Transfer Chart Analysis of Iterative OFDM Receivers with Data Aided Channel Estimation Stephan Sand, Christian Mensing, and Armin Dammann German Aerospace Center (DLR) 3rd COST 289 Workshop, Aveiro, Portugal, 12th July German Aerospace Center Outline System model Frame structure Channel estimation (CE) Extrinisic information transfer (EXIT) Charts Bit-error rate transfer (BERT) Charts Comparison of BERT and EXIT charts Simulation results Conclusions & outlook German Aerospace Center 2 System Model: OFDM System with Iterative Receiver German Aerospace Center 3 Frame Structure Burst transmission frequency Rectangular grid 1 Nc 1 Pilot distance in time frequency direction: Nl=10 Nk Pilot distance between OFDM symbols: Nk=10 Ns Nl data symbol pilot symbol German Aerospace Center 4 Channel Estimation (CE) Initial iteration (i=0) only pilot symbols: Pilot aided channel estimation (PACE) Afterwards (i>0) additionally data estimates: Pilot and data aided iterative channel estimation (ICE) Localized estimates for the channel transfer function at pilot or data symbol positions, i.e., the least-squares (LS) estimate: H n,l ,(i ) Rn,l S n ,l Rn,l Sn*,l S n ,l 2 H n ,l Z n ,l S n ,l Replacing unknown Sn,l by the expectations (soft symbol and soft variance): H n ,l ,(i ) German Aerospace Center Rn ,l Sn*,l ,(i ) ES n ,l ,( i ) 5 Channel Estimation (CE) Filtering localized estimates yields final estimates of the complete CSI: Hˆ H , T P D, n 1, , N , l 1, , N , n ,l ,( i ) n ',l 'Tn ,l n ',l ', n ,l ,( i ) n ',l ',( i ) n,l c s where ωn’,l’,n,l,(i) is the shift-variant 2-D impulse response of the filter. Tn,l is the set of initial estimates that are actually used for filtering. Filter design: Knowledge of the Doppler and time delay power spectral densities (PSDs) optimal 2-D FIR Wiener filter Separable Doppler and time delay PSDs two cascaded 1-D FIR Wiener filters perform similar than 2-D FIR Wiener filter German Aerospace Center 6 EXIT Charts Benefits Mutual information flow between inner and outer receiver Independent computation for inner and outer receiver Arbitrary combination of inner and outer receiver Prediction of “turbo cliff“ position and BER possible Assumptions Log-likelihood ratio values (L-values): Gaussian distributed random variables Interleaver depth large: uncorrelated L-values German Aerospace Center 7 EXIT Charts A-priori L-values: independent Gaussian random variable LA Ac nA nA N ( A , A2 ) A A2 2 Probability density function of LA p A ( | C c) e ( A2 2 c )2 2 2 A 2 A A-priori mutual information 1 2 p A ( | C c) I A (C ; LA ) p A ( | C c) log 2 d 2 c 1 p A ( | C 1) p A ( | C 1) I A (C; LA ) monotonically increasing, reversible function of σA German Aerospace Center 8 EXIT Charts Steps for EXIT chart computation 1. Variance of a-priori L-values from a-priori information A 2. I A1 (C ; LA ) A-priori L-value I A (C ; LA ) 1 pE ( | C c) log 2 (1 e )d LA Ac nA 3. Input a-priori L-value and simulated “channel”-value to component 4. Measure extrinsic information at output of component with histogram estimator 1 2 pE ( | C c) I E (C ; LE ) pE ( | C c) log 2 d 2 c 1 pE ( | C 1) pE ( | C 1) German Aerospace Center 9 BERT Charts Benefits BER flow between inner and outer receiver Independent computation for inner and outer receiver Arbitrary combination of inner and outer receiver Prediction of “turbo cliff“ position and BER possible Assumptions Log-likelihood ratio values (L-values): Gaussian distributed random variables Interleaver depth large: uncorrelated L-values German Aerospace Center 10 BERT Chart A-priori L-values: independent Gaussian random variable LA Ac nA nA N ( A , A2 ) A A2 2 Probability density function of LA p A ( | C c) e ( A2 2 c )2 2 2 A 2 A A-priori BER 0 1 PA (C ; LA ) c p A ( | C c)d 2 c 1 PA (C; LA ) monotonically increasing, reversible of σA German Aerospace Center 11 BERT Charts Steps for BERT chart computation 1. Variance of a-priori L-values from a-priori BER A PA1(C; LA ) 2. 1 PA (C; LA ) erfc A 2 8 A-priori L-value LA Ac nA 3. Input a-priori L-value and simulated “channel”-value to component 4. Measure extrinsic BER at output of component by hard decision 1 N 1 cn sgn( LE ,n ) PE (C; LE ) N n1 2 German Aerospace Center 12 Comparison of EXIT and BERT Charts EXIT chart computation BERT chart computation 1. Variance of a-priori L-values A I A1(C; LA ) A PA1(C; LA ) 2. A-priori L-value LA Ac nA Input a-priori L-value and simulated “channel”-value to component 4. Measure extrinsic BER / information at output of component 3. 1 N 1 cn sgn( LE ,n ) PE (C; LE ) N n1 2 1 I E (C ; LE ) pE ( | C c) 2 c1 log 2 German Aerospace Center 2 pE ( | C c) d pE ( | C 1) pE ( | C 1) 13 Simulation Results: Scenario Bandwidth 4.004 MHz Subcarriers 1001 FFT length 1024 Sampling duration Tspl 3.1 ns Guard interval TGI 205 Tspl Subcarrier spacing Δf 4 kHz OFDM symbols / Frame 101 Modulation QPSK, linear mapping Coding Conv. code, R=1/2, (23,37) Information bits 99986 fD,max 0.025Δf ≈ 100 Hz Interleaver length 199980 τmax 20 μs Interleaver type random τrms 0.001τmax Pilot spacing frequency 10 Pilot spacing time 10 German Aerospace Center Exponential Channel model with Jakes’ Doppler fading … time 14 Simulation Results: AWGN Channel BERT Acronyms: PCE: perfect channel estimation DMOD: demodulator DCOD: decoder German Aerospace Center 15 Simulation Results: AWGN Channel EXIT Acronyms: PCE: perfect channel estimation DMOD: demodulator DCOD: decoder German Aerospace Center 16 Simulation Results: Exponential Channel Histogram of L-values at demodulator output No Gaussian distribution of L-values German Aerospace Center 17 Simulation Results: Exponential Channel BERT Acronyms: PCE: perfect channel estimation ICE: iterative channel estimation DMOD: demodulator DCOD: decoder BERT: DCOD too pessimistic due to Gaussian assumption! German Aerospace Center 18 Simulation Results: Exponential Channel EXIT Acronyms: PCE: perfect channel estimation ICE: iterative channel estimation DMOD: demodulator DCOD: decoder ICE system trajectory dies out: independence assumption violated German Aerospace Center 19 Simulation Results: Exponential Channel BER Plot Acronyms: PACE: pilot aided channel estimation PCE: perfect channel estimation ICE: iterative channel estimation DMOD: demodulator DCOD: decoder @ 7dB: ICE reaches PCE German Aerospace Center after 5 iterations 20 Conclusions & Outlook Iterative receiver including pilot and data aided channel estimation BERT and EXIT charts: simpler computation of BERT charts direct prediction of BERs in BERT charts Simulation results indicate: BERT charts too pessimistic due to Gaussian assumption of decoder EXIT charts more robust against Gaussian assumption ICE reaches PCE after a few iterations Outlook: A-posteriori feedback in ICE to improve convergence Thank you! German Aerospace Center 21
© Copyright 2026 Paperzz