Section 11.1 Notes - Complete Take your bag of M&Ms and the complete the table below showing the frequency of the colors and how they were distributed . Observed Counts The M&M website advertises that plain M&M colors SHOULD be distributed by the following percentages. Expected Rel.Freq. IfyouassumethatthenumberofM&Msinyour bagdoesnotchange,howmanyofeachcolor wouldyouhaveEXPECTEDtoGind,basedon M&Msclaim?Pleasedonotroundtoomuch... Expected Counts Section 11.1 Notes - Complete Ultimatelywewouldliketodetermineifthe differencesweseebetweentheobservedcounts ofcolorsandtheexpectedcountsofcolors (assumingM&M'sclaimistrue)aresigniGicant. Wecoulddothisbyrunning6differentoneproportionz-testsbut... Performingone-proportionztestsforeachcolorwouldn’ttellus howlikelyitistogetarandomsampleofthesamenumber candieswithacolordistributionthatdiffersasmuch(ormore) fromtheoneclaimedbythecompanyasthisbagdoes(takingall thecolorsintoconsiderationatonetime). Forthat,weneedanewkindofsigniGicancetest,calleda chi-squaregoodness-of-1ittest. Theideaofthechi-squaregoodness-of-Gittestisthis:wecompare theobservedcountsfromoursamplewiththecountsthat wouldbeexpectedifH0istrue.Themoretheobservedcounts differfromtheexpectedcounts,themoreevidencewehave againstthenullhypothesis. Section 11.1 Notes - Complete Hypotheses: Thenullhypothesisinachi-squaregoodness-of-Gittestshouldstate aclaimaboutthedistributionofasinglecategoricalvariableinthe populationofinterest.Inourexample,theappropriatenull hypothesisis: Thealternativehypothesisinachi-squaregoodness-of-Gittest isthatthecategoricalvariabledoesnothavethespeciGied distribution.Inourexample,thealternativehypothesisis TestStatistic De1inition: Thechi-squarestatisticisameasureofhowfartheobserved countsarefromtheexpectedcounts.Theformulaforthe statisticis wherethesumisoverallpossiblevaluesofthecategorical variable. Section 11.1 Notes - Complete CalculatetheX2statisticbycopyingyourobservedandexpectedcounts hereanddeterminingtheX2contributionforeachvalueofthevariable color. Observed Counts Expected Counts Chi-Square Contribution ThinkofX2asameasureofthedistanceofthe observedcountsfromtheexpectedcounts. LargevaluesofX2arestrongerevidenceagainst H0becausetheysaythattheobservedcounts arefarfromwhatwewouldexpectifH0were true. SmallvaluesofX2suggestthatthedataare consistentwiththenullhypothesis. Section 11.1 Notes - Complete P-Value Inordertocalculatethep-valueweneedtounderstandtheX2 Distribution. Thesamplingdistributionofthechi-squarestatisticisNOTaNormal distribution. Thechi-squaredistributionsareafamilyofdistributionsthattakeonly positivevaluesandareskewedtotheright.Aparticularchi-square distributionisspeciGiedbygivingitsdegreesoffreedom.Thechi-square goodness-of-Gittestusesthechi-squaredistributionwithdegreesof freedom=thenumberofcategories-1. Findingthep-valueusingTableC: • Locatethecorrectrowusingthedegreesof freedom • ReadacrosstherowtoGindapairofX2values thatcreateanintervalthatcontainsYOURX2 teststatistic • Looktothetopoftheserowstoreadoftwotail probabilities • Yourp-valueliesbetweenthesetwo probabilities. Findyourp-valuefromtheM&Mexampleusing TableC. Section 11.1 Notes - Complete Findingthep-valueusingyourcalculator: • Gotothedistributionmenu • SelectX2cdf(thisshouldseemfamiliar...) • Lower:yourX2teststatistic • Upper:10^99 • df:numberofcategories-1 Findyourp-valuefromtheM&Mexampleusing yourcalculator. Conditions Random:datacamefromarandomsample,randomized experiment,orrandomphenomenon LargeSampleSize:Thesamplesizemustbelargeenoughso thatALLEXPECTEDcountsaregreaterthanorequalto5. Independent:Individualsshouldbeindependent.Ifsampling withoutreplacement,checkthe10%condition. Section 11.1 Notes - Complete Thingstokeepinmind... 1.Thechi-squareteststatisticcomparesobservedandexpected counts.Don’ttrytoperformcalculationswiththeobservedand expectedproportionsineachcategory. 2.WhencheckingtheLargeSampleSizecondition,besureto examinetheexpectedcounts,nottheobservedcounts. Arebirthsevenlydistributedacrossthedaysoftheweek?Theonewaytablebelowshowsthedistributionofbirthsacrossthedaysof theweekinarandomsampleof140birthsfromlocalrecordsina largecity.DothesedatagivesigniGicantevidencethatlocalbirths arenotequallylikelyonalldaysoftheweek? Section 11.1 Notes - Complete Section11.1Homework: p.692#s1,3,5,7,9,11,17
© Copyright 2026 Paperzz