1/26/2013 Math 103 – Rimmer 2.6 Limits at Infinity; Horizontal Asymptotes lim f ( x ) = L some finite number ⇒ y = L is a horizontal x →∞ asymptote of f ( x ) lim f ( x ) = M ⇒ y = M is a horizontal x → −∞ some finite asymptote of f ( x ) number lim arctan x = x →∞ y = arctan x lim arctan x = x →−∞ g ( x) =2 = −2 =∞ = −∞ = −∞ π 2 −π 2 Math 103 – Rimmer 2.6 Limits at Infinity; Horizontal Asymptotes y=2 y = −2 x=3 x=0 x = −2 1 1/26/2013 Math 103 – Rimmer 2.6 Limits at Infinity; Horizontal Asymptotes From section 2.3: Let k and a be constants. Let lim f ( x ) = L and lim g ( x ) = M x→a x→a ( with L and M finite and M ≠ 0 ) 1) lim f ( x ) + g ( x ) = lim f ( x ) + lim g ( x ) = L + M x→a x →a x→a 2 ) lim f ( x ) − g ( x ) = lim f ( x ) − lim g ( x ) = L − M x→a x →a x →a 3) lim f ( x ) ⋅ g ( x ) = lim f ( x ) ⋅ lim g ( x ) = LM x →a x →a x→ a 4 ) lim x→a f ( x) g ( x) = lim f ( x ) x →a lim g ( x ) = L M ( the key here is that M ≠ 0 ) n x→a 5 ) lim kf ( x ) = k ⋅ lim f ( x ) = kL x →a All these hold when you replace x → a with x → ∞ n 8 ) lim f ( x ) = lim f ( x ) = Ln x→a x→a x→a n any positive integer 6 ) lim k = k x→a 7 ) lim x = a x→a 9 ) lim n f ( x ) = n lim f ( x ) x→a x→a n any positive integer If n is even, assume lim f ( x ) > 0 x→a Math 103 – Rimmer 2.6 Limits at Infinity; Horizontal Asymptotes 1 =0 x →∞ x 1 lim = 0 x → −∞ x lim If r > 0 is a rational number, then lim x →∞ 1 =0 xr If r > 0 is a rational number such that x r is defined for all x, 1 then lim r = 0 x → −∞ x 2 1/26/2013 Math 103 – Rimmer 2.6 Limits at Infinity; Horizontal Asymptotes 3x2 − x + 4 x →∞ 2 x 2 + 5 x − 8 lim Algebraic way of solving this problem: 1. Find the highest power of x in the denominator, call it p 1 2. Multiply numerator and x2 = lim 1 x →∞ 1 2 denominator by p 2 x + 5 x − 8 ( ) x2 x 0 0 1 4 1 4 3− + 2 lim 3 − lim + lim 2 3 x →∞ x x →∞ x x x = x →∞ = lim = x →∞ 5 8 5 0 8 0 2 2+ − 2 lim 2 + lim − lim 2 x →∞ x →∞ x x →∞ x x x ( 3x 2 − x + 4 ) If f ( x ) is a rational function, with deg. num. = deg. denom. ⇒ lim f ( x ) = x →±∞ coeff. of leading term in num. coeff. of leading term in denom. Math 103 – Rimmer 2.6 Limits at Infinity; Horizontal Asymptotes x2 + 4 x → −∞ x 2 + x 3 − 1 lim (x = lim x → −∞ (x 2 2 + 4) 1 x3 + x 3 − 1) 1 x3 0 0 1 4 1 4 + 3 lim + lim 3 x → −∞ x x → −∞ x = lim x x = lim 0 = 0 0 x → −∞ 1 x → −∞ 1 1 1 +1− 3 lim + lim 1 − lim 3 x → −∞ x x → −∞ x → −∞ x x x If f ( x ) is a rational function, with deg. num. < deg. denom. ⇒ lim f ( x ) = 0 x →±∞ 3 1/26/2013 Math 103 – Rimmer 2.6 Limits at Infinity; Horizontal Asymptotes x3 − 2 x + 3 x →∞ 5 − 2 x2 lim 0 2 3 x− + 2 ( x − 2 x + 3) x12 x x = lim x = −∞ = lim = lim x →∞ −2 x →∞ x →∞ 50 −2 ( 5 − 2 x2 ) x12 2 x 3 If f ( x ) is a rational function, with deg. num. > deg. denom. then lim f ( x ) could be ∞ or − ∞ based on x →±∞ a) the leading coefficients, b) the leftover power of x in the numerator being odd or even, c) whether the limit is going to ∞ or − ∞ Math 103 – Rimmer 2.6 Limits at Infinity; Horizontal Asymptotes lim x → −∞ = lim x → −∞ 9 x6 − x x3 + 1 ( x3 leading term in denominator since x → −∞, x 3 is negative ⇒ x 6 must be negative 9 x6 − x 1 9 x6 − x 9x − x 3 x = lim x3 − x6 = lim ( x3 + 1) x13 x→ −∞ 1 + x13 x→ −∞ 1 + 13 x 6 ) 10 9 x6 − x − 9 − − x5 = − 9 x6 = lim = lim x → −∞ 10 x → −∞ 1 1 1+ 3 1+ 3 x x = −3 4 1/26/2013 Math 103 – Rimmer 2.6 Limits at Infinity; Horizontal Asymptotes lim 9 x 2 + x − 3 x x→ ∞ ( = lim 9 x 2 + x − 3x 1 x→ ∞ = lim x→ ∞ x 2 9 x + x + 3x )( ( ) = lim (9 x + x ) − 9 x 9 x + x + 3x 9 x + x + 3x ) 9 x 2 + x + 3x x⋅ x→ ∞ ( 1 9 x + x + 3x x = lim x→ ∞ ) 2 9x2 + x ∼ x x is the leading term in the denominator 1 x 1 2 9x + x +3 x2 2 2 x→ ∞ 2 = lim 2 = lim = lim x→ ∞ x→ ∞ 1 = lim 2 9x + x +3 x x→ ∞ 1 2 9x + x x2 +3 1 1 = 0 9 +3 1 9+ +3 x = 1 6 5
© Copyright 2026 Paperzz