BUSINESS MATHEMATICS (PART– 10) Illustrative Examples Example 1 : Find the maximum and minimum values of x 3 96 x 18 x 2 . Solution : Let (1) y x 3 18 x 2 96 x dy 3x 2 36 x 96 dx Then (2) d2y 6 x 36 dx 2 and (3) For stationary values, i.e. i.e. i.e. (4) or i.e. (5) Now dy 0 dx 3x 2 36 x 96 0 3( x 2 12 x 32) 0 x 2 12 x 32 0 , ( 3 0) ( x 4)( x 8) 0 x 4, 8 d2y 2 24 36 12 negative dx x 4 (6) Hence at x = 4, y is maximum ( x = 4 is called maxima). Further d2y 2 48 36 12 positive dx x 8 (7) so that at x = 8 , y is minimum. Example 2 : Examine maximum and minimum values of x 3 3x 2 6 x 7 . Solution : Let (8) y x 3 3x 2 6 x 7 . dy 3x 2 6 x 6 dx Then (9) d2y 6x 6 dx 2 and (10) For stationary values, i.e. i.e. dy 0 dx 3x 2 6 x 6 0 x 2 2x 2 0 i.e. x 2 48 2 2 4 x 2 (11) This will give imaginary roots. There is neither maximum nor minimum. Example 3 : Examine the maximum and minimum values of 8 x 5 15 x 4 10 x 2 . Solution : Let (12) y 8 x 5 15x 4 10 x 2 dy 40 x 4 60 x 3 20 x dx Then (13) and d2y 160 x 3 180 x 2 20 2 dx (14) For stationary values, i.e. (15) i.e. Roots are i.e. dy 0 dx 40 x 4 60 x 3 20 x 0 20 x(2 x 3 3x 2 1) 0 x 0 , 2 x 3 3x 2 1 0 ( x 1)( x 1)( 2 x 1) 0 Thus stationary points are Now (16) x 0, 1, 1 2 d2y 2 20 = positive (>0) dx x 0 Hence at x = 0, y is minimum d2y 2 160 180 20 0 dx x 1 Further (17) so that at x = 8 , y is minimum. Hence at x = 1, we have f ( x) 0 d2y 1 1 2 160 180 20 0 8 4 dx x 12 20 45 20 negative (18) Hence at x 1 , y is maximum. 2 Now for x = 1, according to working rule (vi), we find d3y f ( x) 480 x 2 360 x 3 dx (19) and (20) d3y 3 480 360 0 . dx x 1 Hence at x =1 there is neither maxima nor minima. Maxima and Minima of Functions of Two Variables We have u f ( x, y ) and we want to find maximum or minimum at x a, y b . Thus f ( x, y ) becomes f (a, b) . Theory of partial differentiation is used. The necessary conditions for f (a, b) to be an extreme value of f ( x, y ) are, that f 0 x and f 0 y at x a, y b . If these conditions are satisfies, and if let , 2 f 2 f 2 f , , and s r t x y x 2 y 2 (1) evaluated at x a, y b , then the sufficient conditions for f (a, b) to be an extreme value of f ( x, y ) are (i) rt s 2 0 (positive) and r 0 (negative), for f (a, b) to be maximum value, (ii) rt s 2 0 (positive) and r 0 (positive), for f (a, b) to be minimum value. Example 1 : Examine the maximum and minimum of x 3 y 2 (1 x y) . Solution : Let (2) Then or u x 3 y 2 (1 x y) u y 2 [ x 3 (1 x y )] x x 2 3 y [ x (1) (1 x y)3x 2 ] y 2 [ x 3 3x 2 3x 3 3x 2 y ] u y 2 (4 x 3 3x 2 3x 2 y ) x y 2 x 2 (3 3 y 4 x) (3) and u x 3 [ y 2 (1 x y )] y y x 3 [ y 2 (1) (1 x y)2 y] x 3 ( y 2 2 y 2 xy 2 y 2 ) or x 3 (3 y 2 2 y 2 xy) u x 3 y (2 2 x 3 y ) y (4) For maxima and minima (necessary condition) or (5) u 0 y 2 x 2 (3 3 y 4 x) x x 0, y 0, 4 x 3 y 3 0 u 0 x 3 y (2 2 x 3 y ) y or x 0, y 0, 2 x 3 y 2 0 (6) so the values are (stationary points) x 0, y 0, x 1 / 2, y 1 / 3 Further (3) gives 2u r y 2 [ x 2 (3 3 y 4 x)] 2 x x r 6 xy 12 x 2 y 2 6 xy3 i.e. (7) Also (4) gives u 2 u s [ x 3 y (2 2 x 3 y )] x y x y x i.e. (8) and again (4) is s 6 x 2 y 8x 3 y 9 x 2 y 2 u 2 u t [ x 3 y (2 2 x 3 y )] 2 y y y y or (9) Now t 2x 3 2x 4 6x 3 y . (rt s 2 )1 / 2,1 / 3 1 4 positive (i.e., >0) 1 ( r )1 / 2,1 / 3 =negative (i.e., <0) 9 1 1 Hence by sufficient conditions, at function, , 2 3 and in (2), is maximum. The maximum value is obtained by putting 3 i.e. (10) x 1 1 ,y 2 3 in (2), i.e. 2 1 1 1 1 1 1 u x , y 1 2 3 2 3 2 3 1 1 1 1 u max 8 9 6 432 .
© Copyright 2026 Paperzz