(Hanging cable) It can be shown that the curve y(x) of an inextensible flexible homogeneous cable hanging between two fixed points is obtained by solving y" k 1 y' 2 , where the constant k depends on the weight. This curve is called a catenary (from Latin catena = the chain). Find y(x), assuming k=1 and those fixed points are (-1, 0) and (1,0) in a vertical xy-plane. y" k 1 y' 2 Set y' dy dx k 1 and y 1 0, y1 0 z, y" dz The original equation becomes as dx dz k 1 z2 dx dz 1 z 2 # k dx ln z 1 z 2 kx C * z 1 z 2 C1e kx; C1 eC * 1 z 2 C1ekx z 2 C12e 2kx z 2 2C1ze kz kx 2 2kx kx C 2C1 ze kx C12 e 2kx 1; z e C1 e 1 1 e kx e 2C1 2 2C1 1 z 2 C1e kx z Since z kx kx dy y zdx C 2 1 C1e kx e dx C 2 1 C1e kx e C 2 2 C1 2k C1 dx kx General sol. y 1 C1e kx e C2 2k C1 Substitute the boundary values, 1, 0 and 1, 0 and k = 1 into the general solution 1 C e 1 e C 0 2 2 1 C1 1 C e e 1 C 0 2 2 1 C1 1 -○ 2 ○ 1 ○ 2 ○ e e1 C1 C11 0; C1 C11 0 e e 1 C1 1, C 2 2 C1 1 or 1 e e 1 C1 1, C 2 2 Particular sol. e e 1 x x 1 y e e 2 2 e e 1 x x 1 o ry e e 2 2 depends on the choice of y-axis orientation. # Set z tan , dz sec 2 d dz 1 z 2 sec 2 2 d sec d sec d ln sec tan 1 tan 2 sec 2 ln 1 x 2 x 另解: Set y ' dy dx dy z, y" dz dz z dz dx zdz z dz k 1 z 2 ; dy zdz 1 z2 dy dx 1 z 2 dy kdy Integrate both sides k dy C1 dy C1 k 1 1 z 2 2 y C1; 1 z 2 y C1 2 ; z 2 y C1 2 1 1 dy dx y C1 2 1; ln y C1 y C1 dy y C1 2 1 dx C * y C1 2 1 x C * ln y C1 y C1 2 1 x C * y C1 2 1 C2 e x ; C2 eC * y C1 2 1 C2 e x y C1 y C1 2 1 C2 e x y C1 2 C22 e 2 x y C1 2 2C2 e x y C1 1 C22 e 2 x 2C2 e x y C1 C22 e 2 x 2C2 e x y 2C1C2 e x C2 e x C2 e x 2C1 2C2 e x y 2C 2 e x y C 2 e x C 2 e x 2C1 1; y 1 C 2 e x 2C1 1 e x 2 General sol.: y 1 C2 e x 1 e x C1 2 C2 2C 2 With the boundary conditions 1, 0, 1, 0 We get From 1 ○ 1 C e 1 1 e C 0 1 2 2 C 2 1 ○ 1 C e 1 e 1 C 0 1 2 2 C2 2 ○ and C2 1, C1 1 e e 1 2 ○ 2 Particular sol.: y 1 e x e x 1 e e 1 2 2
© Copyright 2026 Paperzz