Advanced Engineering Mathematics by Erwin Kreyszig Eight Ed

(Hanging cable) It can be shown that the curve y(x) of an inextensible flexible homogeneous
cable hanging between two fixed points is obtained by solving y"  k 1  y' 2 , where the
constant k depends on the weight. This curve is called a catenary (from Latin catena = the
chain). Find y(x), assuming k=1 and those fixed points are (-1, 0) and (1,0) in a vertical
xy-plane.
y"  k 1  y' 2
Set y' 
dy
dx
k  1 and y  1  0, y1  0
 z, y"  dz The original equation becomes as
dx
dz
 k 1 z2
dx

dz
1 z 2
#  k  dx
ln z  1  z 2  kx  C *
z  1  z 2  C1e kx; C1  eC *
1  z 2  C1ekx  z

2  C12e 2kx  z 2  2C1ze kz
kx 2 2kx
kx
C

2C1 ze kx  C12 e 2kx  1; z  e
C1 e
 1  1 e kx  e
2C1
2
2C1
1  z 2  C1e kx  z
Since z 
 kx 
 kx 


dy
 y   zdx  C 2  1   C1e kx  e
dx  C 2  1  C1e kx  e

 C 2
2 
C1 
2k 
C1 
dx
 kx 

General sol. y  1  C1e kx  e
  C2
2k 
C1 
Substitute the boundary values,  1, 0 and 1, 0 and k = 1 into the general solution
1  C e 1  e  C  0


2
2 1
C1 
1  C e  e 1  C  0


2
2 1
C1 
1 -○
2
○
1
○
2
○
e  e1  C1 C11   0; C1 C11  0
 e  e 1 

C1  1, C 2   
2
C1  1 or  1
 e  e 1 

C1  1, C 2  
2
Particular sol.
 e  e 1 

x
x
1
y  e e

2
2


 e  e 1 

x
x
1
o ry   e  e

2
2


depends on
the choice of y-axis orientation.
# Set z  tan  , dz  sec 2  d

dz
1 z 2

sec 2 
2
d   sec  d   sec d  ln sec   tan 
1 tan 2 
sec 2 
 ln 1  x 2  x
另解:
Set y ' 
dy
dx
dy
 z, y"  dz  dz
 z dz
dx
zdz
z dz  k 1  z 2 ;
dy

zdz
1 z2
dy dx
1 z
2
dy
 kdy Integrate both sides
 k  dy  C1   dy  C1
k 1
1  z 2 2  y  C1; 1  z 2   y  C1 2 ; z 2   y  C1 2  1
1
dy

dx
 y  C1 2 1; 
ln y  C1 
y  C1 
dy
 y  C1 2 1
  dx  C *
 y  C1 2  1  x  C *
ln y  C1 
 y  C1 2  1  x  C *
 y  C1 2  1  C2 e x ; C2  eC *
 y  C1 2  1  C2 e x   y  C1 
 y  C1 2  1  C2 e x   y  C1 
2
 C22 e 2 x   y  C1 2  2C2 e x  y  C1 


 1  C22 e 2 x  2C2 e x  y  C1   C22 e 2 x  2C2 e x y  2C1C2 e x  C2 e x C2 e x  2C1  2C2 e x y




2C 2 e x y  C 2 e x C 2 e x  2C1  1; y  1 C 2 e x  2C1  1 e  x
2
General sol.: y  1 C2 e x  1 e  x   C1
2 
C2

2C 2
With the boundary conditions  1, 0, 1, 0
We get
From
1
○
1 C e 1  1 e  C  0
1
2  2
C 2 
1
○
1 C e  1 e 1   C  0
1
2  2
C2

2
○
and

C2  1, C1   1 e  e 1
2
○
2

 
Particular sol.: y  1 e x  e  x  1 e  e 1
2
2

