THEME 1_POLYNOMIAL - Promotion-THALES-2012-2015

𝑇𝐻𝐸𝑀𝐸 1 ∢ π‘ƒπ‘œπ‘™π‘¦π‘›π‘œπ‘šπ‘–π‘Žπ‘™π‘ 
2013
Objectives :
Production :
Organisation :
-
Vocabulary
To introduce the historical background of polynomials
To learn the english vocabulary about polynomial
To learn english methods to find roots of a polynomial
To approch historical application (Fibonacci, Law of fall)
A set of video clips
A verbal presentation of the different methods to find zeroes
A verbal exercise
A biography of Galileo, Fibonacci
4 séances de 1h
Terms coefficients and exponents in a polynomial
Listen to the youtube document. While listening, find key-words and give a translation of each in the table :
https://www.khanacademy.org/math/algebra/polynomials/polynomial_basics/v/terms-coefficients-and-exponents-in-apolynomial
Match words in the table with element of the function below :
Termes
Coefficients
𝑓(π‘₯ ) = π‘Žπ‘₯² + 𝑏π‘₯ + 𝑐
Exposant
Polynôme
Activity 2
Solving for 𝒙 a quadratic
1.
What is a quadratic ?
…………………………………………………………………………………………………………………………………………………….
2.
To find zeroes of a quadratic, just study these three methods :
a. The ac-method
http://www.youtube.com/watch?v=AYkaCZUT4O4
b.
By completing square
https://www.khanacademy.org/math/algebra/quadratics/completing_the_square/v/completing-the-square
c.
The box method
http://www.youtube.com/watch?v=UXDOMz2BGWI
3.
Solve this problem using any method :
1
Section européenne | HOUPERT Nicolas
2013
4. Use the French method to solve the same problem. Draw a conclusion.
5. Given these three polynomials, use each method to find zeroes of each :
𝑃(π‘₯) = π‘₯ 2 βˆ’ 12π‘₯ + 11
𝑄(π‘₯) = 3π‘₯² + 15π‘₯ + 12
𝑅(π‘₯) = βˆ’2π‘₯² βˆ’ 3π‘₯ + 5
2
Section européenne | HOUPERT Nicolas
2013
Activity 3
The most famous quadratic : The Fibonacci’s polynomial
Evariste Galois studied all along his « short » life a set of fractions called « continued
fractions » :
π‘₯=π‘Ž+
Who am I ? …………………………………..
1
𝑏+
1
π‘Ž+
1
1
𝑏+
1
π‘Ž+ 1
𝑏+
…
………………………………………………………
which is also written as π‘₯ = [π‘Ž, 𝑏, π‘Ž, 𝑏, … ] , where π‘Ž, 𝑏 are two strictly positive
integers.
Let’s study the fraction where π‘Ž = 𝑏 = 1.
1. Write π‘₯.
π‘₯=
2. Show that π‘₯ is a zero of the polynomial π‘₯² βˆ’ π‘₯ βˆ’ 1.
3. Solve for π‘₯ the equation : π‘₯² βˆ’ π‘₯ βˆ’ 1 = 0.
3
Section européenne | HOUPERT Nicolas
2013
4. Draw a conclusion to find the correct value of π‘₯.
Let’s study now the general fraction.
5. Prove that π‘₯ is a zero of the polynomial 𝑏π‘₯² βˆ’ π‘Žπ‘π‘₯ βˆ’ π‘Ž.
6. Solve for π‘₯ the equation : 𝑏π‘₯² βˆ’ π‘Žπ‘π‘₯ βˆ’ π‘Ž = 0.
7. Show that π‘₯ =
π‘Žπ‘+βˆšπ‘Ž²π‘²+4π‘Žπ‘
.
2𝑏
4
Section européenne | HOUPERT Nicolas
2013
8. Give the continued fraction of √2.
Activity 4
Law of falls
The work of Galileo Galilei marks the beginning of a new tradition : the full-on application of mathematics to
science. Galileo was one of the first thinkers to believe that the laws of nature are written in the language of
mathematics.
β€œthe distance a body falls under gravity is proportional to the square of the time it takes to fall”, he said.
In simple terms, this is a mathematical formula that relates how far a body falls as a function of the time falling.
1.
What is the formula of this law of fall ? (assuming π‘₯ to be the distance of the fall, and 𝑑 the time
elapsed). Make a drawing to illustrate this statement.
Law of free fall
Who am I ?
…………………………………………………………………
………………………………………………………………..
2.
What could be the constant ?
……………………………………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………………………………
5
……………………………………………………………………………………………………………………………………………………………
Section européenne | HOUPERT Nicolas
2013
3.
Thanks to the table, sketch the graph of the function π‘₯ β†’ π‘₯(𝑑).
4.
What is the shape of this graph ?
………………………………………………………………………………………………………………………………………………………………
5.
𝑑
Fill in the table with data :
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
π‘₯(𝑑)
π‘₯(𝑑)
𝑑²
6.
What must be the constant ?
……………………………………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………………………………….
Activity 5
Interesting Polynomial
Coefficient Problem
Given a third degree polynomial, try to
find its coefficients given 2 roots and the
y-intercept.
First, on this example, locate roots and yintercept of this polynomial :
6
Section européenne | HOUPERT Nicolas
2013
Give a definition of both :
ο‚·
Definition 1 : Root of a polynomial
ο‚·
Definition 2 : y-intercept of a polynomial
ο‚· Now, start to listen to the youtube document and fill in the blanks.
https://www.khanacademy.org/math/algebra/polynomials/polynomial_basics/v/interesting-polynomialcoefficient-problem
In this activity, roots are A(…….. , ……..) and B(…….. , ……..). The y-intercept is P(…….. , ……..).
Give a synonym of root : ………………………………………………………………………………………………………
What is the green point on the axis ? What are the coordinates of this point ?
………………………………………………………………………………………………………………………………………………
How can you rewrite the polynomial (π‘₯) = π‘Žπ‘₯ 3 + 𝑏π‘₯² + 𝑐π‘₯ + 𝑑 ?
………………………………………………………………………………………………………………………………………………
What is the meaning of +𝑏 + 𝑐 + 𝑑 ?
………………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………………
7
Section européenne | HOUPERT Nicolas