4.4 Indeterminate Forms and l’Hospital’s Rule 12) lim sin 4x x→0 tan 5x indeterminate form 0 0 x2 1−cos x x→0 indeterminate form 0 0 2x x→0 sin x indeterminate form 0 0 indeterminate form 0 0 indeterminate form ∞ ∞ Indeterminate form ∞ ∞ indeterminate form 0 0 indeterminate form 0 0 4 cos 4x 2 x→0 5 sec 5x = lim 14) = 4 5 lim = lim 2 x→0 cos x = lim 18) lim ln x x→1 sin πx 1 x→1 x = lim 20) =2 lim x→∞ · 1 π cos πx = − π1 ln(ln x) x 1 1 x→∞ ln x x · = lim 1 1 x x→∞ ln x = lim = lim x→∞ 22) lim t→0 1 1 x = lim x = ∞ x→∞ 8t −5t t = lim 8t ln 8 − 5t ln 5 t→0 = ln 8 − ln 5 = ln 85 28) lim x−sin x x→0 x−tan x 1−cos x 2 x→0 1−sec x = lim (1−cos x) 2 x→0 cos x−1 = lim · cos2 x 2 cos x 1 = lim − cos x+1 = − 2 x→0 1 34) x lim −1 x→0 tan (4x) lim x→0 42) lim 1 √ x→∞ Indeterminate form ∞ ∞ x xe− 2 = lim p x→∞ 46) 0 0 1 4 = 4 1+(4x)2 indeterminate form x ex = q lim xx x→∞ e = q lim 1x x→∞ e =0 lim x tan( x1 ) indeterminate form ∞ · 0 x→∞ = lim 1 tan( x ) 1 x x→∞ 1 ) −x−2 sec2 ( x −2 −x x→∞ = lim = lim sec2 ( x1 ) = 1 x→∞ 62) 1 lim (ex + x) x indeterminate form ∞0 x→∞ = lim e ln(ex +x) x x→∞ = elimx→∞ = elimx→∞ = elimx→∞ = elimx→∞ ln(ex +1) x ex +1 ex +x ex ex +1 ex ex =e 2 indeterminate form ∞ ∞ indeterminate form ∞ ∞ indeterminate form ∞ ∞
© Copyright 2025 Paperzz