞ ¼ ð1 tÞjðtÞdt: 0 436 Toshihide Futamura and Yoshihiro Mizuta Let u be a C 2 function in B n with uð0Þ ¼ 0 which satisfies condition (5). ð S juðrzÞj 2k dSðzÞ a sn 4 k k!½FðrÞ k n1 Then ð6Þ for all k A f0; 1; 2; . . .g and all r A ð0; 1Þ, where sn denotes the surface measure of S n1 . Proof. First we show that d dt for each v A C 2 ðB n Þ. d dt ð vðtzÞdSðzÞ ¼ t 1n S n1 ð DvðwÞdw ð7Þ Bð0; tÞ Using the divergence theorem, we have ð S n1 vðtzÞdSðzÞ ¼ ð S n1 z ‘vðtzÞdSðzÞ ð w ‘vðwÞdSðwÞ Sð0; tÞ t ð ¼ t 1n DvðwÞdw: ¼t 1n Bð0; tÞ Thus (7) holds. We prove this lemma by induction on k. Clearly, (6) holds for k ¼ 0. Suppose that (6) holds for k. Using (7) and the assumption on induction, we obtain d dt ð S n1 juðtzÞj 2ðkþ1Þ dSðzÞ ¼ 2ðk þ 1Þt 1n ð juðwÞj 2k ðuðwÞDuðwÞ þ ð2k þ 1Þj‘uðwÞj 2 Þdw Bð0; tÞ a 4ðk þ 1Þ 2 t 1n ð juðwÞj 2k Au ðwÞdw Bð0; tÞ 2 1n a 4ðk þ 1Þ t ðt r n1 ð jðrÞ S n1 0 a sn 4 kþ1 k!ðk þ 1Þ 2 t 1n ðt juðrzÞj dSðzÞ dr 2k r n1 jðrÞ½FðrÞ k dr: 0 Integrating both sides from 0 to r and applying Fubini’s theorem, we have Radial growth of C 2 functions ð S n1 juðrzÞj 2ðkþ1Þ dSðzÞ a sn 4 kþ1 k!ðk þ 1Þ 2 ðr t 1n ðt 0 ¼ sn 4 kþ1 k!ðk þ 1Þ 2 a sn 4 kþ1 ðk þ 1Þ! r n1 jðrÞ½FðrÞ k drdt 0 ð r ð r 0 ðr 437 t 1n dt r n1 jðrÞ½FðrÞ k dr r ðk þ 1Þð1 rÞjðrÞ½FðrÞ k dr 0 ¼ sn 4 kþ1 ðk þ 1Þ! ðr d ½FðrÞ kþ1 dr dr 0 ¼ sn 4 kþ1 ðk þ 1Þ!½FðrÞ kþ1 : Hence (6) also holds for k þ 1. The induction is completed. Lemma 2. Let u be a function in B n satisfying condition (6). c, 0 < c < 1=4, and for all r, 0 < r < 1, ! ð cjuðrzÞj 2 sn : exp dSðzÞ a n1 FðrÞ 1 4c S Then for all ð8Þ Proof. If k is a non-negative integer, then, by (6), we have !k ð 1 cjuðrzÞj 2 dSðzÞ a ð4cÞ k sn k! S n1 FðrÞ for c > 0. Hence it follows that ! !k ð y X cjuðrzÞj 2 1 cjuðrzÞj 2 exp dSðzÞ dSðzÞ ¼ FðrÞ FðrÞ S n1 S n1 k¼0 k! ð a sn y X ð4cÞ k : k¼0 The series on the right converges if 0 < c < 1=4 and thus our lemma is proved. 3. Proof of Theorem 1 Let j and F be as in the Introduction, and let u be as in Theorem 1. To prove Theorem 1, we need the following two lemmas. Lemma 3. For every 0 < r < 1, Fð1 r=2Þ a A Fð1 rÞ þ Fð1=2Þ: 4 438 Toshihide Futamura and Yoshihiro Mizuta Lemma 4. Let u be a C 2 function in B n such that j‘uðxÞj 2 a jðjxjÞ. Then for every x A B n nBð0; 1=2Þ, juð yÞ uðzÞj a A½FðjxjÞ 1=2 whenever y; z A Bðx; ð1 jxjÞ=2Þ. Proof. We see that juðyÞ uðzÞj a ð1 jxjÞ½jðð1 þ jxjÞ=2Þ 1=2 a A 1=2 ð1 jxjÞ½jðjxjÞ 1=2 for all y; z A Bðx; ð1 jxjÞ=2Þ. On the other hand, we have for 1=2 < t < 1, ðt ðt FðtÞ b ð1 sÞjðsÞds b jð2t 1Þ ð1 sÞds b A1 ð1 tÞ 2 jðtÞ: 2t1 2t1 Thus Lemma 4 follows. Proof of Theorem 1. From Lemma 2, we see that ! 1 d ð 2 cjuðxÞj 2 1 ð1 jxjÞ log exp dx < y 1 jxj FðjxjÞ Bn for all c, 0 < c < 1=4, and all d > 0. Then there exists a set E H S n1 such that Hn1 ðEÞ ¼ 0 and ! ð1 2 1 d cjuðrzÞj 2 1 ð1 rÞ log exp dr < y; 1r FðrÞ 0 for each z A S n1 nE, 0 < c < 1=4 and d > 0, which implies that ! ð ð1þrÞ=2 2 1 d cjuðtzÞj 2 1 lim ð1 tÞ log exp dt ¼ 0: r!1 r 1t FðtÞ Fix z A S n1 nE. For 0 < r < 1, define Ir ¼ ½r; ð1 þ rÞ=2Þ. obtain ! 1 1 d c inf t A Ir juðtzÞj 2 lim log exp ¼ 0; r!1 1r Fðð1 þ rÞ=2Þ ð9Þ From (9), we which implies that c inf t A Ir juðtzÞj 2 1 a ð1 þ dÞ log log 1 1r 4 AFðrÞ þ Fð1=2Þ ð10Þ for r near 1, by Lemma 3. Hence it follows from (10) and Lemma 4 that rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi juðrzÞj Að1 þ dÞ lim sup qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a : 4c 1 r!1 FðrÞ log log 1r Radial growth of C 2 functions 439 Here, letting c ! 1=4 and d ! 0, we obtain pffiffiffiffi juðrzÞj lim sup qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a A; 1 r!1 FðrÞ log log 1r which proves Theorem 1. 4. Proof of Theorem 2 In this section we complete the proof of Theorem 2. By Lemma 2, we see that ! ð cjuðxÞj 2 1 1d ð1 jxjÞjðjxjÞFðjxjÞ ðlog FðjxjÞÞ exp dx < y FðjxjÞ B n nBð0; r0 Þ for all c, 0 < c < 1=4, and d > 0, where r0 ¼ F1 ðeÞ. Consequently, ! ð1 cjuðtzÞj 2 1 1d lim ð1 tÞjðtÞFðtÞ ðlog FðtÞÞ exp dt ¼ 0 r!1 r FðtÞ for Hn1 -a.e. z A S n1 , 0 < c < 1=4 and d > 0. This implies that ! ð1 cgr ðzÞ 2 1 1d lim ð1 tÞjðtÞFðtÞ ðlog FðtÞÞ exp dt ¼ 0; r!1 r FðtÞ ð11Þ Since e dx b dx for x > 0, we have !! ð1 þ dÞ1 cgr ðzÞ 2 exp FðtÞ where gr ðzÞ ¼ inf rar<1 juðrzÞj. d ðlog FðtÞÞ1d dt 1 ¼ ð1 þ dÞð1 tÞjðtÞFðtÞ ðlog FðtÞÞ 2d ð1 þ dÞ1 cgr ðzÞ 2 exp FðtÞ þ ðlog FðtÞÞ1d ð1 tÞjðtÞFðtÞ1 ! ! ð1 þ dÞ1 cgr ðzÞ 2 ð1 þ dÞ1 cgr ðzÞ 2 exp FðtÞ FðtÞ 1 1 a ð1 þ d þ d Þð1 tÞjðtÞFðtÞ ðlog FðtÞÞ for r0 < t < 1. 1d cgr ðzÞ 2 exp FðtÞ From (11), we obtain limðlog FðrÞÞ r!1 1d ð1 þ dÞ1 cgr ðzÞ 2 exp FðrÞ ! ¼ 0; ! ! 440 Toshihide Futamura and Yoshihiro Mizuta which implies that ð1 þ dÞ1 cgr ðzÞ 2 a ð1 þ dÞ log log FðrÞ FðrÞ for r near 1. By letting c ! 1=4 and d ! 0, we have lim sup r!1 gr ðzÞ 2 a 4; FðrÞ log log FðrÞ which completes the proof of Theorem 2. Corollary 2. Let j and F be as in the Introduction. harmonic function on B n satisfying j‘uðxÞj 2 a jðjxjÞ Let u be a for all x A B n : Then juðrzÞj lim sup pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a 2 FðrÞ log log FðrÞ r!1 for Hn1 -a.e. z A S n1 . Proof. Consider the radial maximal function of u defined by for 0 < r < 1 and z A S n1 . Ru ðr; zÞ ¼ max juðtzÞj 0atar By the Hardy-Littlewood maximal theorem [1, Chapter 6] and Lemma 1, ð S n1 jRu ðr; zÞj 2k dSðzÞ a c1 ð S n1 juðrzÞj 2k dSðzÞ a c1 sn 4 k k!½FðrÞ k for all k and 0 < r < 1, where c1 is a constant depending only on n. As in the proof of Theorem 1, we have ! ð1 c2 jRu ðt; zÞj 2 1 1d lim ð1 tÞjðtÞFðtÞ ðlog FðtÞÞ exp dt ¼ 0 r!1 r FðtÞ for Hn1 -a.e. z A S n1 , all c2 , 0 < c2 < 1=4, and d > 0. proof of Theorem 2 that Hence we see as in the Ru ðr; zÞ lim sup pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a 2 FðrÞ log log FðrÞ r!1 holds for Hn1 -a.e. z A S n1 . Since Ru ðr; zÞ b juðrzÞj, we have Radial growth of C 2 functions 441 juðrzÞj lim sup pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a 2 FðrÞ log log FðrÞ r!1 for Hn1 -a.e. z A S n1 , which yields the required conclusion. Remark 2. Let u be a harmonic function on B n satisfying kuk ¼ sup ð1 jxjÞj‘uðxÞj < y: x A Bn Then Corollary 2 says that juðrzÞj lim sup qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a 2kuk 1 1 r!1 log 1r log log log 1r for Hn1 -a.e. z A S n1 . 5. Hausdor¤ measures and radial growth Let j and F be as in the Introduction. Take a positive non-decreasing function C on ½0; 1Þ satisfying FðrÞ log logð1=ð1 rÞÞ ½CðrÞ 2 !0 as r ! 1: For l > 0, consider the measure function hl ðtÞ ¼ t n1 ! ½Cð1 tÞ 2 exp 4 A l : Fð1 tÞ 3 4 2 We finally establish the following result. Theorem 3. If l > 0 and u is as in Theorem 1, then lim sup r!1 for Hhl -a.e. z A S n1 juðrzÞj al CðrÞ . Proof. In view of Lemma 2, we see that ! 2 ð 2 c1 juðxÞj 2 1 ð1 jxjÞ log exp dx < y 1 jxj FðjxjÞ Bn for all c1 , 0 < c1 < 1=4. By the covering theorem, there exists a set F H S n1 such that Hhl ðF Þ ¼ 0 and 442 Toshihide Futamura and Yoshihiro Mizuta 1 lim½hl ð5tÞ t!0 ð ð1 jxjÞ log 1 Bðz; tÞVB n 2 1 jxj 2 ! c1 juðxÞj 2 exp dx ¼ 0 FðjxjÞ ð12Þ for z A S n1 nF and 0 < c1 < 1=4 (cf. [6, Lemma 5.8.2]). Fix z A S n1 nF . For 0 < t < 1, write Dt ¼ Bðð1 tÞz þ 41 tz; 41 tÞ. Since Dt H Bðz; tÞ V B n , we have ! 2 ð 2 c1 juðxÞj 2 1 1 dx ½hl ð5tÞ ð1 jxjÞ log exp 1 jxj FðjxjÞ Bðz; tÞVB n ! 2 ð 2 c1 juðxÞj 2 1 1 b ½hl ð5tÞ ð1 jxjÞ log exp dx 1 jxj FðjxjÞ Dt ! 4 2 c1 inf x A Dt juðxÞj 2 1 1 log exp b ½hl ð5tÞ jDt jt t Fð1 t=2Þ ! 2 2 ½Cð1 5tÞ c inf juðxÞj 1 x A D 2 t 2 log logð1=tÞ þ b c2 exp 4 3 A4 l ; Fð1 5tÞ Fð1 t=2Þ where c2 is a positive constant. From (12), we obtain c1 inf x A Dt juðxÞj 2 ½Cð1 5tÞ 2 a 4 3 A4 l 2 þ 2 log logð1=tÞ Fð1 t=2Þ Fð1 5tÞ for su‰ciently small t > 0. By Lemma 3, we have 2 c1 inf x A Dt juðxÞj 2 1 2 Cð1 tÞ a A l þ 2 log logð1=tÞ 41 AFð1 tÞ þ Fð1=2Þ Fð1 tÞ c3 where c3 ¼ Fð1=2ÞððA=4Þ 3 þ ðA=4Þ 2 þ ðA=4ÞÞ, which implies that lim sup inf x A Dt juðxÞj 2 t!0 Cð1 tÞ 2 a 1 2 l : 4c1 Hence it follows from Lemma 4 that lim sup t!0 juðð1 tÞzÞj l a pffiffiffiffiffiffiffi : Cð1 tÞ 4c1 Letting c1 ! 1=4, we obtain lim sup t!0 which proves Theorem 3. juðð1 tÞzÞj a l; Cð1 tÞ Radial growth of C 2 functions 443 Remark 3. If we take jðrÞ ¼ ð1 rÞ2 flogð2=ð1 rÞÞgg , g < 1, then the conclusion of Theorem 3 says that lim sup r!1 for Hh -a.e. z A S n1 juðrzÞj al flogð1=ð1 rÞÞg a , where 2a > 1 g and hðtÞ ¼ t n1 exp½4 3 A4 l 2 flogð1=tÞg 2aþg1 : Thus Theorem 3 can not cover [3, Theorem 1.3] by González-Koskela. References [ 1 ] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, 1992. [ 2 ] J. G. Clunie and T. H. MacGregor, Radial growth of the derivative of univalent functions, Commentari Math. Helv. 59 (1984), 362–375. [ 3 ] M. J. González and P. Koskela, Radial growth of solutions to the Poisson Equation, Complex Variables, 46 (2001), 59–72. [ 4 ] B. Korenblum, BMO estimates and radial growth of Bloch functions, Bull. Amer. Math. Soc. 12 (1985), 99–102. [ 5 ] N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. 51 (1985), 369–384. [ 6 ] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996. [ 7 ] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, 1992. Toshihide Futamura Department of Mathematics Graduate School of Science Hiroshima University Higashi-Hiroshima 739-8526, Japan E-mail address: [email protected] Yoshihiro Mizuta The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 739-8521, Japan E-mail address: [email protected]
© Copyright 2026 Paperzz