A Fast and Accurate Fluctuating Charge Model for Transition Metal Complexes Peter Comba*, Bodo Martin, Avik Sanyal Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany Supporting Information Correspondence: Fax: +49-6226-546617 e-mail: [email protected] Figure SI1. Relative energy vs. ionization state/charge plot for an isolated carbon atom. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI2. Relative energy vs. ionization state/charge plot for an isolated nitrogen atom. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI3. Relative energy vs. ionization state/charge plot for an isolated oxygen atom. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI4. Relative energy vs. ionization state/charge plot for an isolated phosphorus atom. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI5. Relative energy vs. ionization state/charge plot for an isolated sulphur atom. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI6. Relative energy vs. ionization state/charge plot for an isolated chlorine atom. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI7. Relative energy vs. ionization state/charge plot for an isolated hydrogen atom. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI8. Relative energy vs. ionization state/charge plot for an isolated iron atom in low spin state. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI9. Relative energy vs. ionization state/charge plot for an isolated iron atom in high spin state. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI10. Relative energy vs. ionization state/charge plot for an isolated cobalt atom. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Figure SI11. Relative energy vs. ionization state/charge plot for an isolated copper atom. The filled squares represent spectroscopic energy values taken from the NIST database and the line represents the least-squares quadratic fit to these data using equation 3 and the parameters of Table 1. Description of atom types used in this work Atom type Structure Description 1 C3 sp Carbon 2 CA Aromatic Carbon, Guanidine, sp2 Carbon 3 CAH Pyrrole, Imidazole 4 CCO Carboxylate, Amide 5 CI Imine 6 CT sp3 Carbon 7 N3 sp Nitrogen 8 NAH Pyrrole 9 ND Amide 10 NI Imine 11 NOO Nitro 12 NP Pyridine 13 NT sp3 Nitrogen 14 OC Carboxylate 15 OCO Carboxylate, Amide 16 ONO Nitro 17 OW Oxygen attached to 6coordinate metal, Alcohol, Water 18 H H Hydrogen 19 SW Sulphur divalent, Sulphate 20 S2 Thiocyanate, isothiocyanate 21 CL Cl Chlorine 22 P P Phosphorus 23 FE2L Fe Iron(II) low spin 24 FE2H Fe Iron(II) high spin 25 FE3L Fe Iron(III) low spin 26 FE3H Fe Iron(III) high spin 27 CO3 Co Cobalt(III) 28 CU2 Cu Copper(II) Reference structures used for parameter optimization Set 1: small organic compounds Chemical name Total formal charge acetaldehyde 0 acetamide 0 acetic acid 0 acetone 0 acetonitrile 0 acetylchloride 0 acrylonitrile 0 butyl-2,3-diamine 0 2-methylbutane 0 n-butane 0 1,1-dimethylethane 0 ethylamine 0 diethylamine 0 ethane 0 ethanol 0 ethyl acetate 0 formamide 0 formic acid 0 2-aminobutane 0 2-aminopropane 0 1-butylamine 0 1-butanol 0 1-propanol 0 n-pentane 0 2-methylpropane 0 n-propane 0 1-amino,1-methylpropane 0 vinyl chloride 0 Set 2: Complexes of iron in different oxidation and spin states Metal Spin state CCSD Refcode Total formal charge FeII high CIDJAB 2 HIDGAD 0 HIDGOR 0 MELLOF02 2 CIDJAB01 2 HIDFUW 0 MELLOF 2 PERZAO 2 QIDJET01 2 QIDJUJ 2 QIDKIY 2 QOYYAF 1 QOYYEJ 1 TAMSUW01 1 TAMTAD 1 VAWXIB 1 CAMYAR 1 GIRGIY 1 GIRGOE 1 QOYYIN 1 TAMSOQ 1 FeII FeIII FeIII low high low Set 3: Complexes of Cobalt Metal CCSD Refcode Total formal charge CoIII BAGSUX01 1 BMXCOE 2 BOHGAG 3 CASDUV 3 CAZFEO 1 CEWTUT 1 CIDLEG 1 CNENCO 1 COCRCL 3 COCREN 3 COEMAL10 -1 COENCH 3 COENCL 3 COENSI 3 COENTC 3 CONAEN 0 CUNKIF 1 CUSCOI 0 DISVIK 0 DISVUW 1 DOLTIH 2 DOLTON 2 DSENCO 3 EINIPC 2 ENCCUC10 3 ENCOCD 3 ENCOCT 3 ENCOCT01 3 Set 4: Complexes of Copper Metal CCSD Refcode Total formal charge CuII ABGTCU 2 ABOHII 2 ABUCUP 2 ACADIS 2 AENNIC10 2 AEPCUI 2 AFASUW 2 AGOVIB 2 AHASOR 2 AJAROS 2 AJEVUG 2 AMPCBZ 2 AVAPUI 2 AWIRAZ 2 BAGGUM 2 BOHYCU 2 CUCLBU 2 CUPICH 0 DAXXEG 2 Reference structures used for parameter validation Metal Spin state CCSD Refcode Total formal charge FeII high OJIPIH01 2 RONPIT 0 WOJVEX 0 QIDLAR 2 RONPIT02 0 WALPAB 1 XUCLEN 1 AFULAO 3 AGEDOF 3 AJUJUK 2 DIBDUN 2 DOVJII 2 HIHDUX 2 FeII FeIII CoIII CuII low low - -
© Copyright 2026 Paperzz