MAT 17: Introduction to Mathematics
Truth Tables for Compound Logical Statements and Propositions β Answers
Directions:
Complete a truth table for each exercise. Identify any tautologies and equivalent
basic statements (i.e., NOT, AND, OR, IF-THEN, IFF, etc.) where appropriate.
1. (π β§ π) β¨ ~π
π
T
T
F
F
π
T
F
T
F
πβ§π
T
F
F
F
~π
F
F
T
T
(π β§ π ) β¨ ~π
T
F
T
T
Equivalent to π β π
2. ~π β (~π β¨ π)
π
T
T
F
F
π
T
F
T
F
~π
F
T
F
T
~π
F
F
T
T
~π β¨ π
T
F
T
T
~π β (~π β¨ π )
T
F
T
T
Equivalent to π β π
3. (~π β π) β¨ (~π β§ ~π)
π
T
T
F
F
π
T
F
T
F
~π
F
F
T
T
~π β π
T
T
T
F
~π
F
T
F
T
~π β§ ~π
F
F
F
T
(~π β π ) β¨ (~π β§ ~π )
T
T
T
T
Tautology
Prof. Fowler
4. [ π β§ (π β¨ ~π) ] β (~π β§ π)
π
T
T
T
T
F
F
F
F
π
T
T
F
F
T
T
F
F
π
T
F
T
F
T
F
T
F
~π
F
T
F
T
F
T
F
T
π β¨ ~π
T
T
F
T
T
T
F
T
π β§ (π β¨ ~π)
T
T
F
T
F
F
F
F
~π
F
F
F
F
T
T
T
T
~π β§ π
F
F
F
F
T
T
F
F
[ π β§ (π β¨ ~π) ] β (~π β§ π )
F
F
T
F
T
T
T
T
Prof. Fowler
5. [ (~π β§ π) β π ] β [ (~π β ~π) β¨ π ]
π
π
π
~π
~π β§ π
(~π β§ π) β π
~π
~π β ~π
(~π β ~π) β¨ π
[ (~π β§ π) β π ] β [ (~π β ~π) β¨ π ]
T
T
T
T
F
F
F
F
T
T
F
F
T
T
F
F
T
F
T
F
T
F
T
F
F
F
T
T
F
F
T
T
F
F
T
T
F
F
F
F
T
T
T
F
T
T
T
T
F
T
F
T
F
T
F
T
T
F
T
T
T
F
T
T
T
T
T
T
T
F
T
T
T
T
T
F
T
F
T
T
Prof. Fowler
6. { π β§ [ (~π β¨ π) β ~π ] } β [ ~(~π β π) β (π β§ ~π) ]
π
π
π
π
~π
~π β¨ π
~π
(~π β¨ π) β ~π
π β§ [ (~π β¨ π) β ~π ]
~π
~π β π
~(~π β π)
~π
π β§ ~π
~(~π β π) β (π β§ ~π)
{ π β§ [ (~π β¨ π) β ~π ] } β
[ ~(~π β π) β (π β§ ~π) ]
T
T
T
T
T
T
T
T
F
F
F
F
F
F
F
F
T
T
T
T
F
F
F
F
T
T
T
T
F
F
F
F
T
T
F
F
T
T
F
F
T
T
F
F
T
T
F
F
T
F
T
F
T
F
T
F
T
F
T
F
T
F
T
F
F
T
F
T
F
T
F
T
F
T
F
T
F
T
F
T
T
T
T
T
F
T
F
T
T
T
T
T
F
T
F
T
F
F
F
F
F
F
F
F
T
T
T
T
T
T
T
T
F
F
F
F
T
F
T
F
T
T
T
T
F
T
F
T
F
F
F
F
T
T
F
F
T
F
T
F
F
T
F
F
F
F
F
F
T
T
T
T
F
F
F
F
T
T
T
T
F
F
T
T
T
T
F
F
F
F
T
T
T
T
F
F
T
T
F
F
F
F
T
T
T
T
F
F
F
F
T
T
F
F
T
T
F
F
T
T
F
F
T
T
F
F
T
T
F
F
T
F
F
F
T
F
F
F
T
F
F
F
T
F
F
F
T
T
T
T
T
F
F
F
T
T
T
T
T
F
T
T
T
T
T
T
T
T
F
T
T
T
T
T
T
T
Prof. Fowler
© Copyright 2026 Paperzz