Problem 0.1 (Solving Equations via Higher-Order Unification) 10min Let α := (ι → ι) → ι → ι, solve the equation below via higher-order unification. λXι→ι Yι X(Nα XY ) = λZι→ι Wι Z(Z(ZW )) Solution: We develop the corresponding unfication problem via the higher-order transformations. 1. 2. 3. 4. 5. 6. 7. 8. initial problem: λXι→ι Yι X(Nα XY ) =? λZι→ι Wι Z(Z(ZW )) Sk simplify with SIM:α: a(Nα ab) =? a(a(ab)) where a ∈ ΣSk ι→ι and b ∈ Σι . decompose with SIM:dec to Nα ab =? a(ab) imitate HOU :fr to Nα =? λXι→ι Yι X(Hα XY ) ∧ Nα ab =? a(ab) eliminate N with SIM:elim to Nα =? λXι→ι Yι X(Hα XY ) ∧ a(Hα ab) =? a(ab) decompose with SIM:dec to Nα =? λXι→ι Yι X(Hα XY ) ∧ Hα ab =? ab imitate HOU :fr to Hα =? λXι→ι Yι X(Kα XY ) ∧ Nα =? λXι→ι Yι X(Hα XY ) ∧ Hα ab =? ab eliminate H with SIM:elim to Hα =? λXι→ι Yι X(Kα XY ) ∧ Nα =? λXι→ι Yι X(X(Hα XY )) ∧ a(Kα ab) =? ab 9. decompose with SIM:dec to Hα =? λXι→ι Yι X(Kα XY ) ∧ Nα =? λXι→ι Yι X(X(Nα XY )) ∧ Kα ab =? b 10. project with HOU :fr to Kα =? λXι→ι Yι Y ∧ Hα =? λXι→ι Yι X(Kα XY ) ∧ Nα =? λXι→ι Yι X(X(Kα XY )) ∧ Kα ab =? b 11. eliminate K with SIM:elim to Kα =? λXι→ι Yι Y ∧ Hα =? λXι→ι Yι XY ∧ Nα =? λXι→ι Yι X(XY ) ∧ b =? b 12. decompose SIM:dec to Kα =? λXι→ι Yι Y ∧ Hα =? λXι→ι Yι XY ∧ Nα =? λXι→ι Yι X(XY ) 13. this is a solved equational problem, so the solution is [(λXι→ι Yι Y )/Kα ], [(λXι→ι Yι XY )/Hα ], [(λXι→ι Yι X(XY ))/Nα ] 1
© Copyright 2026 Paperzz