JOINT MOCK MARKING GUIDE TERM 2 2015 let Rx Ax B , 1. F x x 2x 2Qx Rx , When x 2 , F 2 2 A B …(i)M1 When x 2 , F 2 2 A B …(ii)M1 F 2 F 2 2B , B 2. 1 F 2 F 2 A1 2 1 F 2 F 2 4 A , A F 2 F 2 A1 4 1 1 Rx F 2 F 2x F 2 F 2 A1 4 2 2 2 2 2 x y 6 x 12 y 40 0 , x 3 y 6 40 36 9 5 Thus C 3, 6, r 5 M1 x 2 y 2 4 y 16 , x 0 y 2 16 4 20 2 2 Thus C 0, 2, r 20 2 5 M1 d 3 02 6 22 5 M1 r1 r2 5 20 25 M1 2 2 Therefore, since d 2 r1 r2 , then the circles are orthogonal.B1 2 3. 2 When n 2 , 36132 6 2 6048 7864 When n 3 , 36133 63 78876 711268 B1 For When n k , 3613k 6 k 7 P where P is a positive integer.M1 When n k 1 , 3613k 1 6 k 1 3613k 63613k 7 P M1 3613k 13 6 42P 73613k 6P still divisible by 7.A1 Thus since it holds for n 2, 3, . . . k , k 1 , then it holds for n 2 .B1 2 0 Direction vectors are, a 3 , b 3 M1 both 1 1 4. a 0 9 1 10 , b 4 9 1 14 M1 0 2 a . b 3 . 3 0 9 1 10 , M1 1 1 5. cos 10 10 14 , 32.31o M1, A1 Let sin x 2 cos x R sin x R sin x cos 2 cos x sin © GHS 2015 Page 1 R sin 2, R cos 1 , M1thus tan 2, 63.45o , R 5 A1 1 sin x 2 cos x 5 sin x 63.45 o , A1 3 5 sin x 63.45o The minimum occurs when i.e when x 63.45o 6 7. 8. 90 o 5 sin x 63.45 o 1 (maximum) M1, thus when x 153.45 o A1 1 x 2 M1 4 4 dA dA 21 x ,M1 thus by the chain rule 21 x . 2 M1 dx 4 dt 4 When the perimeter is 1.2 m , x 0.3m 30cm B1 dA So 1201 25.7522 cm 2 min 1 .A1 dt 4 dy cos 2 x sin 2 x 2 sin 2 x 2 cos 2 x cos 2 x sin 2 x 2 sin 2 x 2 cos 2 x M1M1 dx cos 2 x sin 2 x 2 dy 2cos 2 x sin 2 x cos 2 x sin 2 x 2cos 2 x sin 2 x cos 2 x sin 2 x dx cos 2 x sin 2 x 2 dy 21 2 sin 2 x cos 2 x 21 2 sin 2 x cos 2 x M1M1 1 2 sin 2 x cos 2 x dx dy 4 A1 dx 1 sin 4 x 1 let t tan 12 x, dt 12 sec 2 12 x dx M1 thus dx 2dt 2 , M1 1 sin x dx 1 t 2 1 2dt c A1 M1 2dt 2 2 c ,M1 2 2t 1 t 1 tan 12 x 1 t 1 t 1 1 t2 Area of shaded part A x 2 x 2 5 12i 2 x iy 9a) 1 5 12i x 2 y 2 2 xyi x 2 y 2 5 and 2 xy 12 , so x y 4 5 y 2 36 0 , y 2 6 y 9 y2 4 0 y 2 , y 3i The square root is 3 2i ALT z 5 12i , z 52 12 2 13 arg z tan 1 z 13 cos 67.4 o i sin 67.4 o © GHS 2015 12 67.4 o 5 Page 2 1 67.4 2k 67.4 2k 13 2 cos i sin for k 0, 1 2 2 o o When k 1 , z 13 cos 33.7 i sin 33.7 2.9998 2.0004i 3 2i z 1 2 k 2, z 13 cos 393.7 o i sin 393.7 o 2.9998 2.0004i 3 2i z 3 . arg z 3 arg z 2i , for z x iy , arg 4 z 2i 4 arg x 3 iy arg x i y 2 4 y y 2 tan 1 tan 1 , let x 4 x 3 b) y y 2 A, tan 1 tan 1 B x x 3 y2 y x3 x tan A B tan 1 , thus 1 4 y y 2 1 x 3 x xy xy 2 x 3 y 6 x 2 3x y 2 2 y , xx 3 xx 3 x 2 y 2 5x 5 y 6 0 x 52 2 y 52 2 264 , thus the locus is a circle with the centre 5 , 2 radius 5 and 2 26 units. 2 10a) let T 2t , Gradient of © GHS 2015 PT , 2 t 2 2 pt 1 t p m1 2t 2 p t p pt Page 3 b) 2 2 qt 1 t q Gradient of QT , m2 2t 2q t q qt Since PT is perpendicular to QT , 1 1 1 , thus t 2 pq 1 . pt qt 2 2 2 p 2q p q pq p q, ii) Let M X , Y , X Y 2 2 pq X 2 Y X t 2 thus locus of M is y t x . pq For a tangent at P , p t , so m 12 p 2 y 1 p Equation is 2 , yp 2 x 4 p x 2p p Substitute for x , 11a) yp 2 y 4p, t2 to get y 4 pt 2 1 t 2 p2 3 sec 2 2 tan 4 , 3 tan 2 2 tan 1 0 3 tan 1tan 1 0 1 , tan 1 3 18.43o , 198.43o , 135 o , 315 o 0.3217, 3.4633, 2.3562, 5.4978 tan b) tan P © GHS 2015 bc b , tan P x x Page 4 tan P tan b , 1 tan P tan x b1 tan P tan x xtan P tan b c x b c x x tan P b 2 , tan tan x b tan P b c x b 2 bc x b x x cx as required tan 2 x b 2 bc 12. L1 : 4 x y 1 6z , x 4 , y 1 , z 6 6 6 x 5 y 1 , x 5 4 , y 1 2 , z 0 4 2 1 6 6 0, 1 , 1 1 2 , 2 Checking with x ; 4 5 4 , 4 1 3 and 5 4 12 3 L2 : Thus point of intersection is 3, Let direction vector of direction vector of direction vector of L1 L2 L3 be 2, 0 . a d b c be 1 t 1 6 be 4 s 2 0 a 1 b . 1 0 , a b 6c 0 …(i) c 6 a 4 b . 2 0 , 4a 2b 0 …(ii) b 2a , c 0 Thus, © GHS 2015 a b 6c 0 c a 6 a 1 d 2a a 2 a 1 6 6 Page 5 3 1 L3 ; r 2 2 , x 3 , y 2 2 , z 0 6 0 1 6 Equation of n 1, abc0 n 2, 4a 2b c 3 n 3, 9a 3b c 16 Eliminate c , 5a b 13, Eliminate b , 2a 6, a 3 13a) 3a b 7 b 2 c 5 a n 3n 2 2n 5 n 3n 2 2n 5 n 1 1 1 3 nn 12n 1 2 nn 1 5n 6 2 1 2n 3 3n 2 n 2n 2 2n 10n 2 n 2n 2 n 11 2 In 2 In1 e x f 0 f x log 5 1 e x In5 In5 x 1 1 e f ' 0 f ' x x 2 In5 In 25 1 e In5 14. Let f ' ' x 1 1 ex ex ex 2 In5 1 ex log 5 1 e x b) 2 f ' ' 0 1 1 4 In5 In625 In 2 x x2 ... In5 In 25 2 In625 A right circular cone is to be made such that its slant height is metres. Show that the maximum volume of the cone is 2 4 9 3 . 2 2 2 2 2 2 Solution: r h r h Volume V Volume, 3 h( 2 h 2 ) 3 dV 2 ( 3h 2 ) but for max dh 3 dV 0 dh So, © GHS 2015 so V r 2h 3 ( 2 3h 2 ) 0 h 3 Page 6 Maximum Volume V = ( 2 3 2 4 9 3 6 9x 27 x 3 8 Let 2 3 ) 3 . 6 9x 3x 29 x 2 6 x 4 6 9x A Bx C 2 2 3x 2 9 x 6 x 4 3x 2 9 x 6 x 4 6 9 x A 9 x2 6 x 4 Bx C 3x 2 x : 9 A 3B 0 , x : 6 A 2 B 3C 9 , x o : 4 A 2C 6 Solve to get; A 1, B 3, C 1 6 9x 3x 1 1 2 2 3x 29 x 6 x 4 3x 2 9 x 6 x 4 6 9x 3x 1 1 Thus dx dx 2 dx 3 3x 2 27 x 8 9x 6x 4 1 1 In3x 2 In9 x 2 6 x 4 c 3 6 2 Or In 16a) 9 x 3x 2 13 2 6x 4 1 c 6 Let the numbers be x and y . x y 24 2 2 Let the sum be S such that S x y S x 2 24 x 2 x 2 48 x 576 dS 0 , i.e 4 x 48 0, x 12 For max or min, dx Thus the numbers are x 12, y 12 . i) the values of p and q . 2 b) © GHS 2015 y xx 1 px q px 3 (q p) x 2 qx dy 3 px 2 2q p x q dx For the tangent y x 0, gradient 1 For the tangent y 3x 3 0, gradient 3 q 1, q 1 . At 0, 0 , At 1, 0 , 3 p 2q px q 3, p q 3 so p 2 3 2 Thus y 2 x x x . Sketch: y xx 12x 1 Intercepts: When y 0, x 0, 1, 12 , so 0, 0, 1, 0, 12 , 0 Page 7 dy 6 x 2 2 x 1 0 , x 0.6, 0.3 dx 2 d y 12 x 2 dx 2 d2y When x 0.6, 0, min x 0.6, y 0.5, 0.6, 0.5 min dx 2 d2y When x 0.3, 0, max x 0.3, y 0.3, 0.3, 0.3 max dx 2 For turning points, © GHS 2015 Page 8
© Copyright 2026 Paperzz