WRC RESEARCH REPORT 156 DEVELOPMENT O F METHODS FOR T H E D E T E C T I O N O F TRACE AMOUNTS O F S E L E C T E D C A R C I N O G E N I C AND M U T A G E N I C A M I N E S I N WATER Jay C. Means I n s t i t u t e f o r Environmental Studies, U n i v e r s i t y of I l l i n o i s a t Urbana-Champaign, and Chesapeake B i o l o g i c a l L a b o r a t o r y and Department of chemistry, Uni v e r s i ty o f Mary1and Edward G. P e r k i n s Department o f Food Science, U n i v e r s i t y o f I 11 i n o i s a t Urbana-Champaign David D. E l l i s I n s t i t u t e f o r Envi ronrr~entalStudies, U n i v e r s i t y of I l l i n o i s a t Urbana-Champaign Muhammad M. Chaudry Department o f Food Science, U n i v e r s i t y of Illi n o i s a t Urbana-Champai gn FINAL REPORT P r o j e c t B-107-ILL UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory 208 N o r t h Romine S t r e e t Urbana, I 1 1 in o i s 61801 February 1981 The work upon which t h i s p u b l i c a t i o n i s based was supported i n p a r t by funds p r o v i d e d by t h e U.S. Department o f t h e I n t e r i o r as a u t h o r i z e d under t h e Water Resources Research and Development A c t o f 1978, P.L. 88-379, Agreement No. 14-34-0001-8081. Contents o f t h i s p u b l i c a t i o n do n o t n e c e s s a r i l y r e f l e c t t h e v i e w s and p o l i c i e s o f t h e O f f i c e o f Water Research and T e c h n o l o g y , U.S. D e p a r t m e n t o f t h e I n t e r i o r , n o r does m e n t i o n o f t r a d e names o r c m e r c i a l p r o d u c t s c o n s t i t u t e t h e i r endorsement o r r e c o m n e n d a t i o n f o r use by t h e U . S . Government. ABSTRACT A g r e a t deal of concern e x i s t s o v e r t h e presence o f p o t e n t i a l l y c a r c i n o g e n i c and/or mutagenic substances i n d r i n k i n g water suppl i e s . The general a n a l y t i c a l scherr~es c u r r e n t l y a p p l i e d t o water a r e l e s s s u i t e d than s p e c i f i c methods f o r t h e d e t e c t i o n o f c e r t a i n classes o f o r g a n i c contaminants such as aromatic amines because o f t h e i r r e a c t i v i t y . We have concentrated o u r e f f o r t s a t developing a n a l y t i c a l schemes by which we a r e a b l e t o r e l i a b l y d e t e c t , separate, and q u a n t i t a t e t r a c e l e v e l s of a number o f aromatic and h e t e r o c y c l i c amines. chromatographi c methods have been developed. l i m i t a t i o n s o f t h e methods a r e discussed. Both l i q u i d and gas The r e 1 a t i ve s t r e n g t h s and F i e l d e v a l u a t i o n s of t h e f i n a l methods were c a r r i e d o u t and r e p o r t e d . Means, Jay C. ; Edward G. Perkins; David D. E l l i s ; and Muhammad M. Chaudry DEVELOPMENT OF METHODS FOR THE DETECTION OF TRACE AMOUNTS OF SELECTED CARCINOGENIC AND MUTAGENIC AMIMES I N WATER F i n a l r e p o r t t o t h e Water Resources Center, U n i v e r s i t y o f I 1 1 i n o i s a t Urbana-Champaign, February 1981. KEYWORDS: aromatic aminesl c a r c i nogens1 e s t u a r i es/ gas chromatography/ 1 i q u i d chromatography/ mutagens/ water p o l 1 u t i o n / w a t e r qua1 it y ACKNOWLEDGMENTS The a u t h o r s w i s h t o acknowledge t h e s u p p o r t and f a c i l i t i e s p r o v i d e d by t h e Water Resources Center, t h e I n s t i t u t e f o r Environmental S t u d i e s , t h e Department o f Food Science, and t h e A g r i c u l t u r a l Experiment S t a t i o n s a t t h e U n i v e r s i t y o f I l l i n o i s a t Urbana-Champaign. The C e n t e r f o r E n v i r o n - mental and E s t u a r i n e S t u d i e s a t t h e U n i v e r s i t y o f Maryland a l s o p r o v i d e d s u p p o r t and f a c i l i t i e s ; t h i s r e p o r t i s f i l e d t h e r e as C o n t r i b u t i o n No. 1028. The a u t h o r s a l s o w i s h t o acknowledge t h e c o n t r i b u t i o n s o f Ben B. Ewing, d i r e c t o r o f t h e I n s t i t u t e f o r Environmental S t u d i e s , who h e l p e d i n i t i a t e t h e s t u d y and was a p r i n c i p a l i n v e s t i g a t o r f o r t h e l a t t e r phase o f the project. S p e c i a l r e c o g n i t i o n i s g i v e n t o Anne Weeks, Water Resources Center, who e d i t e d t h e r e p o r t and p r e p a r e d i t f o r p u b l i c a t i o n . CONTENTS Page ..... Acknowl edglvents . Figures . . . . . Tables . . . . . . Introduction . . . Abstract . . . . . . . . . . . . . . . . . . . . . . . . . ................. . . . . . . . . . . . . . . . . . ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Development o f L i q u i d Chromatographic Methods . . . . . . . . . . . B. Experimental M a t e r i a l s . . . . . . . . . . C . E x p e r i m e n t a l Procedures . . . . . . . . . D. Sample E x t r a c t i o n / C o n c e n t r a t i on S t u d i e s . E. F i e l d E v a l ~ ~ a t i o n o f M e t h o d s. . . . . . . F. R e s u l t s . . . . . . . . . . . . . . . . . V I I . Development o f Gas Chromatographic Methods . . A . Review o f L i t e r a t u r e . . . . . . . . . . . B . E x p e r i m e n t a l M a t e r i a1 s . . . . . . . . . . C . E x p e r i m e n t a l Procedures . . . . . . . . . D. Sample E x t r a c t i o n / C o n c e n t r a t i o n S t u d i e s . E. F i e l d Eva1 u a t i o n o f Methods . . . . . . . F. R e s u l t s . . . . . . . . . . . . . . . . . V I I I . Conclusions . . . . . . . . . . . . . . . . . I X. Literature Cited . . . . . . . . . . . . . . . . . . . . . . . A. Review o f L i t e r a t u r e iv vii ix 1 2 4 4 5 6 6 25 25 26 26 28 28 29 47 48 FIGURES Page 1. 2. S e p a r a t i o n o f 1-naphthylamine, 2 , 4 - d i c h l o r o a n i l i n e , N - m e t h y l a n i l i n e on a C o r a s i l I / C d column . . . . . . . . . . . . . . and S e p a r a t i o n o f a t r a z i n e , Simazine, and Bladex on a ~ B o n d a p a kC18 column . . . . . . . . . . . . . . . . . . . . . . . 3. S e p a r a t i o n o f p - c h l o r o a n i 1 i n e , 2 , 4 - d i c h l o r o a n i 1 i n e , and 2,4,6- t r i c h l o r o a n i 1 i n e on a ~ B o n d a p a kC18 column . . . . 4. S e p a r a t i o n of s e l e c t e d amines on a ~ B o n d a p a kC18 column 5. L i n e a r response o f u l t r a v i 01 e t absorbance d e t e c t o r t o a t r a z i n e and L i n u r o n . . . . . . . . . . . . . . . . . 6. Sampling s i t e s on t h e Chesapeake Bay and i t s 7. S e p a r a t i o n of s t a n d a r d amine m i x t u r e on 10% Apiezon L + 2% KOH on 80% Chromasorb W AW . . . . . . . . . . . . . 8. S e p a r a t i o n o f s t a n d a r d amine m i x t u r e on 3% SP-2340 on 100/120 S u p e l c o p o r t . . . . . . . . . . . . . . . . . 9. S e p a r a t i o n o f s t a n d a r d amine m i x t u r e on 3% SP-2250 DB on 1001120 Supel c o p o r t . . . . . . . . . . . . . . . . . . S e p a r a t i o n o f ' s t a n d a r d amine m i x t u r e on Tenax GC 60180 11. S e p a r a t i o n o f s t a n d a r d amine m i x t u r e on 3% OV 17 on 801100 SupeScoport . . . . . . . . . . . . . . . . . 13. 14. 15. 16. .10 . . . . . . 12 . . . . . . 13 . . . . . . . 16 t r i b u t a r i e s . . . . . . 22 10. 12. 8 . . . . . . 30 . . . . . . . 31 . . . . . . 32 rnesh . . . . 33 . . . . . . . P l o t o f area responses of 2 , 7 - d i m e t h y l q u i n o l i n e , a n i l i n e , and a t r a z i ne versus amounts i n j e c t e d (ng ) as c a l c u l a t e d f r o m a n a l y s i s by flame i o n i z a t i o n d e t e c t i o n . . . . . . . . . . . . .34 . . . 37 P l o t o f area responses o f o - t o 1 u i d i n e , b e n z i d i n e , o - t o 1 i d i n e , and 2-naphthyl amine versus amounts i n j e c t e d ( n g ) as c a l c u l a t e d from a n a l y s i s by flame i o n i z a t i o n d e t e c t i o n . . . . . . . . . 38 P l o t o f area responses of l e p i d i n e , o - t o l u i d i n e , and a n i l i n e versus amounts i n j e c t e d ( n g ) as c a l c u l a t e d from a n a l y s i s by n i trogen s p e c i f i c detectioti . . . . . . . . . . . . . . . . . . . . 43 P l o t o f area responses o f 2-naphthylamine versus amounts i n j e c t e d (ng) as c a l c u l a t e d from a n a l y s i s by n i t r o g e n specific detection . . . . . . . . . . . . . . . . . . . . . . . . . 44 P l o t o f area responses o f benzidine, a t r a z i n e , and o - t o l i d i n e versus amounts i n j e c t e d ( n g ) as c a l c u l a t e d from a n a l y s i s by n i t r o g e n speci f i c d e t e c t i o n . . . . . . . . . . . . . . . . . . . . 45 TABLES Page Retention Indices of Bladex, Atrazine, and Simazine on a ~BondapakC I 8 Column . . . . . . . . . . . . . . . . . . Retention Indices of Selected Amines on a VBondapak C I 8 Column . . . . . . . . . . . . . . . . . . . . . .... .ll ....... Detection Limits of Several Aromatic and Heterocyclic Amines Using Ultraviolet Absorbance (254 nm) . . . . . 14 . . . . . . 17 Detection Limits of Several Aromatic and Heterocyclic Amines Using Fluorescence . . . . . . . . . . . . . . Recoveries of Selected Recoveries of Selected . . . . . . 17 Amines,by Solvent Extraction . . . . . . . 19 Amines on XAD-4 Resin . . . . . . . . . . . 21 Concentrations ( p p b ) of Amines Detected in Fourteen Field Samples . . . . . . . . . . . . . . . . . . . . . . . . . Recoveries of Several Amines from Estuarine Water . . . .23 . . . . . . . . 24 Detector Response for Selected Standard Amines Using Flarne IonizationDetector . . . . . . . . . . . . . . . . . . . Percent Recoveries of Standard Carcinogenic Amines from Distilled Water Using Flame Ionization Detector . . . . Detector Response for Sel ected Standard Arni r~esUsi ng Nitrogen Specific Detector . . . . . . . . . . . . . Percent Recoveries of Standard Carcinogenic Ami nes from Water Using Nitrogen Specific Detector . . . . . . .36 . . . . . 40 . . . . . . . 41 . . . . . . . . 46 INTRODUCTION Aromatic amines have widespread use i n b o t h i n d u s t r y and a g r i c u l t u r e and may occur as contaminants i n groundwater and s u r f a c e water as w e l l as i n biological tissues. These compounds e x e r t p h y s i o l o g i c a l e f f e c t s i n c l u d i n g t o x i c i t y , m u t a g e n i c i t y , and c a r c i n o g e n i c i t y . Several aromatic amines a r e l i s t e d by t h e Occupational S a f e t y and H e a l t h A d m i n i s t r a t i o n as carcinogens ( ~ e d .Reg. 1973; Fed. Reg. 1974). Although aromatic amines p r e s e n t a p o t e n t i a l environmental problem, r e l a t i v e l y 1ittl e d a t a assessing t h e presence o f t h e compourlds i n t h e environment have been r e p o r t e d . Most o f t h e a v a i l a b l e l i t e r a t u r e deals w i t h t h e s e p a r a t i o n and d e t e c t i o n of p h y s i o l o g i c a l amines. The concern f o r t h e presence o f amines i n n a t u r a l waters seems t o be worldwide. The presence o f a r o m a t i c arnir~es has been c o n f i r r r ~ e di n f i s h taken from t h e B u f f a l o , Delaware, and o t h e r r i v e r s , i n t h e v i c i n i t y o f t e x t i l e and d y e s t u f f manufacturers. Diachenko (1979) d e t e c t e d i n f i s h t h e presence o f 1-naphthylamine, N-ethyl-N-phenylbenzylamine, and N-ethyl-N- (m-t o l y l )-benzylamine by u s i n g gas chromatography, a f t e r d i g e s t i n g t h e amines w i t h NaOH, p a r t i t i o n i n g w i t h benzene, and c l e a n i n g up w i t h g e l permeation chromatography. A s t u d y conducted i n t h e USSR (Vlasova 1974) has r e p o r t e d t h e screeni n g o f some l a k e s f o r amines and o t h e r o r g a n i c corr~pounds. Many such compounds have been found t o e x h i b i t t o x i c , mutagenic, and c a r c i n o g e n i c e f f e c t s i n experimental animals. Weisburger e t a l . (1978) t e s t e d 21 environmental aromatic ami nes o r d e r i v a t i v e s f o r long-term t o x i c i ty o r c a r c i n o g e n i c i t y i n male r a t s and male and female mice. They found t h a t o - t o l u i d i n e , toluene- diamine, and t r i r n e t h y l a n i l i n e s l e d t o tumors i n a1 1 t h r e e o f t h e animal model s. Other ami nes s t u d i e d had v a r y i n g degrees o f a c t i v i ty i n one animal model o r t h e o t h e r . Most r e c e n t l y , aromatic amines have been i d e n t i f i e d by gas chromatography/mass spectrometry (GC/MS) i n dyemanufacturing waste leachates. The amines were l i n k e d w i t h f i s h tumors (Nelson and H i t e s 1980). Aromatic amines have been d e t e c t e d o r determined by u s i n g v a r i o u s a n a l y t i c a l techniques: t i t r a t i o n w i t h NaN02 ( Z e l e n i n a and Krasnov 1974), m i c r o d i f f u s i o n by bromocresol p u r p l e r e a c t i o n (~emenove t a1 . 1974), . and measurement o f t h e m e l t i n g p o i n t s of t h e i r r e a c t i o n products w i t h Nc h l o r o a c e t a n i 1 i d e ( L e g r a d i 1975), Legradi (1975) i d e n t i f i e d t h e products by n u c l e a r magneti c resonance spectroscopy. More r e c e n t l y gas chromatography and l i q u i d chromatography have been a p p l i e d t o t h e a n a l y s i s of aromatic amines. A r e v i e w and d i s c u s s i o n of a n a l y t i c a l techniques f o r t h e d e t e c t i o n o f a r o m a t i c amines has been presented by Y l l o (1977). DEVELOPMENT OF L I Q U I D CHROMATOGRAPHIC METHODS REVIEW OF LITERATURE Many of t h e high-performance l i q u i d chromatographic (HPLC) s e p a r a t i o n s of aromatic ami nes which have been r e p o r t e d were accompl ished using s i l i c a g e l m o d i f i e d w i t h metal i o n s . Chow and Grushka (1977, 1978) o b t a i n e d b e t t e r s e p a r a t i o n s o f s e v e r a l s e t s o f a r o m a t i c amine isomers u s i n g copper(1 I ) - a 1 kylami ne-bonded s i l i c a g e l , copper(1 I ) - a 1 k y l d i t h i o carbamate-bonded s i 1ica g e l , and copper(1 I)-a1 k y l d i ketone-bonded s i 1 ica g e l than u s i n g s i l i c a g e l . Increased r e s o l u t i o n o f t h e t h r e e c h l o r o a n i l i n e isomers was achieved by Vogt e t a l . (1977) u s i n g s i l i c a g e l h y d r o t h e r m a l l y t r e a t e d w i t h CdC12 as compared w i t h s i l i c a g e l . S i r n i l a r r e s u l t s were a l s o r e p o r t e d f o r 1-naphthylamine and 2-naphthylamine (Vogt e t a l . 1977). Kunzru and F r e i (1974) r e p o r t base1 i n e s e p a r a t i o n o f t h e t h r e e c h l o r o a n i l i n e isomers and near-baseline s e p a r a t i o n o f t h e t h r e e t o l u i d i n e isomers u s i n g cadmium-impregnated s i l i c a g e l which had been p r e t r e a t e d w i t h NaOH. Silver has a l s o been used t o m o d i f y s i l i c a g e l t o enhance s e p a r a t i o n s o f a r o m a t i c amines. e t a1 . By hydrothermal l y t r e a t i n g s i l i c a g e l w i t h AgN03, Vogt (1978) have achieved near-base1 i n e r e s o l u t i o n o f t h e t h r e e isomers o f chloroaniline. A i g n e r e t a l . (1976) and V i v i l e c c h i a e t a l . (1972) have r e p o r t e d s e p a r a t i o n s o f aza-heterocycl i c s u s i n g s i 1ver-modi f i e d s i 1 i c a g e l . S i l i c a g e l m o d i f i e d w i t h metal i o n s has a l s o been used i n t h e s e p a r a t i o n s o f v a r i o u s u n s a t u r a t e d acetates, aldehydes, and hydrocarbons (Heath e t a l . 1975; Mike: e t a1 . 1973). Various o t h e r methods o f s e p a r a t i n g aromatic amines have been reported. Englehardt e t a1 . (1974) separated N,N-diethylani 1 i n e , N ,&dimethyl a n i l i n e , and N - m e t h y l a n i l i n e u s i n g s i l i c a g e l coated w i t h H20 (0.6g H20/ g s i l i c a gel). Gel permeation chromatography has been used by P r o t i v o v i and p o s p j S i 1 (1974) t o separate amine a n t i o x i d a n t s and antiozonants, i n c l u d i n g - a n i l i n e , 2-naphthylamine, b e n z i d i ne, and o - t o 1 i d i n e . Reverse-phase separa- t i o n s u s i n g m i x t u r e s o f CH3CN and 0.15M phosphate b u f f e r a t pH 2.1 were r e p o r t e d by Lores e t a l . (1978). A n i l i n e , 2-amino-5-chlorophenol, p - c h l o r o a n i l i n e , p-brornoani 1 i n e , m - c h l o r o a n i l ine, o - c h l o r o a n i l i n e , and 3 , 4 - d i c h l o r o a n i l i n e were separated u s i n g an 8-min g r a d i e n t from 80% 0.15M phosphate b u f f e r / 2 0 % CH3CN t o 40% 0.15M phosphate b u f f e r / 6 0 % CH3CN. A v a r i e t y o f HPLC c o n d i t i o n s w i t h c a p a c i t y f a c t o r s i s g i v e n f o r approximately 50 aromatic amines by Young and McNair (1976). The use o f t h r e e common methods o f d e t e c t i o n - u l t r a v i o l e t absorbance, fluorescence, reported. and e l e c t r o c k ~ e m i c a l p o t e n t i a l -wi t h aromatic amines' has been C l a r k e t a1 . (1977) and C l a r k and Wells (1978) have r e p o r t e d enhancement o f t h e UV absorbance o f amines by f o r m i n g t h e corresponding 4-methoxybenzamides o r 4-ni trobenzamides. Sei l e r (1977) has w r i t t e n a r e v i e w o f t h e chrorr~atography o f b i o g e n i c amines which i n c l u d e s a good s e c t i o n on t h e use o f f l u o r e s c e n t d e r i v a t i v e s o f amines. Included i n t h i s r e v i e w a r e t h e f o l l o w i n g agents used t o f o r m f l u o r e s c e n t d e r i v a t i v e s o f amines: 4-chloro-7-nitrobenzo-[cl-1,2,5-ozydiazole c h l o r i d e s , i s o t h i o c y a n a t e s , f l uorescamine, p y r i d o x a l phosphate, U-formyl -0-hydroxyacetophenone, , sulphonyl pyridoxal-5- and benzo-y-pyrene. Samejima (1974) and Samejima e t a l . (1976) r e p o r t t h e s y n t h e s i s and s e p a r a t i o n o f f l uorescamine d e r i v a t i v e s o f diamines and polyamines. o-Phthalaldehyde was found t o form more f l u o r e s c e n t d e r i v a t i v e s o f p r i m a r y amines than e i t h e r n i n h y d r i n o r f l uorescamine by Benson and Hare (1975). The most s e n s i t i v e method o f d e t e c t i o n o f aromatic amines i s electrochemical detection. Using e l e c t r o c h e m i c a l d e t e c t i o n , subnanogram and picorrlole q u a n t i t i e s o f aromatic amines have been d e t e c t e d (Lores e t a l . 1978; M e f f o r d e t a1 . 1977). Using s o l v e n t e x t r a c t i o n o f aqueous s o l u t i o n s , d e t e c t i o n 1 i m i t s can be lowered. R i g g i n and Howard (1979) have compared t h e d e t e c t i o n 1 i m i t s o f benzidine, 3 , 3 ' - d i c h l o r o b e n z i d i n e , and 1,2-diphenyl- h y d r a z i n e u s i n g d i r e c t i n j e c t i o n , s o l v e n t e x t r a c t i o n , and r e s i n a d s o r p t i o n . Less t h a n 1 ~ g / lcould be d e t e c t e d by d i r e c t i n j e c t i o n . These 1 i m i t s were improved t o 50 n g / l by s o l v e n t e x t r a c t i o n and 100 n g / l by r e s i n a d s o r p t i o n . EXPERIMENTAL MATERIALS Equi pment 1. Dual Waters 6000A S o l v e n t D e l i v e r y System w i t h Model 660 Gradi e n t Programmer 2. I S C O Model UA-5 F i x e d Wave1 ength U l t r a v i o l e t D e t e c t o r 3. S c h o e f f e l Vlodel 970 V a r i a b l e Wavelength Fluorescence D e t e c t o r 4. Waters Model 440 F i x e d Wavelength U l t r a v i o l e t D e t e c t o r 5. I S C O Model 1440 I s o c r a t i c L i q u i d Chromatograph Reagents and Suppl i e s 1. Amine standards were prepared f r o m reagent grade (99+% pure) m a t e r i a l s o b t a i n e d from A l d r i c h Chemical Company. 2. A1 1 s o l v e n t s used were of d i s t i l l e d - i n - g l a s s qua1 it y ( B u r d i c k and A1 1 o t h e r chemicals Jackson L a b o r a t o r i e s , I n c . , Muskegon, MI). were Baker analyzed r e a g e n t grade. 3. The f o l l o w i n g chromatographic columns were used i n these s t u d i e s : a. b. c. d. e. f. g. 4. Waters Waters Waters Waters Waters Dupont Waters ~Bondapak Cl ~Bondapak CN ~BondapakPhenyl Corasi 1 I impregnated w i t h cadmi um Poragel PS ODs Porasil A A m b e r l i t e XAD-4 and XAD-8 r e s i n s were purchased from Rohm and Haas. EXPERIMENTAL PROCEDURES High-performance 1 i q u i d chromatographic (HPLC) analyses were r u n on an I S C O model 1440 l i q u i d chromatograph and a Waters Associates g r a d i e n t e l u t i o n pumping system i n c l u d i n g two model 6000A chromatography pumps and a model 660 solvent programer. The amines were d e t e c t e d u s i n g b o t h a f i x e d wavelength I S C O model UA-5 u l t r a v i o l e t - v i s i b l e d e t e c t o r and a S c h o e f f e l 970 v a r i a b l e wavelength f l u o r e s c e n c e d e t e c t o r . Separations were attempted u s i n g each o f t h e f o l l o w i n g columns: Poragel PS (Waters A s s o c i a t e s ) , a v i n y l p y r i d i n e , s t y r e n e , v i n y l benzene t e r p o l y m e r i c a d s o r p t i o n m a t e r i a l ; ODs ( ~ u p o n t ,) a reverse-phase p a r t i t i o n m a t e r i a l ; Corasi 1 I (Waters A s s o c i a t e s ) , a p e l 1 i c u l a r s i l i c a a d s o r p t i o n m a t e r i a l ; Corasi 1 I impregnated w i t h c a d m i u n . ~ ( I I;) Porasi 1 A (Waters A s s o c i a t e s ) , a porous s i 1 i c a a d s o r p t i o n m a t e r i a l , impregnated w i t h cadmium; ~BondapakC 1 8 (Waters A s s o c i a t e s ) , a reverse-phase p a r t i t i o n m a t e r i a l ; and ~ B o n d a p a kCN (Waters A s s o c i a t e s ) , a reverse-phase c y a n o - d e r i v a t i z e d a d s o r p t i o n l p a r t i ti on m a t e r i a l . Normal -Phase Separations ( A d s o r p t i o n ) Standard amines were d i s s o l v e d s i n g l y and i n m i x t u r e s i n methanol and d i 1 u t e d t o known c o n c e n t r a t i o n s i n t h e ppm (pg/ml) range. Twentym i c r o l i t e r a l i q u o t s o f these s o l h t i o n s were i n j e c t e d a t a t i m e onto t h e columns which were b e i n g e v a l u a t e d and e l u t e d w i t h t h e a p p r o p r i a t e s o l v e n t system. The areas under t h e peaks observed were measured by an e l e c t r o r ~ i c i n t e g r a t o r o r by p l a n i m e t r y . some cases. prepared. Peak h e i g h t measurements were a l s o used i n R e t e n t i o n i n d i c e s ( k ' ) and 1 i n e a r response curves were Flow r a t e s o f 0.5 t o 2.0 ml p e r rni nute were used. Reverse-Phase Separation ( A b s o r p t i o n ) The same s e r i e s o f standard amines and m i x t u r e s of amines were used t o e v a l u a t e t h e u t i l i t y o f f o u r reverse-phase columns. T w e n t y - m i c r o l i t e r s eluted using samples o f each s o l u t i o n were i n j e c t e d o n t o t h e c o l u ~ i i r ~and s o l v e n t g r a d i e n t s o f 0-100% methanol i n water o r 0-100% a c e t o n i t r i l e i n water. Flow r a t e s o f 0.5 t o 2.0 m l p e r minute were used. Retention i n d i c e s ( k ' ) values and l i n e a r response curves were prepared as above. SAMPLE EXTRACTION/CONCENTRATION STUDIES One-1 i t e r sarnples o f pure w a t e r o r n a t u r a l water were s p i k e d w i t h standard amines a t t h e 1-100 ppb l e v e l . Samples were prepared i n t r i p l i c a t e and t r e a t e d i n one o f two ways. One s e t o f samples was a d j u s t e d t o pH 12 w i t h 50% NaOH and e x t r a c t e d w i t h methylene c h l o r i d e . Three e x t r a c t i o n s were performed u s i n g a t o t a l o f 200 m l (100 + 50 + 50) of s o l v e n t . The combined e x t r a c t s were d r i e d over anhydrous sodium s u l f a t e and evaporated i n a Kuderna-Danish evaporator t o a f i n a l known v o l ume o f one m i 1 1i1it e r . A second s e t o f samples was concentrated u s i n g XAD-4 o r XAD-8 r e s i n . The l i t e r o f water, a d j u s t e d t o pH 10, passed through a 209 bed o f pree x t r a c t e d XAD-4 r e s i n a t a r a t e o f 3-5 m l p e r minute. The r e s i n was precleaned by soaking i n 5% ammonium carbonate and s e q u e n t i a l r e f l u x e x t r a c t i o n w i t h d i s t i 1 l e d water, acetone, methanol, methyl ene c h l o r i d e , methanol , and water. The bed was washed w i t h 50 m l of d e i o n i z e d water t o remove excess base, and then t h e r e s i n was e x t r a c t e d w i t h 100 ml 10% methanol i n methylene c h l o r i d e . The s o l v e n t was d r i e d o v e r anhydrous sodium s u l f a t e and evaporated i n a Kuderna-Danish e v a p o r a t o r t o a known volume o f one m i l l i l i t e r . FIELD EVALUATION OF METHODS A s e r i e s of f o u r t e e n f i e l d samples was c o l l e c t e d i n f r e s h and e s t u a r i n e r e g i o n s , c o n c e n t r a t e d u s i n g t h e XAD-4 r e s i n , and analyzed u s i n g reverse-phase g r a d i e n t s e p a r a t i o n on a ~BondapakC1, column. Q u a n t i t a t i o n was achieved u s i n g u l t r a v i o l e t absorbance a t 254 nm and peak area i n t e g r a t i o n w i t h an i n t e r n a l s t a n d a r d ( d i p h e n y l amine). Two of t h e samples were analyzed i n d u p l i c a t e , and two were analyzed w i t h a known s p i k e o f 10 ppb o f s e v e r a l amines. The c o n c e n t r a t i o n s of i d e n t i f i e d amines as w e l l as r e c o v e r i e s o f t h e s p i k e d compounds were c a l c u l a t e d . RESULTS E v a l u a t i o n o f Normal-Phase Column Separations The cadmium-impregnated C o r a s i l I column was prepared u s i n g a m o d i f i c a t i o n of t h e procedure r e p o r t e d by Kunzru and F r e i (1974). n i g h t a t %120°c. C o r a s i l I was baked over- A f t e r cool i n g i n a vacuum d e s i c c a t o r , t h e C o r a s i l I was s t i r r e d w i t h a 15% s o l u t i o n o f NaOH i n CH30H f o r one hour. T h i s suspension was vacuum f i l t e r e d and washed t h r e e times w i t h CH30H. The C o r a s i l I was then t h e n s t i r r e d w i t h a 50% s o l u t i o n o f Cd12 i n CH30H f o r 90 minutes. vacuum f i l t e r e d and d r i e d a t %120°c. T h i s s l u r r y was The cadmium-impregnated C o r a s i l I was packed i n a s t a i n l e s s s t e e l colhmn 57.6 cm i n l e n g t h by 2.5 m1.n I D u s i n g t h e " t a p - f i l l " method (Snyder and K i r k l a n d 1976, p. 189). P r i o r t o packing, t h e empty column was cleaned by t h e method d e s c r i b e d by Karger e t a1 . (1970). The cadmium c o n t e n t of t h e C o r a s i l I was analyzed u s i n g a method s i m i l a r t o t h a t d e s c r i b e d by Kunzru and F r e i (1974). A known amount (%0.2 g ) o f t h e cadmium-impregnated C o r a s i l I was s t i r r e d w i t h 10 m l o f %5N HN03 f o r two hours. The suspension was c e n t r i f u g e d , and one ml o f t h e supernatant was d i l u t e d t o 50 m l w i t h H20. The r e s u l t i n g s o l u t i o n , analyzed w i t h atomic a b s o r p t i o r ~ spectrophotometry, c o n t a i n e d 0.7 mg/l cadmium. This indicates t h a t the cadmium-impregnated C o r a s i l I i s 0.2% cadmium. T h i s v a l u e i s much l o w e r than t h a t r e p o r t e d by Kunzru and F r e i (1974). An a t t e m p t was made .to i n c r e a s e t h e cadmium c o n c e n t r a t i o n by t r e a t i n g t h e C o r a s i l I w i t h 50% CdI, f o r 150 minutes i n s t e a d of 90 minutes. cadmium c o n c e n t r a t i o n . CH30H a l s o f a i l e d . i n CH30H T h i s procedure f a i l e d t o i n c r e a s e t h e Treatment w i t h a s a t u r a t e d s o l u t i o n o f CdI, in T h i s f a i l u r e can be e x p l a i n e d by t h e s t r u c t u r a l differences of t h e s i l i c a packing m a t e r i a l s used. Corasil I i s a t h i n l a y e r of s i l i c a g e l fused t o a g l a s s bead, whereas LiChrosorb S I 60, used by Kunzru and F r e i ( 1 9 7 4 ) ~ i s a c o m p l e t e l y porous s i 1 i c a g e l packing material. LiChrosorb S I 60, b e i n g porous, has a g r e a t e r c a p a c i t y f o r i m p r e g n a t i o n by cadmium t h a n C o r a s i l I. S e p a r a t i o n o f amine m i x t u r e s on the cadmium-impregnated C o r a s i l I column was i n i t i a l l y attempted u s i n g 2% CH30H i n hexane as t h e s o l v e n t system, as r e p o r t e d by Kunzru and F r e i (1974). W i t h t h i s s o l v e n t system, t h e r e was no r e s o l u t i o n o f N - m e t h y l a n i l i n e , a n i l i n e , and 2 , 4 , 6 - t r i c h l o r o aniline. T h i s i s e x p l a i n e d by t h e l o w e r cadmium c o n t e n t o f t h e cadmium- impregnated C o r a s i l I column as compared t o t h e cadmium-impregnated LiChrosorb S I 60 column used by Kunzru and F r e i . Using t h e cadmium- impregnated C o r a s i l I collrrnn, t h e b e s t s e p a r a t i o n s were achieved u s i n g m i x t u r e s of e t h y l a c e t a t e and hexane. With a 100-to-1 r a t i o of hexane t o e t h y l a c e t a t e , near-baseline s e p a r a t i o n o f 1-naphthylamine, 2,4d i c h l o r o a n i 1i n e , and N-methylanil i n e was achieved ( F i g . 1 ) . However, , line, u s i n g t h e same s o l v e n t , a m i x t u r e o f N - m e t h y l a r ~ i l i r ~ e2,4-dichloroani 1-naphthylamine, p - c h l o r o a n i l i n e , and 2-naphthylamine c o u l d n o t be separated. Complete r e s o l u t i o n o f t h e above f i v e amines was a l s o n o t achieved u s i n g a 400-to-1 r a t i o o f hexane t o e t h y l a c e t a t e . On t h e assumption t h a t the f a i l u r e o f t h i s c o l ulnrl t o r e s o l v e t h e m i x t u r e i s due t o t h e s t r u c t u r e as d e s c r i b e d above, a new column was prepared u s i n g P o r a s i l A, a c o m p l e t e l y porous s i l i c a a d s o r p t i o n m a t e r i a l . T h i s column was prepared u s i n g t h e method described above w i t h t h e e x c e p t i o n t h a t a 25%CdI, s o l l r t i o n was s u b s t i t u t e d f o r t h e 50%-CdI? s o l u t i o n . N-methylaniline, 2,4-dichloroaniline, p - c h l o r o a n i l i n e was attempted. 1-naphthylamine, Separation of 2-naphthylamine, and Using hexane, t h e amines were n o t separated. Using e i t h e r e t h y l a c e t a t e o r a one-to-one r a t i o o f e t h y l a c e t a t e t o hexane, N-methylani 1i n e , 2,4-di c h l o r o a n i 1 ine, and 1-naphthylamine were i n c o m p l e t e l y separated, and p - c h l o r o a n i 1 i n e and 2-naphthylamine were e x c e s s i v e l y r e t a i n e d . The Poragel PS column gave the b e s t s e p a r a t i o n s u s i n g m i x t u r e s of CH30H and H20. g i t h a CH30H/H20 (10/1) m i x t u r e , b a s e l i n e s e p a r a t i o n o f TIME ( M I N I F i g u r e 1. S e p a r a t i o n o f l-naphthylamine, 2 , 4 - d i c h l o r o a n i l ine, and N-methylani 1 ine. Col umn: Corasi 1 I/Cd. Sol vent: e t h y l acetate/hexane (1/100). Flow r a t e : 1 ml/min. UV absorbance range: 0.05 AUFS (absorbance u n i t s f u l l s c a l e ) . a n i 1 i n e and N-methylani 1 i n e was accompl ished, b u t 2 , 4 , 6 - t r i c h l o r o a n i 1 i n e was excessively retained. When t h e r a t i o o f CH30H t o H20 was changed t o 20 t o 1, t h e peaks from a n i l i n e and N - m e t h y l a n i l i n e became merged, b u t 2,4,6t r i c h l o r o a n i 1 i n e was no l o n g e r e x c e s s i v e l y r e t a i n e d . These r e s u l t s suggested t h e use o f a g r a d i e n t system t o r e s o l v e t h e amines; however, t h e peaks were t o o broad t o be r e s o l v e d by t h i s method. Eva1 u a t i o n o f Reverse-Phase Col umns The Dupont ODs column gave t h e b e s t s e p a r a t i o n s u s i n g CH30H and H20 mixtures. A l l o f t h e i s o c r a t i c systems attempted f a i l e d t o r e s o l v e a m i x t u r e of N , N - d i m e t h y l a n i l i n e , l-naphthylamine, and 2 , 4 - d i c h l o r o a n i l i n e . The i s o c r a t i c systems used were CH3CN, CH30H, a l - t o - 1 r a t i o of CH3CN t o H20, and m i x t u r e s of CH30H and H20 i n t h e f o l l o w i n g r a t i o s : and 1 t o 3. However, near-base1 i n e s e p a r a t i o n 10 t o 1, 1 t o 1, o f l-naphthylamine, 2,4- d i c h l o r o a n i 1i n e , and N-methylanil i n e was achieved u s i n g a 10-rnin convex g r a d i e n t from 100% H20 t o 85% H20/15% CH30H. The b e s t o v e r a l l s e p a r a t i o n s were o b t a i n e d u s i n g t h e ~BondapakCI8 column. These s e p a r a t i o n s were achieved u s i n g m i x t u r e s o f CH30H and H20 as we1 1 as m i x t u r e s o f CH30H and an ~ 0 . 0 8 Maqueous s o l u t i o n of t r i e t h y l ammonium phosphate. The ~ 0 . 0 8 M t r i e t h y l a m o n i u m phosphate was prepared by d i l u t i n g 11.3 m l o f c o n c e n t r a t e d phosphoric a c i d t o 2 l i t e r s w i t h H20 and i n c r e a s i n g t h e pH t o ~ 7 w i t h t r i e t h y l a m i ne. Using a 10-min concave g r a d i e n t from 50% H20/50% CH30H t o 40% H20/60% CH30H, b a s e l i n e s e p a r a t i o n o f Bladex, a t r a z i n e , and Simazine was achieved ( F i g . 2 and Table 1 ) . B a s e l i n e s e p a r a t i o n o f p - c h l o r o a n i l i n e , 2,4-dichloroani 1 ine, and 2 , 4 , 6 - t r i c h l o r o a n i 1 i n e was achieved u s i n g 75% CH30H/25% 0.08M triethylammonium phosphate as t h e s o l v e n t ( F i g . 3 ) . Using a 20-mi n concave g r a d i e n t from 40% CH30H/60% 0.08M t r i e t h y l ammoni um phosphate t o 70% CH30H/30% 0.08M triethylammonium phosphate, b e n z i d i n e , o-tolidine, o-toluidine, N-rnethylaniline, p - c h l o r o a n i l i n e , l-naphthylamine, N,N-dimethylaniline, 2,4-dichloroaniline, were p a r t i a l l y r e s o l v e d ( F i g . 4 and Table 2 ) . 2-naphthylamine, and 2 , 4 , 6 - t r i c h l o r o a n i l i n e Baseline separation o f benzidine, o - t o l i d i n e , N - m e t h y l a n i l i n e , N,N-dimethylaniline, 2 , 4 - d i c h l o r o a n i l i n e , and 2 , 4 , 6 - t r i c h l o r o a n i l i n e was achieved. N - m e t h y l a n i l i n e and p - c h l o r o a n i l i n e were p a r t i a l l y merged, and l-naphthylamine, 2-naphthylamine, were co-eluted. and o - t o l u i d i n e 0 2 4 6 8 10 ' 12 TIME (MINI F i g u r e 2. S e p a r a t i o n o f a t r a z i n e , Simazine, and Bladex. S o l v e n t : 10-min concave g r a d i e n t f r o m 50% H20/50% CH30H t o Column: ~ B o n d a p a k 40% H20/60% CH30'H. Flow r a t e : 2.0 ml/min. UV absorbance range: 0.5 AUFS (absorbance units f u l l scale). C 1 8 e 14 .uwnLo3 8T3 yedepuoqfl e uo a u k z e w s pue ' a u k z e ~ ~' yx a p ~ ~40 g s a ~ k p uuokquaqad ~ 0 2 4 6 TIME ( M I N 1 F i g u r e 3. S e p a r a t i o n o f p - c h l o r o a n i 1 i n e , 2 , 4 - d i c h l o r o a n i 1 ine, and 2,4,6-trichloroaniline. Col umn: ~ B o n d a p a kC18. Sol vent: 75% CH30H/25% 0.08M t r i e t h y l ammoni um phosphate. Flow r a t e : 2.0 ml/min. UV absorbance range: 0.5 AUFS (absorbance u n i t s f u l l s c a l e ) . DETECTOR RESPONSE 0 D J - c 3 w 3 3 0 - 0 3 \ 3 P 3 2.w 2.C-a . 3 3 m 0 3 0 -h wl I D , U 50 COW ID 0 ewca rD -0DJ 5 UDJ m d v , P d DJ 3 o m 5 2. 'j 3 urt< DJOID 3 3 sc 2 N - Methylaniline ID wl . s? lv DJ 0 0 'j 3 I I row 3 rD 02. -. I -Naphthylamine 2-Naphthylamine I 3 \ O W 0 0 0 was3 0 D O D C. < 7 O I D 0 0 3 3- N , N- Dimethylaniline 2,4-Dichloroaniline aqeydsoyd wnkuowwelLy3ak~3 W80'0 %OE/HoEH3 %OL 03 a2eydsoyd MnkuoUwQl L y ~ a k J 2W80 '0 % 0 9 / ~ 0H3 € %0i7 ~ u a k p e ~a 6~ e ~ u oaqnukw-oz 3 e 6uisn, MOJJ 1'91 auk 1~ u e o ~ o ~ y ~ ~ ~ ~ - g ' ~ ~ z au k 1~ u l eL q ~ a u ~ k aN- ~ ' 9'Z1 a u ~~k u e o ~ o l y 3 ~ a - ~ ~ z 8 'E 1 au 1~ u e o ~ o ~ y 3 - d EO'S au kpknlol-0 99'L au y.ue l L y ~ y d e ~ - 1 S1 '8 au ylre ~ L y 3 1 d d e ~ - z i79 ' 8 oi7 ' ~ au! L !ue ~ L Y ~ ~ w - N au l p lzuaq OE'Z aukp 101-0 OO'E I au LIJJV Y R e s o l u t i o n o f benzidine, O - t o l u i d i n e , o - t o l i d i n e , 1-naphthylamine, 2-naphthylamine, P - c h l o r o a n i l i n e , 2 , 4 - d i c h l o r o a n i l i n e , 2,4,6-trichloroanil ine 14-methylani 1i n e , and N,N-dimethylani 1i n e was l e s s complete using e i t h e r t h e ~BondapakCN o r ~BondapakPhenyl column than i t was u s i n g the uBondapak column. C18 The b e s t separations using these columns were achieved using e i t h e r a 20-min g r a d i e n t from 100% H20 t o 50% H20/50% CH,OH o r a 20-min concave g r a d i e n t from 100% 0.08M triethylammoni um phosphate t o 70% 0.08M t r i e t h y l ammonium phosphate/30% CH30H. Separations using t h i s column were n o t reproducible. L i n e a r i t y of U l t r a v i o l e t and Fluorescent Response o f Selected Amines Standard s e r i a l d i l u t i o n s o f t h e amines used i n t h i s s t u d y were i n j e c t e d s i n g l y and i n m i x t u r e t o determine i f l i n e a r responses could be obtained u s i n g e i t h e r u l t r a v i o l e t absorbance a t 254 nm o r i n t r i n s i c fluorescence. I n a l l cases, the u l t r a v i o l e t absorbance versus c o n c e n t r a t i o n p l o t s obtained f o r t h e amines were l i n e a r over a t l e a s t a two-order-ofmagnitude range i n concentration. F i g u r e 5 shows t h e 1inear response obtained f o r two amines, a t r a z i n e and Linuron. r e p o r t e d i n Table 3. D e t e c t i o n l i m i t s f o r several amines a r e The d e t e c t i o n l i m i t was d e f i n e d i n t h i s case t o be t h e mass o f m a t e r i a l r e q u i r e d t o produce a s i g n a l t w i c e t h a t o f the n o i s e l e v e l a t 0.02 absorbance u n i t s f u l l s c a l e (AUFS). A l l o f these d e t e c t i o n l i m i t s correspond t o approximate concentrations i n t h e a n a l y t e s o l u t i o n i n t h e range of 0.1 t o 0.2 pprn. Depending upon t h e volumle e x t r a c t e d and t h e concentratiorl f a c t o r employed, these d e t e c t i o n l i m i t s corrrespond t o concentrations a t t h e 0.1 ppb l e v e l i n n a t u r a l waters. A s i m i l a r study was performed t o determine the d e t e c t i o n l i m i t s o f several amines u s i n g i n t r i n s i c fluorescence. L i n e a r response curves were obtained f o r a1 1 compounds t e s t e d over a t 1e a s t a two-order-of-magni tude range i n c o n c e n t r a t i o n . The d e t e c t i o n l i m i t was again d e f i n e d as t h e amount of a compound which gave a s i g n a l t w i c e t h a t of t h e n o i s e l e v e l . was measured w i t h an e x c i t a t i o n wavelength o f 254 nm. The fluorescence These d e t e c t i o n l i m i t s t u d i e s were done u s i n g t h e ~BondapakCI8 column and CH30H as t h e s o l v e n t . The r e s u l t s o f t h i s study a r e presented i n Table 4. The l a r g e d i f f e r e n c e s between t h e d e t e c t i o n 1 i m i t s o f t h e s - t r i a z i n e s ( a t r a z i n e , Bladex, and Simazine) and those of t h e o t h e r aromatic amines t e s t e d are probably due t o t h e d i f f e r e n c e i n t h e molecular s t r u c t u r e o f t h e aromatic r i n g s . Atrozine Slope = 0 . 8 0 5 /ppm Linuron Slope = 0 . 7 3 8 / p p m r 2 = 1.00 ppm ATRAZ l NE / Ll NURON Figure 5. L i n e a r response o f u l t r a v i o l e t absorbance d e t e c t o r t o a t r a z i n e and Linuron. AREAAT: area o f compound response. AREAIS: area o f i n t e r n a l standard response. 3 000' OLZ xapva a 3 u a 3 s a ~ o n l j6uksn sauktuv 3 k ~ 3 K 3 o ~ a qpue a ~ ~ ~ ~ P I U LeJaAaS O J ~ 40 s ~ ~ t u uk ol k 7 3 a ~ a a 0001 0011 0001 OOET 00s 1 OLZT 0011 ( 6 d ) WW-I uok73a7aa (MU b s z ) a 3 u e q ~ o s q v7a ~ O ~ A P JLn J c ~ 3 A ~ o ~ aPUPq a3~L J P U O J ~ LeJaAaS 40 6u ksn sau ktuv s7 k t u ~ iu o k q 3 a ~ a g Benzidi ne, 2-naphthyl amine, o - t o 1 u i d i ne, and o - t o 1 i d i n e c o n t a i n t r u e c a r b o c y c l i c a r o m a t i c r i n g s , w h i l e a t r a z i n e , Bladex, and Simazine c o n t a i n n i t r o g e n o u s h e t e r o c y c l i c pseudoaromatic r i n g s . The d e t e c t i o n l i m i t s f o r t h e a r o m a t i c amines correspond t o a n a l y t e c o n c e n t r a t i o n i n t h e range o f 1 t o 100 ppb. Depending upon t h e volumes e x t r a c t e d and t h e c o n c e n t r a t i o n f a c t o r employed, t h e d e t e c t i o n 1i m i t s correspond t o c o r ~ c e n t r a t i o n s a t t h e 1 t o 100 p a r t - p e r - t r i l l i o n l e v e l i n n a t u r a l w a t e r s . I t i s c l e a r t h a t , f o r compounds which e x h i b i t good i n t r i n s i c f l u o r e s c e n c e , u l t r a t r a c e a n a l y s i s may be accomplished. However, w i t h b o t h fluorescence and u l t r a v i o l e t techniques, i n t e r f e r e n c e s from c o - e l u t i n g substances a r e p o s s i b l e . f a c t o r s a r e employed. T h i s i s e s p e c i a l l y t r u e when l a r g e c o n c e n t r a t i o n A good understanding o f t h e m a t r i x p r e s e n t i n any n a t u r a l w a t e r sample i s e s s e n t i a l i f a c c u r a t e q u a n t i t a t i o n i s t o be achieved. Mass s p e c t r a l c o n f i r m a t i o n should p r o b a b l y be a p p l i e d as a r o u t i n e measure t o back up t h e q u a n t i t a t i v e data. Sample E x t r a c t i o n / C o n c e n t r a t i o n S t u d i e s A s e r i e s o f amines were e x t r a c t e d and c o n c e n t r a t e d u s i n g methylene c h l o r i d e as d e s c r i b e d i n t h e s e c t i o n on sample e x t r a c t i o n and c o n c e n t r a t i o n on page 5. The amines were s p i k e d a t l e v e l s o f 1.0 ppb, 10 ppb and 100 ppb i n t o l a b o r a t o r y w a t e r and analyzed by l i q u i d chromatography u s i n g t h e u l t r a v i o l e t absorbance method. The r e c o v e r i e s observed a t t h e t h r e e c o n c e n t r a t i o n l e v e l s a r e r e p o r t e d i n T a b l e 5. I t appears t h a t a l l of t h e ami nes t e s t e d can be r e 1 i a b l y and q u a n t i t a t i v e l y recovered by s o l v e n t extraction. However, c a u t i o n must be taken t h a t samples a r e n o t overheated d u r i n g t h e c o n c e n t r a t i o n step. S t u d i e s were performed t o determine t h e u t i l i t y o f XAD-4 and XAD-8 p o l y m e r i c a d s o r p t i o n r e s i n s i n t h e c o l l e c t i o n and c o n c e n t r a t i o n of a r o m a t i c amines. There was a t w o - f o l d purpose f o r t h i s s t u d y : f i r s t , t o t e s t the r e t e n t i o n c a p a c i t y of t h e columns, and second, t o t e s t t h e r e c o v e r y o f t h e amines a f t e r a d s o r p t i o n t o t h e column. F i r s t , 100 ml o f a 993 n g / l aqueous s o l u t i o n o f p - c h l o r o a n i l i n e was passed through each o f t h r e e columns f i l l e d w i t h XAD-8 r e s i n . The e f f l u e n t from each column was analyzed , by HPLC u s i n g t h e uBor~dapak CN columr~ and 10% CH,OH/90% HO as t h e s o l v e n t . No v - c h l o r o a n i l i n e was d e t e c t e d by f l u o r e s c e n c e i n a 2 0 - ~ 1 i n j e c t i o n o f t h i s effluent, i n d i c a t i n g t h a t t h e p - c h l o r o a n i 1 i n e was f u l l y r e t a i n e d . each column was r i n s e d w i t h 100 ml o f CH30H. Then, The f i r s t 10 m l t h a t were e l u t e d c o n t a i n e d no d e t e c t a b l e p - c h l o r o a n i l i n e and were d i s c a r d e d . The remainder o f t h e e f f l u e n t was d i l u t e d t o 100 m l w i t h CH30H and analyzed by HPLC u s i n g t h e above c o n d i t i o n s . The average r e c o v e r y was 100.4% w i t h a standard d e v i a t i o n o f 0.64%. A d d i t i o n a l work was a l s o performed t o determine i f t h e XAD-4 r e s i n c o u l d be used t o r e l i a b l y c o n c e n t r a t e s e l e c t e d amines a t environmental levels. The amines were s p i k e d i n t o l a b o r a t o r y w a t e r a t l e v e l s o f 1.0 ppb, 10 ppb, and 100 ppb, c o n c e n t r a t e d on t h e XAD-4 r e s i n , recovered, and analyzed by l i q u i d chromatography u s i n g t h e u l t r a v i o l e t absorbance method. The r e c o v e r i e s observed a t t h e t h r e e c o n c e n t r a t i o n l e v e l s a r e r e p o r t e d i n Table 6. The r e c o v e r i e s o f t h e amines a t a l l l e v e l s t e s t e d were w e l l w i t h i n t h e acceptabl e range (90-100%). F i e l d Eva1 u a t i o n o f Methods The f o u r t e e n f i e l d samples were c o l l e c t e d a t a number o f s i t e s on t h e Chesapeake Bay, t h e Patuxeht R i v e r , and t h e Susquehanna R i v e r a t two times d u r i n g t h e l a s t y e a r (October 10-12, 1979 and A p r i l 24 and 26, 1980). F i g u r e 6 shows t h e l o c a t i o n s where t h e samples were c o l l e c t e d . The samples were f i l t e r e d t h r o u g h 0.45 pm m i l l i p o r e f i l t e r pads a t t h e t i m e o f c o l l e c t i o n , c o n c e n t r a t e d i n XAD-4 r e s i n , and c o n c e n t r a t e d and analyzed u s i n g reversephase chromatography and u l t r a v i o l e t absorbance d e t e c t i o n . The c o n c e n t r a t i o n s o f t h e amines found i n t h e f o u r t e e n samples a r e r e p o r t e d i n Table 7. Low l e v e l s o f s e v e r a l amines a s s o c i a t e d w i t h a g r i c u l t u r e were d e t e c t e d a t t h e sub-ppb l e v e l . amines were observed. No r e s i d u e s of d y e - i n d u s t r y - a s s o c i a t e d These r e s u l t s a r e c o n s i s t e n t w i t h t h e f a c t s t h a t no dye m a n u f a c t u r i n g i s t a k i n g p l a c e i n t h i s geographical r e g i o n and t h a t a g r i c u l t u r e ( i n c l u d i n g corn, soybean, and tobacco f a r m i n g ) i s widespread on lands s u r r o u n d i n g t h e Chesapeake and i t s t r i b u t a r i e s . R e p l i c a t e analyses of t h e CHB-2 samples i n d i c a t e t h a t t h e method used can y i e l d r e l i a b l e and r e p r o d u c i b l e d a t a a t t h e ppb l e v e l . Table 8 shows t h e r e c o v e r i e s of several arni r ~ e ss p i ked i n t o PAX-1 water a t a 1eve1 o f 10 ppb a f t e r t h e w a t e r had been f i l t e r e d . A l l o f t h e r e c o v e r i e s were observed t o be i n t h e acceptable range (93-100%). u i s a d P-ayX uo sau iurtj p a w a l a s 30 s a i ~ a ~ o ~ a d 9 318W1 'sa!JPjnq!Jj , L, s j ! pup A P ~a y ~ a d ~ s a qa3q j uo s a j i s 6ub L ~ M P S ' 9 a ~ n 6 k j * 000CnV)www IIICCDDD ' I- h o m o m m [A[A[AV,V,XXX I I I I I I I I N N I - N l - W N W g : ' I um V,0 u -1- d3 1 . IDmo N 3 (1-1. ID3d- ID -1. ID- 3 0 2. !2.0d 0 O-h 3 CJO ' I -u 2.u u 3 WID 3 N -1.. d- 1 . 5 5: 2 - 3 !=ID .o m -0 "' -1.u I 3 ' I dn m -o 1 . 0 0 ID -1. $%!? ID a3 "' ID u- d-k 3 m-3 d-A-Q r 3 0 m I 1 . 3 3 a m ID 2.u m 0 3 r m d- -0 d- 3 51D5 "'d-m 3- 3 0 $3 -1. ud-3 "' ID ID m ' I -1. <*"' ID ' I Q W 0 0 . ........ ........ Z Z Z Z Z Z Z Z 00000000 P I D O d- .Cn E d - m u 3"'u m u d- Q u. ID "'*+I W I D 0 I D 0 7 0 d1 . ID m -had' I m u m Z Z Z Z Z Z Z Z I5 Z Z Z Z Z Z Z Z != N ' I d- 2. ID 3 d-d-ID ID 3 . 4 3 m z*?, 0 2. "' 3 d - 0 . d-s 0 m 2. 3"'O Cn 0 u u -u zz d- m 3- 3 r.0 n Z Z Z Z Z Z Z Z I- 0' x!JJeW (qdd) !ds X!JJpW L~a~o3ad ( qdd (qdd) u o k ~ e ~ ~ u a 3 u o 3ay kds L ~ a ~ o ~ a d ( qdd punodtuo3 punodluo3 U O ~ J P J J U ~ ~ U O ~ay DEVELOPMENT OF GAS CHROMATOGRAPHIC METHODS REVIEW OF LITERATURE Due t o i t s ease of o p e r a t i o n and v e r s a t i l i t y , gas chromatography i s w i d e l y used f o r t h e d e t e c t i o n , i d e n t i f i c a t i o n , d e t e r m i n a t i o n , and q u a n t i t a t i o n o f amines. Various c o n d i t i o n s , column packings , and d e t e c t i o n systems have been ernployed by d i f f e r e n t workers. Flame i o n i z a t i o n d e t e c t i o n was used by Markacheva and Kogan (1976) and Golovnya e t a l . (1978); e l e c t r o n c a p t u r e d e t e c t i o n by Bowen (1976), Pashkevich e t a l . (1977), and Nony and Bowman (1978) ; thermal c o n d u c t i v i t y d e t e c t i o n by Pasechni k and Rogovi k (1973) ; and n i t r o g e n s p e c i f i c d e t e c t i o n by Bowen (1976) and Diachenko (1979). The f o l l o w i n g phases have been err~ployed t o separate aromatic amines by gas chromatography: Apiezon M (Andersons e t a l . 1973a and 1973b); Apiezon L (Golovnya e t a l . 1978); Tenax GC (Daemen e t a l . 1975; Bowen 1976) ; T r i t o n X-305 (Golovnya e t a l . 1978); S i l i c o n OV 101 (Grimmer e t a l . 1978) ; p o l y e t h y l e n e g l y c o l 1000 (Golovnya e t a1 . 1978) ; p o l y e t h y l e n e g l y c o l 2000 (Andersons e t a l . 1973a and 1973b); Chromaton N c o n t a i n i n g 20% p o l y p h e n y l e t h e r (Markacheva and Kogar~ 1976) ; 20% Reoplex-400 (Czerwiec and Markowski 1975) ; 25% polymethyl phenyl s i loxane-4 (Pasechni k and Rogovi k 1973) ; and 5% SE 60/ Chromaton N (Pashkevich e t a l . 1977). Aromatic amines have a l s o been determined by s e v e r a l o t h e r workers u s i n g v a r i o u s c o n d i t i o n s (Smi kun e t a l . 1974; Farroha and Emeishi 1975; Nony and Bowman 1978; and Tsuda e t a l . 1977). Trace analyses o f c a r c i n o g e n i c amines and t h e i r analogs have been c a r r i e d o u t by Nony and Bowman (1978) i n wastewater and human u r i n e , by Diachenko (1979) i n f i s h , by H a e f e l f i n g e r (1975) i n b l o o d and plasma, and by Neurath e t a l . (1977) i n t h e hurlan environment and foods i n general. E x t r a c t i o n and c o n c e n t r a t i o n s t u d i e s f o r amines were performed f o r m o n i t o r i n g t h e safe d i s p o s a l of wastewater (Nony and Bowman 1978). Salient elements of t h e procedure d e s c r i b e d by t h e above workers a r e : extraction o f p h e n o l i c and n e u t r a l r e s i d u e s from t h e a c i d i f i e d sample, 1 i q u i d - 1 i q u i d p a r t i t i o n i n g cleanup and s e p a r a t i o n of n e u t r a l from phenol ic r e s i d u e s a t pH 14 and 10.2, a c i d h y d r o l y s i s o f t h e n e u t r a l component, subsequent a1 k a l i r ~ i z a t i o no f t h e sarr~pleand e x t r a c t i o n o f t h e b a s i c r e s i d u e s of t h e f r e e amines, c o n v e r s i o n o f a l l r e s i d u e s t o t h e corresponding p e n t a f l u o r o p r o p i o r ~ y l (PFP) d e r i v a t i v e s , and q u a n t i f i c a t i o n by e l e c t r o n c a p t u r e gas chromatography. The a u t h o r s were a b l e t o d e t e c t t h e r e s i d u e s i n wastewater and u r i n e a t 0 . 1 and 1.0 ppb l e v e l s , r e s p e c t i v e l y . EXPERICIENTAL MATERIALS Equi pment 1. Hewlett-Packard 5700A gas chromatograph equipped w i t h a flame i o n i z a t i o n d e t e c t o r and a Hew1e t t - P a c k a r d 3385A autornati on system f o r data processing 2. Hewlett-Packard 5840A gas chromatograph equipped w i t h a n i t r o g e n phosphorus s p e c i f i c d e t e c t o r a r ~ da GC t e r m i n a l f o r d a t a p r o c e s s i n g 3. Kuderna-Dani sh c o n c e n t r a t o r (Kontes Glass Company, V i n e l and, NJ) 4. R o t a r y Evaporator ( F l a s h-Evaporator, B u c h l e r Instruments, F o r t Lee, NJ) Reagents and S u p p l i e s 1. Carcinogenic amine standards were a c q u i r e d as 20 rng/rnl s o l u t i o n s i n methanol, from Supelco, I n c . , Supel co Park, Be1 l e f o n t e , PA. 2. The f o l l o w i n g column packings were purchased from Supelco, I n c : a. b. c. d. e. f. 3. 4. 10% Apiezon L + 2% KOH on 80/100 Chromasorb W AW 3% OV 17 on 80/100 S u p e l c o p o r t Tenax GC, 60180 mesh 1.5% SP-2250/1.95% SP-2401 on 100/120 S u p e l c o p o r t 10% SP-2340 on 100/120 S u p e l c o p o r t 32 SP-2100 DB on 100/120 Supelcoport 3% SP-2250 DB on 100/120 S u p e l c o p o r t g. A1 1 t h e s o l vents used were o f g l a s s - d i s t i 1 l e d qua1 it y (Burdick-Jackson L a b o r a t o r i e s , Inc., Muskegon, M I ) , and r e a g e n t grade chemicals were used, i f needed. Glass columns and gas chromatographic s u p p l i e s were purchased from Hewlett-Packard, 5201 T o l l v i e w D r i v e , R o l l i n g Meadows, I L . EXPERIMENTAL PROCEDURES The d e t e c t i o n of c a r c i n o g e n i c amines was i n v e s t i g a t e d w i t h f l a m e i o n i z a t i o n , e l e c t r o n capture, and n i t r o g e n s p e c i f i c d e t e c t i o n gas chromatography. S e l e c t e d amines were s t u d i e d t o determine t h e i r response t o each t y p e o f d e t e c t i o n a t s e v e r a l d i l u t i o n s o f t h e standards. Flame Ionization Detection Standard amines dissolved in methanol were diluted t o known concent r a t i o n s (nanograrns/~l)of each. 1- t o 5 - ~ 1injections representing 10-500 nanograms of sample were introduced into the gas chromatograph. The area units reproduced by the integrator were processed to calculate the response factors and 1 i neari ty of detection f o r various amines . Electron Capture Detection The selected carcinogenic amines were studied t o determine t h e i r response to electron capture detection a t picogram amounts. The amines were derivatized by adding 0.5 ml benzene and 0.1 ml 0.05M trimethylamine in benzene to the samples in a 5-ml centrifuge tube, followed by the addition of 10 ~1 of heptafluorobutyric anhydride. The reaction mixture was heated in capped tubes for 15 minutes a t 50°c, then cooled; excess anhydride was hydrolyzed by adding 1.0 ml water. Heptafl uorobutyric acid was removed by addition of one ml of 5% aqueous ammonia solution to the sample, followed by vigorous shaking f o r 5 minutes and then by centrifugation. 1- t o 2 - ~ 1 injections were made from the benzene phase. Nitrogen Specific Detection The standard amines were evaluated t o determine t h e i r response a t low concentrations. The amines dissolved in methanol were diluted t o , contain from one to several nanograms of each standard amine per ~ 1 and 1 t o 5 ~1 of each amine were analyzed by nitrogen s p e c i f i c detection. A 6-foot-long x 2-mm-ID glass column packed with 3% OV 17 on 80/100 Supelcoport was employed f o r the analyses. Helium was used as c a r r i e r gas, flow-controlled a t 20.0 + 0.1 ml per minute. Flow rates f o r hydrogen and a i r were 30 ml per minute and 50 ml per minute respectively. The voltage f o r the detector was adjusted before every s e t of injections t o give a recorder pen deflection of 100 mm a t an attenuation of 8. The area units printed out by the integrator were processed to calculate the responses Per nanogram amount and t o establish the l i n e a r i t y of detection f o r various ami nes . SAMPLE EXTRACTION/CONCENTRATION STUDIES A l i t e r o f d i s t i l l e d water was s p i k e d w i t h s t a n d a r d amines a t two c o n c e n t r a t i o n l e v e l s f o r flame i o n i z a t i o n d e t e c t i o n . Level A c o n t a i n e d 500 ppb each of a n i l i n e , o - t o l u i d i n e , 2-naphthylamine, benzidine, o - t o l i d i n e , 2,7-dirriethylquinoline, and 1.0 ppm of a t r a z i n e . Level B c o n t a i n e d 100 ppb each of t h e above s t a n d a r d arnines except a t r a z i n e , which was s p i k e d a t 200 ppb. Samples were prepared i n t r i p l i c a t e and t h e pH a d j u s t e d t o 11.5. The samples were e x t r a c t e d w i t h chloroform. Three e x t r a c t i o n s were performed u s i n g a t o t a l o f 200 ml (100 + 50 + 50) c h l o r o f o r m . To e l i m i n a t e t r a c e s of moisture, t h e combined chloroforrn e x t r a c t s were d r i e d by passing through a c o l ulnn o f s o d i u~ns u l f a t e . The e x t r a c t s were c o n c e n t r a t e d t o approximately one ml i n a Kuderna-Danish c o n c e n t r a t o r and evaporated t o dryness w i t h a strearn Each sample was r e d i s s o l v e d i n one m l o f methanol and analyzed o f nitrogen. on a flame i o n i z a t i o n gas chrorrtatograph. To e v a l u a t e t h e e f f i c i e n c y o f t h e e x t r a c t i o n procedure a t l o w e r c o n c e n t r a t i o n s , s e v e r a l standard amines were s p i k e d i n t o one l i t e r o f d i s t i l l e d w a t e r a t 50 ppb c o n c e n t r a t i o n l e v e l s . The samples were e x t r a c t e d as d e s c r i b e d above u s i n g 200 ml o f chloroforrn and/or methylene c h l o r i d e . evaporated f r o m t h e e x t r a c t s w i t h a f l a s h evaporator. The s o l vents were The recovered standard ami r ~ e swere d i s s o l v e d i n one m l of methanol and analyzed w i t h t h e n i t r o g e n s p e c i f i c gas chromatograph. FIELD EVALUATION OF METHODS A sample o f w a t e r a c q u i r e d from t h e Fox R i v e r was e x t r a c t e d w i t h chloroform, as p r e v i o u s l y described, t o screen f o r t h e p o s s i b l e presence o f small amounts of arornatic amines. The e x t r a c t from one l i t e r o f w a t e r was r e d i s s o l v e d i n t o one m l o f methanol ; 1-5 v1 were subsequently i n j e c t e d i n t o a gas chromatograph equipped w i t h a n i t r o g e n s p e c i f i c d e t e c t o r . Another l i t e r o f water from t h e Fox R i v e r was s p i k e d w i t h s e v e r a l s t a n d a r d amines a t 50 ppb c o n c e n t r a t i o n l e v e l s , e x t r a c t e d , and concentrated as d e s c r i b e d above. 1- t o 5-p1 i n j e c t i o n s were rnade i n t o a gas chromatograph with the nitrogen s p e c i f i c detector. Percent r e c o v e r i e s were c a l c u l a t e d from t h e p r i n t o u t s o f area responses f o r recovered amines compared t o area responses f o r standard amines. The r e c o v e r i e s o f amines from d i s t i l l e d w a t e r and Fox R i v e r water, b o t h of which had been spiked a t 50 ppb c o n c e n t r a t i o n l e v e l s , were compared. RESULTS Eva1 u a t i o n o f S t a t i o n a r y Phases The e f f e c t s o f v a r i o u s s t a t i o n a r y phases o f column packings on t h e e l u t i o n p a t t e r n s of s e l e c t e d c a r c i n o g e n i c amines were determined by flame Using i s o t h e r m a l c o n d i t i o n s , t h e e l u t i o n and s e p a r a t i o n o f a l l t h e amines under study were found t o be impossible. Various prograrr~rned i o n i z a t i o n detection. temperature modes were then i n v e s t i g a t e d f o r each packing and m i x t u r e of standard arr~ines. Figure 7 shows e l u t i o n o f a n i l i n e , O - t o l u i d i n e , l e p i d i n e , and 2-naphthylamine from a 10% Apiezon L + 2% KOH column a t t h e programmed temperature o f 1 0 0 ' ~ t o 200'~. Under these c o n d i t i o n s , o t h e r amines present The use o f temperatures higher. i n t h e m i x t u r e were r e t a i n e d by t h e packing. A than 2 0 0 ' ~ would have d e t e r i o r a t e d t h e s t a t i o n a r y phase on t h e packing. column packed w i t h 3% SP-2340 was then used t o separate a standard m i x t u r e (Fig. 8). The f i g u r e shows t h a t , by temperature programming t h e column from 1 2 5 ' ~ t o 2 7 0 ' ~ e~ x c e l l e n t separations were achieved f o r most of t h e amines. B u t a t t h e maximu~ntemperature b e n z i d i n e and o - t o l i d i n e t o o k a much l o n g e r t i m e t o e l u t e , and t h e s e p a r a t i o n between these two amines was n o t compl e t e . E v a l u a t i o n o f 3% SP-2250 DB, a b a s e - t r e a t e d packing, was performed by e l u t i n g t h e standard amines from t h e column a t a programmed temperature o f 9 0 ' ~ t o 2 7 5 ' ~ a t a r a t e o f 8 ' ~p e r minute. The r e p r e s e n t a t i o n ( F i g . 9) shows good s e p a r a t i o n s , b u t column b l e e d was excessive above a column temperature of 250'~; however, i t t o o k a much l o n g e r t i m e t o e l u t e o - t o l i d i n e from t h e column a t a temperature o f 2 5 0 ' ~ than a t 275'. The base1 i n e d r i f t was excessive a t l o w e r a t t e n u a t i o n s which were necessary t o d e t e c t small amounts o f standard amines. Another packing commonly used f o r p e s t i c i d e a n a l y s i s , 1.5% SP-2250 + 1.95% SP-2401 on 100/200 Supel coport, e x h i b i t e d s i m i l a r s e p a r a t i o n s , b u t peak t a i l i n g and b a s e l i n e d r i f t were excessive. F i n a l l y , t h e nonpolar column packings c o n t a i n i n g OV 17 and Tenax GC were i n v e s t i g a t e d i n an e f f o r t t o f i n d t h e most s u i t a b l e packing t o r e s o l v e a m i x t u r e o f arr~ines w i t h c o n s i d e r a b l y d i f f e r e n t v o l a t i 1iz a t i o n c h a r a c t e r i s t i c s . Most of t h e amines under s t u d y were r e s o l v e d on Tenax GC ( F i g . 10) and 3% OV 17 ( F i g . 11); 3% OV 17 a l s o r e s o l v e d t h e hydrocarbons. Both o f these packings uo k ~ e kuo z L awe 14 :wa7 sAs uo k ~ ~ a ~ a a - u k w / ~ w02 : S P ~J ~ L J J P D se U ~ ~ O J J L N '30002 :z a ~ n ~ e ~ a d w a l - u p 1 / 3 ~ 8:aJed .upu 2 :I auk1 -3,001 :I aJnJeJadwa1 'MY M qJosewoJV3 %08 uo HO] %2 + 1 uozatdv %01 uo aJnJxpu aukwe p ~ e p u e ~40s u o k g e ~ e d a ~' L a ~ n 6 ~ j Figure 8. Separation of standard amine mixture on 3% SP-2340 on 100/120 Supelcoport. Temperature 1: 125OC. Time 1: 4 min. Rate: 16OC/min. Temperature 2: 270°C. Nitrogen a s c a r r i e r gas: 20 ml/min. Detection system: flame i o n i z a t i o n . Inject TIME ( M I N I Figure 11. Separation of standard amine mixture on 3% OV 17 on 80/100 Supelcoport. Temperature 1: 100°C. Time 1: 2 min. Rate: 8"C/min. Temperature 2: 300°C. Nitrogen a s c a r r i e r gas: 20 ml/min. Detection system: flame i o n i z a t i o n . were more s t a b l e a t h i g h e r temperatures than were t h e packings p r e v i o u s l y evaluated. Tenax GC r e q u i r e d h i g h e r column temperatures t o accomplish e l u t i o n s comparable t o 3% OV 17; a t r a z i n e and 2-naphthylamine appeared as an u n r e s o l v e d d o u b l e t , and phenyl h y d r a z i ne e x h i b i t e d two s e p a r a t e peaks.* Because of t h e above reasons, Tenax GC was dropped i n f a v o r of 3% OV 17, which was employed t o c a l c u l a t e d e t e c t o r responses o f v a r i o u s s t a n d a r d amines and t o determine t h e s e n s i t i v i t y o r l i m i t s o f d e t e c t i o n . D e t e c t o r Response of Standard Amines on a Flame I o n i z a t i o n D e t e c t o r I t was observed t h a t Simazine, one o f t h e s e l e c t e d standard amines, was n o t a p p r e c i a b l y s o l u b l e i n methanol i n d e s i r e d c o n c e n t r a t i o n s ; i t was t h e r e f o r e dropped f r o m t h e study. I t was a l s o found t h a t phenylhydrazine, a n o t h e r s e l e c t e d s t a n d a r d amine, was u n s t a b l e a t lower c o n c e n t r a t i o n s i n methanol. I n f r e s h l y prepared s o l u t i o n s , phenyl h y d r a z i ne was r e s o l v e d as a sharp and d i s t i n c t peak upon a n a l y s i s by gas chromatography; b u t , w i t h subsequent i n j e c t i o n s from t h e same v i a l , t h e peak area decreased and u l t i m a t e l y disappeared. The d e t e c t o r responses o f each s t a n d a r d amine were c a l c u l a t e d compared t o an i n t e r n a l s t a n d a r d ( 2 , 7 - d i m e t h y l q u i n o l i n e ) b y t h e use o f flame i o n i z a t i o n detect i o n (Table 9). I t was found t h a t a n i l i n e , o - t o l u i d i n e , and 2-naphthylarnir~e have r e l a t i v e responses c l o s e t o t h e i n t e r n a l standard. Atrazine exhibited t h e l o w e s t d e t e c t o r response o f a l l t h e standard amines t e s t e d . L i n e a r i t y o f D e t e c t o r Response Over a Range o f Sample Sizes on a Flame I o n i z a t i o n D e t e c t o r S e n s i t i v i t y o f t h e method was determi ned by i n j e c t i n g 10-20 nanograrrls o f s t a n d a r d arnines i n t o t h e columrr. A1 though t h e standards were d e t e c t e d a t these low l e v e l s by t h e flame i o n i z a t i o n d e t e c t o r , t h e responses were n o t found t o be 1 i n e a r below 50 ng f o r a n i l i n e , a t r a z i n e , and 2,7-dimethylq u i n o l i n e and below 100 ng f o r o- t o 1 u i d i n e , 2-naphthylamine, and o - t o l i d i n e . benzidine, A l l t h e standard amines e v a l u a t e d gave a l i n e a r response up t o 500 ng as shown i n Fig. 12 and F i g . 13. *The f i r s t peak was more prominent when a f r e s h s o l u t i o n was i n j e c t e d ; f o r subsequent i n j e c t i o n s w i t h t h e same s o l u t i o n , t h e second peak became more prominent-then b o t h peaks decreased i n h e i g h t and f i n a l l y disappeared. The f i r s t peak i s p r o b a b l y t h e t r u e phenylhydrazine peak, and t h e second one p r o b a b l y r e p r e s e n t s a decomposition p r o d u c t . TABLE 9 D e t e c t o r Response f o r S e l e c t e d Standard Amines U s i n g Flame I o n i z a t i o n D e t e c t o r Standard Ami ne Arnoun t I n j e c t e d (ng) Response/ng (area u n i t s ) 2 Anil ine 500 7.00 x 10 o-To1 u i d i n e 500 7.46 x 10 2-Naphthyl amine 500 7.62 x 10 A t r a z i ne 1000 9.70 x 10 Benzi d i ne 500 4.56 x 10 o-To1 i d i n e 500 5.74 x 10 2,7-Dimethyl q u i n o l i n e 500 7.92 x 10 2 2 1 Relative Response 0.934 0.942 0.962 0.245 2 2 0.576 0.725 2 1.000 A 2 ,7-Dimethylquinoline Aniline 0 Atrazine Figure 12. , Plot of area responses of 2,7-dimethylquinoline, aniline, and atrazine versus amounts injected (ng) as calculated from analysis by flame ionization detection. - Io- Toluidine 0 Benzidine I 100 200 300 I I 400 500 AMOUNT INJECTED (ng ) Figure 13. Plot of area responses of o-toluidine, benzidine, o-tolidine, and 2-naphthylamine versus amounts injected (ng) as calculated from analysis by flame ionization detection. E x t r a c t i o n of Standard Amines from D i s t i l l e d Water The e x t r a c t i o n s t u d i e s were c a r r i e d o u t by s p i k i n g t h e w a t e r a t two l e v e l s , 500 ppb and 100 ppb, f o r most of t h e standard amines. The standard amines were analyzed by a flame i o n i z a t i o n d e t e c t o r , and t h e r e c o v e r i e s were c a l c u l a t e d as percentages a able 10). Recovered standard ami nes ranged from 27.86% f o r a n i l i n e t o 90.74% f o r 0 - t o l i d i n e , a t t h e h i g h e r l e v e l of s p i k e . A t t h e lower l e v e l o f spike, 100 ppb, t h e r e c o v e r i e s f o r rnost o f t h e amines were l o w e r except f o r a n i l i n e . Recoveries ranged from 28.06% f o r a n i l i n e t o 85.06% f o r o - t o l i d i n e . D e t e c t o r Response o f Standard Amines t o E l e c t r o n Capture D e t e c t i o n The h e p t a f l u o r o b u t y r i c d e r i v a t i v e s o f aromatic amines were e v a l u a t e d i n an a t t e m p t t o o b t a i n h i g h e r s e n s i t i v i t y w i t h e l e c t r o n c a p t u r e gas chromatography. A t 100-pg l e v e l s , a n i 1i n e and 0-to1 u i d i n e were separated as sharp peaks; b u t b a s e l i n e d r i f t s , even a t a low r a t e of temperature programrr~ing, were excessive. temperature i n c r e a s e . The pen d e f l e c t e d t o f u l l s c a l e a f t e r a 15-20' Because o f t h e above r e s u l t s , c a l c u l a t i o n s of d e t e c t o r responses by e l e c t r o n c a p t u r e were dropped i n favor o f t h e n i t r o g e n s p e c i f i c detector. D e t e c t o r Response o f Standard Amines t o t h e N i t r o g e n S p e c i f i c D e t e c t o r The usefulness and a p p l i c a b i l i t y o f n i t r o g e n s p e c i f i c d e t e c t i o n were i n v e s t i g a t e d f o r t h e standard c a r c i n o g e n i c amines. The d e t e c t o r responses c a l c u l a t e d f o r v a r i o u s standard amines a r e presented i n Table 11. Table 11 shows t h a t v a r i o u s amines e x h i b i t e d responses r a n g i n g from 0.532 t o 3.803, r e l a t i v e t o 1.000 f o r t h e i n t e r n a l standard, l e p i d i n e . From t h e comparisons of area responses of standard amines on a n i t r o g e n s p e c i f i c d e t e c t o r as compared t o a flame i o n i z a t i o n d e t e c t o r , i t seems t h a t t h e n i t r o g e n s p e c i f i c d e t e c t o r g i v e s a t l e a s t a 9 - t i r n e s - b e t t e r response f o r a n i l i n e and o-toluidine, atrazine. whereas t h e response was more than 400 times b e t t e r f o r Moreover, e l i m i n a t i o n of i n t e r f e r i n g s o l v e n t peaks and peaks due t o compounds n o t c o n t a i n i n g n i t r o g e n and phosphorus improves t h e q u a n t i t a t i on and r e p r o d u c i b i 1-1t y of t h e analyses. TABLE 10 P e r c e n t Recoveries of Standard Carcinogeni c Arni r ~ e s f r o m D i s t i l l e d Water Using Flame I o n i z a t i o n D e t e c t o r Standard Arni ne Percent Recovered (level A)l Percent Recovered ( l e v e l B)2 Aniline 27.86 28.06 o-To1 u i d i ne 51.82 40.00 2,7-Dimethylquinol i n e 90.06 79.22 A t r a z i ne 87.50 83.12 Benzi d i ne 90.03 84.44 l ~ t a n d a r damines s p i k e d a t 0.5 ppm l e v e l , e x c e p t a t r a z i n e a t 1 ppm l e v e l 2Standard ami nes s p i ked a t 100 ppb 1eve1 s , e x c e p t a t r a z i n e a t 200 ppb l e v e l TABLE 11 D e t e c t o r Response f o r S e l e c t e d Standard Amines Usi ng N i t r o g e n S p e c i f i c D e t e c t o r Standard Anii ne Aniline A t r a z i ne Benzi d i ne Lepidine Arnoun t I n j e c t e d (ng) 35 Responselng (Area U n i t s ) Re1a t i ve Response 6.30 x 10' 0.566 'Ja3eM p a l l k 3 s c p UOJJ s a y a ~ o 3 aueq3 ~ JaMol %gs 03 %gb aJaM saukue p ~ e p u e 3 s . 4 aJaM aukpknlo3-o pue Jay30 40 s a k ~ a ~ o 3a ay ~l 'aldules s!.yq UOJJ p a ~ a ~ o 3 a 301.1 e LaAal qdd-0s ay3 3e paykds saukue aukLkuy ' ( 1 1 a l q e l ) Mol A ~ 6 u k y s ~ u o 3 saJaM ay3 40 s a p a ~ o 3 aay3 ~ 'saukue p ~ e p u e 3 saykds 03 x k ~ 3 e ue se pasn SPM JaAkd x o j ay3 UOJJ Ja3eM ay3 uayM 'aldues ay3 uk pun04 aJaM u o ~ 3 e n l e ~Japun a saukue ay3 40 s3unoue 3ue3kjku6ks alqkssod ay3 JOJ ON -saukue 3kua6ouk3~e340 a z ~ u a s a ~ d p a u a a ~ 3 sSPM ~ a h k dx o j ay3 u o ~ 4Ja3eM 40 aldues y sPoy3aW A J o 3 ~ J o q e l 40 . p a ~ a k y 3aq ~ 3ou plno3 uok33a3ap 40 s l a m 1 pue uok3e3k3uenb ' s ~ o 3 3 e & Jay30 pue sau;ue s a 3 u a ~ a j j ~ay3 p 03 ana M O ~asay3 LPkJl PLakj 3e A ~ k ~ ~ q k 3 n p o ~ d a ~ p ~ e p u e 3 ssnokJeA 40 s a s u o d s a ~u l 'uok33a3ap 3 k j p a d s u a 6 0 ~ 3 ~Aq u pa33a3ap aJaM ' p a 3 3 a f u ~ AMOUNT INJECTED (ng 1 F i g u r e 14. P l o t o f area responses o f l e p i d i n e , o - t o l u i d i n e , and a n i l i n e versus amounts i n j e c t e d (ng) as c a l c u l a t e d from a n a l y s i s by nitrogen s p e c i f i c detection. 20 40 60 80 100 120 140 AMOUNT INJECTED ( n g ) Figure 15. Plot of area responses of 2-naphthylamine versus amounts injected ( n g ) as calculated from analysis by nitrogen s p e c i f i c detection. 160 TABLE 12 Percent Recoveries o f Standard Carcinogenic Amines from Water Using N i trogen S p e c i f i c D e t e c t o r Standard Ami ne l % Recovery from D i s t i l l e d Water - Aniline o-To1 u i d i n e Lepi d i ne 2-Naphthyl amine Atrazine Bl adex Benzi d i n e o -To1 id i ne lSpiked a t a l e v e l o f 50 ppb each % Recovery from Fox R i v e r Water CONCLUS I O N S 1. Gas chromatography w i t h flame i o n i z a t i o n d e t e c t i o n and n i t r o g e n s p e c i f i c d e t e c t i o n can s u c c e s s f u l l y be used f o r t h e a n a l y s i s o f m i x t u r e s o f amines w i t h a wide range of v o l a t i l i z a t i o n constants, u s i n g such f a i r l y nonpolar column packings as OV 17 and Tenax GC. 2. Sorne o f t h e arrlines w i t h h i g h v o l a t i l i t i e s appear t o be l o s t d u r i n g e x t r a c t i o n and c o n c e n t r a t i o n ; t t ~ e r e f o r e , XAD r e s i r ~ srnay be b e t t e r s u i t e d f o r c o n c e n t r a t i o n o f t h e amines. Resin columns a l s o e l i m i n a t e t h e t e d i o u s steps of e x t r a c t i o n which a f f e c t t h e r e c o v e r y of amines. 3. I t i s e v i d e n t from t h e use o f Fox R i v e r water as a m a t r i x t h a t some o f t h e amines c o u l d be bound t o t h e b i o l o g i c a l and/or i n o r g a n i c p a r t i c u l a t e m a t t e r present. Procedures s t ~ o u l dbe developed t o account f o r such bound residues. 4. L i q u i d chromatography u s i n g e i t h e r u l t r a v i o l e t absorbance o r f l u o r e s c e n c e d e t e c t o r s can s u c c e s s f u l l y be used f o r t h e q u a n t i t a t i v e a n a l y s i s of complex m i x t u r e s o f aromatic and h e t e r o c y c l i c arnines. Separation, u s i n g g r a d i e n t s o f a c e t o n i t r i l e i n water and m i c r o p a r t i c u l a t e reversephase columns such as ~BondapakC 1 8 y yields the highest resolution. L i q u i d chromatography may o f f e r some advantages over gas chromatography f o r t h e a n a l y s i s of thermal l y l a b i 1e compounds o r p o l a r metabol it e s o f ami nes. LITERATURE CITED A i g n e r , R.; S p i t z y , H.; and F r e i , R.W. 1976. Source p r o p e r t i e s o f s i l v e r 1oaded s i 1 -ica g e l s u p p o r t s f o r 1 i q u i d chromatography. Anal. Chem. 48:2-7. Andersons, A.; J u r e l s , S.; and Shimanskaya, M.V. 1973a. Gas l i q u i d chromat o g r a p h y o f some a l i p h a t i c and h e t e r o c y c l i c mono- and p o l y f u n c t i o n a l amines. V I I I . Q u a l i t a t i v e s t a n d a r d - f r e e a n a l y s i s o f a l i p h a t i c amino- and hydroxy compounds. Latv. PSR Zinat. Akad. V e s t i s , K i m . S e r . 1973(6) :723-36. [ I n Chem. Abstr. 80: 90947t (1974) ] Andersons, A. ; J u r e l s , S. ; and Shimanskaya, M.V. 1973b. Gas 1 i q u i d chromat o g r a p h y o f some a l i p h a t i c and h e t e r o c y c l i c mono- and p o l y f u n c t i o n a l amines. I X . Q u a l i t a t i v e a n a l y s i s o f t h e sirrlplest a r o m a t i c amines and hydroxy compounds. Latv. PSR Zinat. Akad. V e s t i s , K i m . S e r . 1 9 7 3 ( 6 ) : 677-86. [ ~ n Chem. Abstr. 80: 90954t (1974) ] Benson, J. R. , and Hare, P.E. 1975. o-Phthalaldehydes: f l u o r o g e n i c d e t e c t i o n o f p r i m a r y amines i n t h e picomole range. Comparison w i t h f l uorescamine and n i n h y d r i n . Proc. Nut. Acad. S c i . USA 72: 619-22. Bowen, Barr-y E. 1976. D e t e r m i n a t i o n o f a r o m a t i c amines by an a d s o r p t i o n t e c h n i q u e - w i t h f l a m e i o n i z a t i o n gas chromatography. ~ n a i .Chem. 48:1584-87. ' Chow, F.K., and G r u s t ~ k a , E. 1977. S e p a r a t i o n o f a r o m a t i c amine isomers by h i g h p r e s s u r e chromatography w i t h a copper(1 I ) -bonded phase. Anal. Chem. 49:1756-61. Chow, F. K. , and Grust~ka, E. 1978. H i g h performance 1 i q u i d chromatography w i t h m e t a l - s o l u t e complexes. Anal. Chem. 50: 1346-53. 1977. Gas and C l a r k , C.R.; Teague, J.D.; W e l l s , M . M . ; and E l l i s , J.H. h i g h p r e s s u r e 1 i q u i d chromatographic p r o p e r t i e s o f some 4 - n i trobenzamides o f amphetamines and r e l a t e d a r y l e t h y l a m i n e s . Anal. Chem. 49:912-15. C l a r k , C.R., and W e l l s , M.M. 1978. Precolumn d e r i v a t i z a t i o n o f amines f o r enhanced d e t e c t a b i l i t y i n l i q u i d chromatography. J . Chromatogr. S c i . 16:332-39. Czerwiec, Z., and Markowski, J . 1975. Gas chromatographic a n a l y s i s o f a r o m a t i c s u l f i n y l a m i n e s . Chem. Anal. (Warsaw) 2 0 ( 1 ) :213-15. [ I n Chem. Abstr. 83: 21978d (1975)] Daemen, J.M.H.; Dankelman, W.; and Hendriks, M.E. 1975. P r o p e r t i e s and a p p l i c a t i o n s o f Tenax GC as a column p a c k i n g m a t e r i a l i n gas chromatography. J . Chromatogr. S c i . 13(2) :79-83. Diachenko, G.W. 1979. Cletermination o f s e v e r a l i n d u s t r i a1 aromatic amines i n f i s h . Environ. S c i . Technol. 1 3 ( 3 ) :329-33. Englehardt, H.; Asshauer, J.; Neue, U.; and Weigand, N. 1974. Separation on h e a v i l y loaded small p a r t i c l e columns i n h i g h speed l i q u i d chromatography. Anal. Chem. 46:336-40. Farroha, S.M., and Emeishi, S.S. 1975. Gas chromatographic s e p a r a t i o n o f a r o m a t i c amines, n i t r i l e s , and hydrocarbons. Talanta 22(2) : 121-28. [ I n Chem. Abstr. 83:21986e (1975) ] Federal Register. Thursday, May 3, 1973. Volurr~e 48: 10929. Federal Register. Tuesday, January 29, 1974. T i t l e 29 - Labor; Chapter X V I I - Occupational S a f e t y and H e a l t h A d m i n i s t r a t i o n , Department of Labor; P a r t 1910 - Occupational S a f e t y and H e a l t h Standards: Carcinogens. Volume 39: 3756. Golovnya, R.V.; S v e t l o v a , N . I . ; Zhuravleva, I.L.; and Kapustin, Yu. P. 1978. Gas chrornatographi c a n a l y s i s of some p y r a z i n e s and p i p e r a z i nes Zh. Anal. Khim. 33(8) :1618-22. [ I n Chem. Abstr. 90: 15817d ( 1 9 7 9 ) l . Grimmer, G.; Boehnke, H.; and Naujack, K.W. 1978. Simultaneous gas chromato g r a p h i c p r o f i l e a n a l y s i s o f c a r c i n o g e n i c p o l y c y c l i c a r o m a t i c compounds: p o l y c y c l i c a r o m a t i c hydrocarbons, carbazoles and a c r i d i n e s / a r o m a t i c arrlines. Fresenius ' Z . Anal. Chem. 290(2) :147. [:Ln Chem. Abstr. 89: 1141w (1978) I H a e f e l f i n g e r , P. 1975. D e t e r m i n a t i o n o f nanogram amounts o f p r i m a r y aromatic arr~ines and n i t r o cotr~pounds i n b l o o d and plasma. J . Chromatogr. 111(2) :323-29. Heath, R. R. ; Tuml inson, J. ti. ; Do01 it t l e , R. E. ; and Proveaux, A.T. 1975. S i l v e r n i t r a t e - h i g h pressure l i q u i d chromatography o f g e o m e t r i c a l isomers . J . Chromatogr. S c i . 13 :380-82. Karger, B. L. ; Conroe, K. ; and Englehardt, H. 1970. Use o f s u r f a c e t e x t u r e d beads f o r h i g h speed column l i q u i d chromatography. J . Chromatogr. S c i . 8: 242-50. 1974. S e p a r a t i o n o f a r o m a t i c amine isomers Kunzru, D., and F r e i , R.W. by h i g h - p r e s s u r e l i q u i d chromatography on cadrnium-impregnated s i l i c a g e l columns. J . Chromatogr. S c i . 12: 191-96. L e g r a d i , L. 1975. D e t e c t i o n and d e t e r m i n a t i o n o f w - c h l o r o a c i d a n i l i d e s : D e t e r m i n a t i o n o f small amounts o f a r o m a t i c amines. Mikrochim. Acta. 2 ( 3 ) :359-64. [ I n Chem. Abstr. 83: 14.1523~( 1 9 7 5 ) l Lores, E.M.; B r i s t o l , D.W.; and Moseman, R.F. 1978. D e t e r m i n a t i o n o f ha1 ogenated amines and r e 1 a t e d compounds by HPLC w i t h e l e c t r o c h e m i c a l and UV d e t e c t i o n . J . Chromatogr. S c i . 16:358-62. Markacheva, T.M., and Kogan, L.A. 1976. Gas chromatographic d e t e r m i n a t i o n [In o f q u i n o l i n e i n a commercial p r o d u c t . Koks Khim. 1976(5) :36-7. Chem. Abstr. 85: 163100b ( 1 9 7 6 ) l Mefford, I.;K e l l e r , R.W.; Adams, R.N.; Sternson, L.A.; and Y l l o , M.S. 1977. L i q u i d chromatographic d e t e r m i n a t i o n o f picomole q u a n t i t i e s of a r o m a t i c amine carcinogens . Anal. Chem. 49: 683. Mike?, F.; S c h u r i g , V.; and G i l - A v , E. 1973. phases i n high-speed l i q u i d chromatography. Complex-forming s t a t i o n a r y J . Chromatogr. 83:91-7. Nelson, C. R. , and H i t e s , R.A. 1980. Arornatic amines i n and n e a r t h e B u f f a l o R i v e r . Environ. S c i . Technol. 14: 1147-49. Neurath, G.B.; Dunger, M.; P e i n , F.G.; Ambrosius, D.; and S c h r e i b e r , 0. 1977. P r i m a r y and secondary amines i n hurnan environment. ~ d Cosmet. . Toxicol. GB. 15:275-82. Nony, C.R., and Bowman, M.C. 1978. Carcinogens and analogs: t r a c e a n a l y s i s of t h i r t e e n compounds i n adrrtixture i n wastewater and human u r i n e . I n t . J . Environ. Anal. Chem. 5 ( 3 ) :203-20. Pasechnik, T.D., and Rogovik, V.M. 1973. Gas-chromatographic a n a l y s i s of a m i x t u r e o f a r o m a t i c arnines. Zavod. ~ a b .39(3) :286-87. [ I n Chem. ~ b s t r . 78: 1 6 8 3 1 9 ~(1973) 1 Pashkevich, K.I.; K i r i c h e n k o , V.E.; P o s t o v s k i i , I.Ya.; K u l i k o v a , G.S. ; B i l ' d i n o v , K.N.; and Deev, L.E. 1977. Study o f t h e s e n s i t i v i t y o f an e l e c t r o n - c a p t u r e d e t e c t o r f o r a r o m a t i c amides o f p o l y f l u o r o c a r b o x y l ic a c i d s . Zh. Vses. Khim. 0-va. 22(2) :225-27. [ I n Chem. Abstr. 87:47777v ( 1 9 7 7 ) l P r o t i v o v S , J., and ~ o s ~ ? ? i J. l , 1974. A n t i o x i d a n t s and s t a b i 1 i z e r s : XLVII. B e h a v i o r o f amine a n t i o x i d a n t s and a n t i o z o n a n t s and model compounds i n g e l permeation chromatography. J . Chrornatogr. 88:99-107. R i g g i n , R.M.', and Howard, C.C. 1979. D e t e r m i n a t i o n o f b e r i z i d i n e , d i c h l o r o b e n z i d i n e and d i p h e n y l h y d r a z i n e i n aqueous media by h i g h performance 1 i q u i d chromatography. Anal. Chem. 51 :210-14. Samejima, K. 96:250-54. 1974. F l u o r o m e t r i c a n a l y s i s o f polyamines. J . Chromatogr. Samejima, K.; Kawase, M.; Sakamoto, S.; Okada, M.; and Endo, Y. 1976. A s e n s i t i v e flu o r o m e t r i c method f o r t h e d e t e r m i n a t i o n o f a1 i p h a t i c diamines and polyamines i n b i o l o g i c a l m a t e r i a l s by high-speed l i q u i d chromatography. Anal. Biochem. 76:392-406. S e i l e r , N. 1977. Chromatography o f b i o g e n i c amines t o g e n e r a l l y a p p l i c a b l e s e p a r a t i o n s and d e t e c t i o n methods. J . Chromatogr. 143:221-29. Semenov, A.D.; Tambieva, N.S.; and K i s h k i n o v a , T.S. 1974. F a c t o r s a f f e c t i n g t h e dynamics o f t h e c o n c e n t r a t i o n o f v o l a t i l e c a r b o n y l compounds and ami nes i n n a t u r a l w a t e r s . F i z i o l . -Biokhim. Osn. [1n Chem. Abstr. Vzaimodeistviya Rast. Fitotsenozakh. 5 :87-91. 82: 64177p ( 1 9 7 5 ) ] Smi kun, T. Ya. ; Ryabov, A.K. ; and N a b i v a n e t s , 6.1. 1974. D e t e r r r ~ i n a t i o no f v o l a t i l e amines u s i n g g a s - l i q u i d chromatography. Gidrobiol. Zh. 1 0 ( 4 ) :119-22. [1n Chem. Abstr. 82: 64207y (1975) 1 Snyder, L. K. , and K i r k l a n d , J . J . 1976. Introduction t o modem liquid chromatography. New York, NY: John W i l e y and Sons. as-modified Tsuda, T.; I c h i b a , T.; Muramatsu, ti.; and I s h i i , D. 1977. s o l i d chromatography u s i n g o r g a n i c v a p o r s as c a r r i e r gas. II. Mechanism and a p p l i c a t i o n f o r a r o m a t i c amines. J . Chromatogr. 130:87-96. V i v i l e c c k ~ i a , R. ; ThiGbaud, M. ; and F r e i , R.W. 1972. S e p a r a t i o n o f p o l y n u c l e a r a z a - h e t e r o c y c l i c s by h i g h - p r e s s u r e l i q u i d chromatography u s i n g a s i l v e r - i m p r e g n a t e d a d s o r b a n t . J . Chromatogr. S c i . 10:411-16. V'lasova, T.A. 1974. C o m p o s i t i o n o f o r g a n i c m a t t e r i n some l a k e s i n t h e Komi ASSR and Nenets n a t i o n a l d i s t r i c t . Biol. Vnutr. Vod 21:66-70. [ I n Chem. Abstr. 82:21547s (1975) 1 V o g t , C.R.; Ryan, T.R.; and B a x t e r , J.S. 1977. High-speed l i q u i d chromatography on cadmium-modified s i l i c a g e l . J . Chromatogr. 136:221-25. 1978. S i l v e r on l o w s u r f a c e Vogt, C.R. ; B a x t e r , J.S. ; and Ryan, T.R. a r e a s i l i c a g e l and i t s p e r f o r m a n c e i n l i q u i d chromatography. J . Chromatogr. 150:93-9. Weisburger, E.K. ; R u s s f i e l d , A.B. ; Homburger, F. ; W e i s b u r g e r , J.H. ; Boger, E.; Van Dongen, C.G.; and Chu, K.C. 1978. T e s t i n g o f twenty-one e n v i r o n m e n t a l a r o m a t i c amines o r d e r i v a t i v e s f o r l o n g - t e r m t o x i c i t y o r c a r c i n o g e n i c i t y . J . Environ. Pathol. Toxicol. 2 ( 2 ) :325-56. Y l l o , M. S. 1977. A n a l y t i c a l t e c h n i q u e s f o r e c o l o g i c a l and t o x i c o l o g i c a l m o n i t o r i n g . I n Analytical chemistry of s y n t h e t i c d y e s , ed. Krishnasami Venkataraman, pp. 555-80. New York: W i l e y . 61h Chem. Abstr. 87:33965t (197711 Young, P.R., and McNair, H.M. 1976. H i g h - p r e s s u r e ' l i q u i d chromatography o f a r o m a t i c amines. J . Chromatogr. 119: 569-79. Z e l e n i n a , E.N., and Krasnov, V.A. 1974. Q u a n t i t a t i v e d e t e r m i n a t i o n o f p r i m a r y , secondary, and t e r t i a r y a r o m a t i c amines. Otkrytiya, I z o b r e t . , Prom. Obrcztsy, Tovarnye Znaki. 5 1 ( 3 ) :172. [ I n Chem. Abstr. 8 1 :72348q ( 1 9 7 4 ) l
© Copyright 2026 Paperzz