A Fast and Accurate Fluctuating Charge Model for Transition

A Fast and Accurate Fluctuating Charge Model for
Transition Metal Complexes
Peter Comba*, Bodo Martin, Avik Sanyal
Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270,
D-69120 Heidelberg, Germany
Supporting Information
Correspondence:
Fax: +49-6226-546617
e-mail: [email protected]
Figure SI1. Relative energy vs. ionization state/charge plot for an isolated carbon atom. The
filled squares represent spectroscopic energy values taken from the NIST database and the
line represents the least-squares quadratic fit to these data using equation 3 and the parameters
of Table 1.
Figure SI2. Relative energy vs. ionization state/charge plot for an isolated nitrogen atom. The
filled squares represent spectroscopic energy values taken from the NIST database and the
line represents the least-squares quadratic fit to these data using equation 3 and the parameters
of Table 1.
Figure SI3. Relative energy vs. ionization state/charge plot for an isolated oxygen atom. The
filled squares represent spectroscopic energy values taken from the NIST database and the
line represents the least-squares quadratic fit to these data using equation 3 and the parameters
of Table 1.
Figure SI4. Relative energy vs. ionization state/charge plot for an isolated phosphorus atom.
The filled squares represent spectroscopic energy values taken from the NIST database and
the line represents the least-squares quadratic fit to these data using equation 3 and the
parameters of Table 1.
Figure SI5. Relative energy vs. ionization state/charge plot for an isolated sulphur atom. The
filled squares represent spectroscopic energy values taken from the NIST database and the
line represents the least-squares quadratic fit to these data using equation 3 and the parameters
of Table 1.
Figure SI6. Relative energy vs. ionization state/charge plot for an isolated chlorine atom. The
filled squares represent spectroscopic energy values taken from the NIST database and the
line represents the least-squares quadratic fit to these data using equation 3 and the parameters
of Table 1.
Figure SI7. Relative energy vs. ionization state/charge plot for an isolated hydrogen atom. The
filled squares represent spectroscopic energy values taken from the NIST database and the
line represents the least-squares quadratic fit to these data using equation 3 and the parameters
of Table 1.
Figure SI8. Relative energy vs. ionization state/charge plot for an isolated iron atom in low
spin state. The filled squares represent spectroscopic energy values taken from the NIST
database and the line represents the least-squares quadratic fit to these data using equation 3
and the parameters of Table 1.
Figure SI9. Relative energy vs. ionization state/charge plot for an isolated iron atom in high
spin state. The filled squares represent spectroscopic energy values taken from the NIST
database and the line represents the least-squares quadratic fit to these data using equation 3
and the parameters of Table 1.
Figure SI10. Relative energy vs. ionization state/charge plot for an isolated cobalt atom. The
filled squares represent spectroscopic energy values taken from the NIST database and the
line represents the least-squares quadratic fit to these data using equation 3 and the parameters
of Table 1.
Figure SI11. Relative energy vs. ionization state/charge plot for an isolated copper atom. The
filled squares represent spectroscopic energy values taken from the NIST database and the
line represents the least-squares quadratic fit to these data using equation 3 and the parameters
of Table 1.
Description of atom types used in this work
Atom type
Structure
Description
1
C3
sp Carbon
2
CA
Aromatic Carbon,
Guanidine, sp2 Carbon
3
CAH
Pyrrole, Imidazole
4
CCO
Carboxylate, Amide
5
CI
Imine
6
CT
sp3 Carbon
7
N3
sp Nitrogen
8
NAH
Pyrrole
9
ND
Amide
10
NI
Imine
11
NOO
Nitro
12
NP
Pyridine
13
NT
sp3 Nitrogen
14
OC
Carboxylate
15
OCO
Carboxylate, Amide
16
ONO
Nitro
17
OW
Oxygen attached to 6coordinate metal,
Alcohol, Water
18
H
H
Hydrogen
19
SW
Sulphur divalent,
Sulphate
20
S2
Thiocyanate,
isothiocyanate
21
CL
Cl
Chlorine
22
P
P
Phosphorus
23
FE2L
Fe
Iron(II) low spin
24
FE2H
Fe
Iron(II) high spin
25
FE3L
Fe
Iron(III) low spin
26
FE3H
Fe
Iron(III) high spin
27
CO3
Co
Cobalt(III)
28
CU2
Cu
Copper(II)
Reference structures used for parameter optimization
Set 1: small organic compounds
Chemical name
Total formal charge
acetaldehyde
0
acetamide
0
acetic acid
0
acetone
0
acetonitrile
0
acetylchloride
0
acrylonitrile
0
butyl-2,3-diamine
0
2-methylbutane
0
n-butane
0
1,1-dimethylethane
0
ethylamine
0
diethylamine
0
ethane
0
ethanol
0
ethyl acetate
0
formamide
0
formic acid
0
2-aminobutane
0
2-aminopropane
0
1-butylamine
0
1-butanol
0
1-propanol
0
n-pentane
0
2-methylpropane
0
n-propane
0
1-amino,1-methylpropane
0
vinyl chloride
0
Set 2: Complexes of iron in different oxidation and spin states
Metal
Spin state
CCSD Refcode
Total formal charge
FeII
high
CIDJAB
2
HIDGAD
0
HIDGOR
0
MELLOF02
2
CIDJAB01
2
HIDFUW
0
MELLOF
2
PERZAO
2
QIDJET01
2
QIDJUJ
2
QIDKIY
2
QOYYAF
1
QOYYEJ
1
TAMSUW01
1
TAMTAD
1
VAWXIB
1
CAMYAR
1
GIRGIY
1
GIRGOE
1
QOYYIN
1
TAMSOQ
1
FeII
FeIII
FeIII
low
high
low
Set 3: Complexes of Cobalt
Metal
CCSD Refcode
Total formal charge
CoIII
BAGSUX01
1
BMXCOE
2
BOHGAG
3
CASDUV
3
CAZFEO
1
CEWTUT
1
CIDLEG
1
CNENCO
1
COCRCL
3
COCREN
3
COEMAL10
-1
COENCH
3
COENCL
3
COENSI
3
COENTC
3
CONAEN
0
CUNKIF
1
CUSCOI
0
DISVIK
0
DISVUW
1
DOLTIH
2
DOLTON
2
DSENCO
3
EINIPC
2
ENCCUC10
3
ENCOCD
3
ENCOCT
3
ENCOCT01
3
Set 4: Complexes of Copper
Metal
CCSD Refcode
Total formal charge
CuII
ABGTCU
2
ABOHII
2
ABUCUP
2
ACADIS
2
AENNIC10
2
AEPCUI
2
AFASUW
2
AGOVIB
2
AHASOR
2
AJAROS
2
AJEVUG
2
AMPCBZ
2
AVAPUI
2
AWIRAZ
2
BAGGUM
2
BOHYCU
2
CUCLBU
2
CUPICH
0
DAXXEG
2
Reference structures used for parameter validation
Metal
Spin state
CCSD Refcode
Total formal charge
FeII
high
OJIPIH01
2
RONPIT
0
WOJVEX
0
QIDLAR
2
RONPIT02
0
WALPAB
1
XUCLEN
1
AFULAO
3
AGEDOF
3
AJUJUK
2
DIBDUN
2
DOVJII
2
HIHDUX
2
FeII
FeIII
CoIII
CuII
low
low
-
-