Climate Change Impacts on Groundwater Warsaw 12-13 October 2011 Uncertainties in climate change impact modeling (groundwater) Torben O. Sonnenborg Jens Christian Refsgaard Geological Survey of Denmark and Greenland (GEUS) Ministry of Climate and Energy Acknowledgements • • Lieke van Roosmalen, Flinders University Adelaid (previously PhD student, GEUS/University of Copenhagen) Lauren P. Seaby, PhD student, GEUS Dorthe Seifert, Post Doc, GEUS/ALECTIA A/S • Other colleagues at GEUS • HYACINTS team – Research project: “Hydrological Modelling for Assessing Climate Change Impacts at different Scales” http://www.hyacints.dk • Outline 1. Why is uncertainty particularly important in climate change studies? 2. Climate change impact predictions for groundwater – methodology illustrated by example 3. Uncertainty in climate change impact predictions cascade of uncertainties 4. Example – uncertainty on climate projections versus uncertainty on geology 5. Conclusions Why is uncertainty particularly important in relation to climate change? • Hydrological models used for climate impact predictions can not be calibrated against data from future climate conditions larger prediction uncertainties Calculations of climate change effects on hydrology Present climate Downscaling Bias correction Future climate Global Regional Hydrological Models 100-250 km 10-25 km 50-500 m Scale DK-model - The hydrological model Seven sub-models – Horisontal discretization: 500 m – Vertical discretization – layers; varying numbers and geometry Submodel Total area (km2) Active grids pr. layer Omr. 1 – Sjælland 7163 37569 Omr. 2 – Sydhavsøerne 2042 13885 Omr. 3 – Fyn 3473 24009 Omr. 4 – Sønderjylland 7897 35869 Omr. 5 – Midtjylland 11578 49993 Omr. 6 – Nordjylland 9934 47649 Omr. 7 – Bornholm 2358 10106 Model code MIKE SHE/MIKE11 3D groundwater flow 2D overland flow Drain flow (pipes, ditches) 1D river routing 1D unsaturated zone, (evapotranspiration) • Degree-day snow melt/accumulation • • • • • Geology/ hydrostratigraphy • Borehole data • Geological interpretation • Incorporation of knowledge from more than 50 local geological models established by regional authorities (incl. geophysical data) DK-model data basis beyond geology Model setup • Rivers • • River cross-sections (MIKE11) for all major streams Discharge from urban sewage treatment plants • Water supply – all as groundwater abstraction • 23,500 plants (40,000 intakes) for water supply, including irrigation • Precipitation: DMI’s 10 km grid daily values • Temperature, potential evapotranspiration: DMI’s 20 km grid Model calibration/validation (1990-2006) • 183 stream discharge stations, daily values • > 10,000 wells with groundwater head observations Example of predictions of climate change impacts on hydrology (van Roosmalen et al., 2007, 2010) Climate model projections: • A2 and B2 scenarios • HIRHAM • 2071-2100 Hydrological model • DK-model Impacts on • Groundwater heads • River discharges Western Jutland 5460 km2 Zealand 7230 km2 Change in groundwater head and discharge Discharge, Skjern river Skjern Å Relativ ændring Relative change(%) (%) 40 Change in head (m) A2 30 B2 20 10 0 -10 J F M A M J J A S O N D -20 Måned Month Van Roosmalen et al. (2007) Climate change impacts on hydrology The cascade of uncertainties • Emission scenarios (CO2) Present climate Downscaling Bias correction Future climate Global Regional Hydrological Models 100-250 km 10-25 km 50-500 m Scale IPCC Greenhouse Gas Emission Scenarios Climate change impacts on hydrology The chain of uncertainties • Emission scenarios • Climate models (GCM + RCM) Present climate Down scaling Bias correction Future climate Global Regional Hydrological Models 100-250 km 10-25 km 50-500 m Scale Uncertainties on climate models’ projections - Delta change factors on precipitation 2071-2100 1,6 1,6 1,6 Factor Change Delta Factor Change Delta Factor Change Delta 1,4 1,4 1,4 ARPEGE-CNRM ARPEGE-DMI BCM-DMI BCM-SMHI ARPEGE-DMI ECHAM-DMI ECHAM-ICTP ECHAM-KNMI ARPEGE-DMI ECHAM-MPI ECHAM-SMHI HADQ0-ETHZ BCM-DMI HADQ0-HC Mean 1,2 1,2 1,2 1 11 0,8 0,8 0,8 0,6 0,6 0,4 0,4 0,4 Jan Jan Jan Feb Feb Feb Mar Mar Mar Apr Apr Apr Lauren P Seaby PhD project www.hyacints.dk Preliminary results May May May Jun Jun Jun Jul Jul Jul Aug Aug Aug Sep Sep Sep Oct Oct Oct Nov Nov Nov Dec Dec Dec Data from 11 climate models in the ENSEMBLES project (A1B) Climate change impacts on hydrology The chain of uncertainties • Emission scenarios • Climate models (GCM + RCM) • Downscaling / bias correction Present climate Down scaling Bias correction Future climate Global Regional Hydrological Models 100-250 km 10-25 km 50-500 m Scale HIRHAM model results - A2 scenario 2071-2100, different resolution and sea surface temperature forcings over Baltic Sea Present climate/control period (1961-90) Future climate (2071-2100) Van Roosmalen et al. (2010) Bias correction (statistical downscaling) of precipitation Delta Change Method (correction of observed precipitation) Skalering af nedbør nedbør Observeret Observed precipitation Scaled precipitation Nedbør (mm/dag) Transformation of precipitation Critical assumption: 40 30 M fut = present dynamics Future dynamics 35 25 Pfut change Pobs in number of rainfall days No 30 M cont 20 No change in distribution of rainfall intensity 25 15 20 Etc. M:15Mean monthly precipitation (30 years period) 10 : Future climate 10Mfut 5 5M cont : Present climate (control period) 0 1-12-99 11-12-99 21-12-99 Dato Observeret Delta Change Observeret 31-12-99 Statistical downscaling/bias correction • Many different methods for making statistical downscaling different results • We cannot know beforehand which downscaling method will turn out to be the best one • Example – comparison of two methods for future precipitation • Delta change (monthly correction factors to observed precipitation) • Direct method – Histogram Equalisation Method (Gamma function correction of RCM simulated precipitation) Statistical downscaling of precipitation - Delta change versus Direct method 6000 50 Antal hændelser 40 4000 3000 30 20 10 2000 75-80 70-75 65-70 60-65 55-60 50-55 45-50 35-40 30-35 40-45 30-35 25-30 0 1000 Nedbørsintensitet (mm/dag) Intensity (mm/day) RCM Delta Change Direkte 75-80 70-75 65-70 60-65 55-60 50-55 45-50 40-45 35-40 20-25 15-20 10-15 7-10 5-7 3-5 1-3 0.1-1 0 0 Antal hændelser 5000 Climate change impacts on hydrology The chain of uncertainties • • • • Emission scenarios Climate models (GCM + RCM) Downscaling / bias correction Hydrological model (geology, process equations, parameter values, input data) Present climate Down scaling Bias correction Future climate Global Regional Hydrological Models 100-250 km 10-25 km 50-500 m Scale Uncertainty on climate models versus geological uncertainty Case study Dorthe Seifert, ALECTIA Postdoc www.hyacints.dk Preliminary results Uncertainty on climate models versus geological uncertainty Step 1 Six different geological models Step 2 Six groundwater models. Calibrated against head and discharge data Step 3 Case study Dorthe Seifert, ALECTIA Postdoc www.hyacints.dk Preliminary results Apply climate 2071-2100 from 11 different climate models Predicted change in groundwater head - 11 climate model projections 2071-2100 - 6 geologies/groundwater models ECHAM-MPI ECHAM-SMHI HADQ0-ETHZ HADQ0-HC -1.08 0.14 0.40 0.60 0.14 0.34 0.15 0.40 0.28 -0.47 -0.02 0.60 N2 -0.94 -0.88 0.12 0.33 0.49 0.11 0.27 0.12 0.32 0.23 -0.41 -0.02 0.49 R1 -0.73 -0.69 0.11 0.31 0.48 0.13 0.28 0.13 0.33 0.24 -0.32 0.02 0.42 R2 -0.61 -0.59 0.08 0.25 0.39 0.09 0.21 0.10 0.25 0.18 -0.28 0.01 0.34 L1 -1.01 -1.00 0.18 0.49 0.71 0.23 0.45 0.21 0.50 0.39 -0.39 0.07 0.60 L2 -1.12 -1.07 0.19 0.52 0.82 0.23 0.48 0.21 0.55 0.40 -0.47 0.07 0.66 Mean models -0.93 -0.89 0.14 0.38 0.58 0.16 0.34 0.15 0.39 0.29 -0.39 0.02 Std. models 0.22 0.21 0.04 0.10 0.16 0.06 0.11 0.05 0.11 0.09 0.08 Decrease in Dhmean Increase in Dhmean Std. clim-.mod ECHAM-KNMI Mean clim. mod. ECHAM-ICTP -1.16 (m) ECHAM-DMI BCM-DMI N1 Dhmean BCM-SMHI ARPEGE-DMI ARPEGE-CNRM Mean change over model area: Dh = hfuture - hpresent 24 Conclusions • Climate change predictions involves large uncertainties cascade of uncertainties • Uncertainty on climate model projections often dominating • Different geological interpretations result in different predictions on climate change impacts on groundwater Further information Journal papers • van Roosmalen L, Christensen BSB, Sonnenborg TO (2007) Regional differences in climate change impacts on groundwater and stream discharge in Denmark. Vadose Zone Journal, 6, 554–571. • van Roosmalen L, Christensen JH , Butts MB, Jensen KH, Refsgaard JC (2010) An intercomparison of regional climate model data for hydrological impact studies in Denmark. Journal of Hydrology, 380, 406-419. • van Roosmalen L, Sonnenborg TO, Jensen KH, Christensen JH (2011) Comparison of hydrological simulations of climate change using pertubation of observation and distribution-based scaling. Vadose Zone Journal, 10, 136-150. • Henriksen HJ, Troldborg L, Nyegaard P, Sonnenborg TO, Refsgaard JC, Madsen B (2003) Methodology for construction, calibration and validation of a national hydrological model for Denmark. Journal of Hydrology, 280(1–4), 52–71. • Henriksen HJ, Troldborg L, Højberg AL, Refsgaard JC (2008) Assessment of exploitable groundwater resources of Denmark by use of ensemble ressource indicators and numerical groundwater-surface water model. Journal of Hydrology, 348(1-2), 224-240. Hydrological Modelling for Assessing Climate Change Impacts at different Scales http://www.hyacints.dk
© Copyright 2026 Paperzz