ESZA006-13 Optimal Control Theory (3-0-4) Syllabus: Introduction to the Calculus of Variations. Fundamental Lemma of the Calculus of Variations. The Euler-Lagrange equation in the basic problem of the Calculus of Variations. Functionals depending on higher-order derivatives; variational problem for many-variable functionals; Euler-Poisson equation. Applications of the Calculus of Variations. Problem-solving examples. Variational problems with conditional extrema. Optimization of dynamical systems, Pontryagin’s maximum principle. Least-time problem. Dynamic programming, Bellman’s principle, the Hamilton-JacobiBellman equation. Optimal systems based on quadratic performance indices: the linear-quadratic regulator. Prerequisites: Instrumentation and Control. Required texts: ● LEITMANN, G. The Calculus of Variations and Optimal Control: An Introduction. New York: Plenum Press, 1981. ● NAIDU D.S. Optimal control systems. Boca Raton, FL: CRC Press, 2002. Additional texts: ● LEWIS, F.L.; SYRMOS, V.L. Optimal control. 2nd ed. New York: Wiley, 1995. ● KIRK, D.E. Optimal Control Theory: An Introduction. Englewood Cliffs: Prentice-Hall, 1970. Republished by Dover, 2004. ● BRYSON, A.E., Jr.; Ho, Y.-C. Applied Optimal Control, Optimization, Estimation and Control. Boca Raton, FL: Taylor & Francis, 1987. Further Bibliography: ● ELSGOLTS, L. Differential Equations and the Calculus of Variations. Moscow: Mir, 1977. ● KRASNOV, M.L.; MAKARENKO, G.I.; KISELIOV, A.I. Cálculo Variacional (Calculus of Variations ¾ in Portuguese). Moscow: Mir, 1984. ● BAUMEISTER, J.; LEITÃO, A. Introdução à Teoria do Controle e Programação Dinâmica (Introduction to Control Theory & Dynamical Programming ¾ in Portuguese only). Rio de Janeiro: IMPA, 2008.
© Copyright 2026 Paperzz