Lecture 16 Cramer’s Rule, Eigenvalue and Eigenvector Shang-Hua Teng Determinants and Linear System Cramer’s Rule a11 a12 a 21 a22 a31 a32 a13 x1 b1 a11 a12 a23 x2 b2 a21 a22 a31 a32 a33 x3 b3 x1 b1 det b2 b3 a13 x1 a23 x2 a33 x3 a12 a22 a32 a12 a11 det a21 a22 a31 a32 a13 a23 a33 a13 a23 a33 0 0 b1 1 0 b2 0 1 b3 a12 a22 a32 a13 a23 a33 Cramer’s Rule • If det A is not zero, then Ax = b has the unique solution det[ a1 , , ai 1 , b, ai 1 , an ] xi det A i 1,2,..., n Cramer’s Rule for Inverse A 1 ij C ji det A i, j 1,2,..., n Proof: A 1 ij det[ a1 ,, ai 1 , e j , ai 1 , an ] det A Where Does Matrices Come From? Computer Science • Graphs: G = (V,E) Internet Graph View Internet Graph on Spheres Graphs in Scientific Computing Resource Allocation Graph Road Map Matrices Representation of graphs Adjacency matrix: A (aij ) , aij # ij edges Adjacency Matrix: 1 5 4 1 Aij 0 0 2 1 A 1 3 0 1 if (i, j) is an edge if (i, j) is not an edge 1 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 Matrix of Graphs Adjacency Matrix: • If A(i, j) = 1: edge exists Else A(i, j) = 0. 1 2 4 1 2 4 -3 3 3 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 Laplacian of Graphs 1 5 2 3 4 3 1 1 0 1 1 2 1 0 0 L 1 1 3 1 0 0 0 1 2 1 1 0 0 1 0 Matrix of Weighted Graphs Weighted Matrix: • If A(i, j) = w(i,j): edge exists Else A(i, j) = infty. 1 2 4 1 2 4 -3 3 3 0 2 0 3 4 0 3 0 1 Random walks How long does it take to get completely lost? Random walks Transition Matrix 1 2 6 4 5 0 1 2 0 P 0 0 3 1 2 1 3 0 0 0 1 2 1 4 1 4 1 3 1 3 0 1 2 0 0 0 0 0 1 4 1 4 0 0 0 1 2 0 1 2 1 3 0 0 1 3 1 3 0 Markov Matrix • Every entry is non-negative • Every column adds to 1 • A Markov matrix defines a Markov chain Other Matrices • Projections • Rotations • Permutations • Reflections Term-Document Matrix • Index each document (by human or by computer) – fij counts, frequencies, weights, etc doc 1 term 1 f11 term 2 f 21 term m f m1 doc2 doc n f12 f 22 fm2 f1n f 2 n f mn • Each document can be regarded as a point in m dimensions Document-Term Matrix • Index each document (by human or by computer) – fij counts, frequencies, weights, etc doc 1 doc 2 doc m term 1 term 2 term n f11 f12 f 21 f 22 f m1 fm2 f1n f 2 n f mn • Each document can be regarded as a point in n dimensions Term Occurrence Matrix human interface computer user system response time EPS survey trees graph minors c1 1 1 1 0 0 0 0 0 0 0 0 0 c2 0 0 1 1 1 1 1 0 1 0 0 0 c3 0 1 0 1 1 0 0 1 0 0 0 0 c4 1 0 0 0 2 0 0 1 0 0 0 0 c5 0 0 0 1 0 1 1 0 0 0 0 0 m1 0 0 0 0 0 0 0 0 0 1 0 0 m2 0 0 0 0 0 0 0 0 0 1 1 0 m3 0 0 0 0 0 0 0 0 0 1 1 1 m4 0 0 0 0 0 0 0 0 1 0 1 1 Matrix in Image Processing Random walks 1 0 0 0 0 0 How long does it take to get completely lost? Random walks Transition Matrix 1 6 4 5 2 0 1 2 0 P 0 3 0 1 2 1 3 0 0 0 1 2 1 4 1 4 1 3 1 3 0 0 0 1 2 0 0 0 1 4 1 4 0 0 0 1 2 0 1 2 1 3 0 0 1 3 1 3 0 100 1 0 0 0 0 0
© Copyright 2026 Paperzz