11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide (c) 11 Binomial Distribution P( X 3) 1 P ( X 3) 1 [ P ( X 0) P ( X 1) P ( X 2)] 1 11 3 0 5 1 2 3 5 1 C01 2 C11 2 8 8 8 8 2 10 3 5 C21 2 8 8 0.8865 pp.91 – 93 p.91 (a) Yes. Define X as the number of odd numbers. Then f ( x) 0.5 x 0.51 x for x 0, 1. (d) (b) Yes. Define X as the number of days that Peter forgets to take his lunch box. Then f ( x) 0.2 x 0.81 x for x 0, 1. (c) Yes. Define X as the number of patients who are diagnosed with cancer. Then f ( x) 0.25x 0.751 x for x 0, 1. p.93 (a) x 10 x for x 0, 1, …, 10 f ( x) C 10 x (0.1) (0.9) (b) f ( x) C x6 (0.5) x (0.5) 6 x for x 0, 1, …, 6 (c) f ( x) C x30 (0.24) x (0.76) 30 x for x 0, 1, …, 30 (d) f ( x) C x36 (0.45) x (0.55) 36 x for x 0, 1, …, 36 (e) x 14 x for x 0, 1, …, 14 f ( x) C14 x (0.8) (0.2) P( X n) 0.001 838 3 11.2 (a) p.95 C (0.35) (0.65) 0.001 838 3 n n n 0 0.35n 0.001 838 3 log 0.35n log 0.001 838 3 n log 0.35 log 0.001 838 3 log 0.001 838 3 log 0.35 6 n (b) P( X 4) C46 (0.35) 4 (0.65) 2 0.0951 (cor. to 4 d. p.) pp.94 – 110 11.1 (a) P ( X 10) 12 3 C10 8 0.0014 (b) 10 11.3 (a) p.94 2 5 8 (cor. to 4 d. p.) 10 p.95 The probability function of Y is f ( y ) P(Y y ) 12 10 y 6 y 3 3 C y6 1 20 20 C y6 (0.15) y (0.85) 6 y , P ( 2 X 3) P( X 2) P( X 3) 3 C212 8 0.2532 3 ) 20 Y ~ B(6, where y = 0, 1, 2, …, 6 3 5 12 3 5 C3 8 8 8 (cor. to 4 d. p.) 9 (b) P(2 defective light bulbs) C26 (0.15) 2 (0.85) 4 0.1762 (cor. to 4 d. p.) 11.4 E (Y ) 150(0.2) 30 Var ( X ) 150(0.2)(0.8) 24 © Hong Kong Educational Publishing Co. 54 p.100 Binomial Distribution Var ( X ) 9.6 40 p (1 p ) 9.6 11.5 (a) p.100 11.8 (a) X ~ B ( 20, 0.8) E ( X ) 20(0.8) p.102 16 40 p 40 p 2 9.6 25 p 25 p 6 0 Var ( X ) 20(0.8)(0.2) (5 p 2)(5 p 3) 0 3.2 2 p 0.4 or 0.6 (b) (b) For p 0.4, E ( X ) 40(0.4) 16 2 16 32 3.2 3.2 2 P X 32 P X 3.2 P( X 17.888 544) For p 0.6, E ( X ) 40(0.6) 24 P( X 18) P( X 19) P( X 20) E (Z ) 9 11.6 2 C1820 (0.8)18 (0.2) 2 C1920 (0.8)19 (0.2) (0.8) 20 p.101 0.2061 (cor. to 4 d. p.) np 9................(1) Var ( Z ) 0.21n np(1 p) 0.21n 11.9 (a) p(1 p) 0.21 p.106 diagnosed correctly. p 2 p 0.21 0 Then X ~ B(20, 0.914). (1) (1) 4(1)(0.21) P(more than 90% of the patients are 2 p Let X be the number of patients are diagnosed correctly) P ( X 18) P ( X 19) P ( X 20) 2(1) 0.3 or 0.7 For p 0.3, C1290 (0.914)1 9 (0.086) (0.914) 2 0 Substituting p 0.3 into (1), n(0.3) 9 n 30 0.477 082 503 0.4771 (cor. to 4 d. p.) For p 0.7, Substituting p 0.7 into (1), (b) n(0.7) 9 incorrectly) P( X 18) 90 n , which is not an integer. 7 11.7 (a) P( X 18) P( X 19) The case of p 0.7 is rejected. n 30 and p 0.3 Let X be the number of staff P(less than 3 patients are diagnosed C1820 (0.914)18 (0.086)2 0.477 082 503 0.7556 (cor. to 4 d. p.) p.101 11.10 (a) wearing glasses in the sample. 39 Then X ~ B 30, 50 Let X be the number of missiles hit the p.107 target. Then X ~ B(9, 0.75). P(at least 2 of missiles hit the target) P ( X 2) E( X ) 39 30 50 23.4 1 P ( X 2) 1 P ( X 0) P( X 1) 1 (0.25) 9 C19 (0.75)(0.25) 8 0.9999 (cor. to 4 d. p.) (b) Var(X) 39 39 30 1 50 50 5.148 55 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide (b) Let Y be the number of missiles hit the (c) target when n of missiles are fired. in a sample of 10 products. Then Y ~ B(n, 0.75). Then Y ~ B(10, 0.0625) P(hitting the target) 0.95 P(Y 1) 0.95 P(the production line is considered effective at stage II) P( X 1) P(Y 0) 1 P(Y 0) 0.95 1 (0.25) n 0.95 0.366 745 053 (0.9375)10 0.192 343 284 0.25 0.05 n log 0.25 log 0.05 n 0.1923 (cor. to 4 d. p.) log 0.05 n log 0.25 2.160 964 047 11.11 (a) Let Y be the number of defective products (d) P(the production line is considered effective) P(the production line is considered effective at The least number of n is 3. stage I) + P(the production line is Let X be the number of times that the considered effective at stage II) 0.275 058 789 0.192 343 284 p.108 0.4674 (cor. to 4 d. p.) number chosen by the player appears on the dice. Then X ~ B(4, 1 ). 6 Expected gain 2 P( X 0) 1 P( X 1) 2 P( X 2) pp.93 – 110 3 P( X 3) 4 P( X 4) 4 3 2 5 1 5 1 5 2 1 C14 2 C24 6 6 6 6 6 1 3 C34 6 193 coin 648 3 5 1 4 6 6 Example 11.1T 2 (a) 4 11.12 (a) The expected gain 0. It is not fair to the player. Let X be the number of defective P (Y 8) 1 C815 4 0.0131 (b) (b) p.93 15 8 3 4 (cor. to 4 d. p.) P (Y 3) P(Y 0) P(Y 1) P(Y 2) 1 C015 4 0.2361 p.110 8 0 15 0 1 15 1 3 1 3 C115 4 4 4 (cor. to 4 d. p.) 2 15 2 1 3 C215 4 4 products in a sample of 20 products. (c) Then X ~ B(20, 0.0625). P(the production line is considered effective at stage I) P( X 0) (0.9375) 20 0.275 058 789 0.2751 (cor. to 4 d. p.) (b) P(the second sample for inspection is needed) P( X 1) Example 11.2T C120 (0.0625)(0.9375)19 (a) p.94 P(Y n) 0.100 112 9 C (0.75) n (0.25)0 0.100 112 9 n n 0.366 745 053 0.75n 0.100 112 9 n log 0.75 log 0.100 112 9 0.3667 (cor. to 4 d. p.) log 0.100 112 9 log 0.75 8 n © Hong Kong Educational Publishing Co. 56 Binomial Distribution (b) P (Y 7) Example 11.7T p.101 C78 (0.75) 7 (0.25) 0.2670 (cor. to 4 d. p.) Let X be the number of days that Leo is late. Then X ~ B(22, 0.12). Example 11.3T (a) Expected number of days that he is late p.95 22(0.12) 2.64 Let X be the number of boys selected. Variance 22(0.12)(0.88) 2.3232 Then X ~ B(7, 0.53). Hence the probability function of X is f ( x) P( X x) C x7 (0.53) x (0.47) 7 x , Example 11.8T p.102 where x 0, 1, 2, 3, 4, 5, 6, 7 (a) (b) ends. P(exactly 3 boys) P ( X 3) Then X ~ B(10, 0.2). E( X ) 10(0.2) 2 C37 (0.53) 3 (0.47) 4 0.2543 (cor. to 4 d. p.) Example 11.4T Let X be the number of rats die before the experiment p.100 (b) E (Y ) 40(0.37) 10(0.2)(1 0.2) 1.6 14.8 P( X ) Var (Y ) 40(0.37)(0.63) P ( X 2 1.6 ) P ( X 3.264911) 9.324 P ( X 0) P ( X 1) P( X 2) P( X 3) Example 11.5T (a) (0.8)10 C110 (0.2)(0.8) 9 C 210 (0.2) 2 (0.8) 8 p.100 C310 (0.2) 3 (0.8) 7 E ( Z ) 21 0.8791 (cor. to 4 d. p.) 30 p 21 p 0.7 Example 11.9T (b) Var(Z) (a) 30(0.7) (1 0.7) 6.3 Example 11.6T p.105 Let X be the number of games that Andy wins. Then X ~ B(10, 0.323). P(Andy wins at least 3 games) P( X 3) 1 P( X 3) p.101 1 P( X 0) P( X 1) P( X 2) E ( Z ) 14.4 1 (0.677)10 C110 (0.323)(0.677) 9 np 14.4.............(1) C 210 (0.323) 2 (0.677) 8 Var ( Z ) 25.6 p 0.676111 0.6761 (cor. to 4 d. p.) np (1 p ) 25.6 p n(1 p ) 25.6 n np 25.6.............(2) (b) Substituting (1) into (2), n 14.4 25.6 n 40 P(Chris wins at least 3 games) P ( X 7) 1 P ( X 7) 1 P( X 8) P( X 9) P( X 10) Substituting n 40 into (1), 40 p 14.4 p 0.36 1 C810 (0.323) 8 (0.677) 2 C910 (0.323) 9 (0.677) (0.323)10 1 0.002715 0.9973 (cor. to 4 d. p.) 57 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide (c) P(Andy wins more than Chris) P( X 6) P( X 6) P( X 7) P( X 7) Example 11.12T (a) C (0.323) (0.677) C (0.323) (0.677) 10 6 6 4 10 7 7 p.110 Let X be the number of defective items in a sample of 10 items. 3 Then X ~ B(10, 0.1). 0.002715 0.0665 (cor. to 4 d. p.) P(a batch is rejected) P(X 2 in stage I) Example 11.10T (a) + P(X 1 in stage I and X 2 in stage II) p.106 1 (0.9)1 0 C11 0 (0.1)(0.9)9 C11 0 (0.1)(0.9)9 [1 (0.9)1 0 C11 0 (0.1)(0.9)9 ] Let X be the number of people who are overweight. 0.263 901 07 0.387 420 489 0.263 901 07 Then X ~ B(n, 0.6). P( X n 1) 0.9 0.3661 (cor. to 4 d. p.) 1 P( X n) 0.9 1 ( 0 .6 ) n 0 . 9 (b) 0 .6 n 0 .1 10 10 P( X 0) 20 P( X 1) 10 P( X x) n log 0.6 log 0.1 x2 10 log 0.1 n log 0.6 4.507576 Mean number 10 P( X x) 10 P( X 1) x 0 10 10 P( X x) 10 C110 (0.1)(0.9) 9 x 0 The minimum value of n is 5. 10 1 10 C110 (0.1)(0.9) 9 13.8742 (cor. to 4 d. p.) (b) X ~ B(5, 0.6) Expected number of people who are overweight (c) 5(0.6) 3 Let Y be the number of months that the manufacturer rejects the batch. Then Y ~ B(6, 0.3661). Example 11.11T (a) P(the manufacturer stops buying within p.107 the first half year) P(Y 2 except the manufacturer rejects in the Let X be the number of games that Amy loses. first month and the sixth month) Then X ~ B(4, 0.4). 1 P(Y 2) P(the manufacturer rejects in the Expected number of games she loses 4(0.4) 1 .6 (b) first month and the sixth month) 1 (1 0.3661) 6 C16 (0.3661)(1 0.3661) 5 (1 0.3661) 4 (0.3661) 2 0.6886 (cor. to 4 d. p.) Her expected gain 5 P ( X 0) 4 P ( X 1) 3 P ( X 2) 2 P ( X 3) ( 2) P ( X 4) 5 (0.6) 4 4 C14 (0.4)(0.6) 3 3 C24 (0.4) 2 (0.6) 2 11.1 2 C34 (0.4) 3 (0.6) ( 2) (0.4) 4 pp.96 – 98 $3.3232 pp.96 97 (c) Let $y be the money she should pay for losing all 4 1. games such that the game is fair. Her expected gain 0 5 P( X 0) 4 P( X 1) 3 P( X 2) 2 P( X 3) ( y ) P( X 4) 0 5 (0.6) 4 4 C14 (0.4)(0.6) 3 3 C24 (0.4) 2 (0.6) 2 2 C34 (0.4) 3 (0.6) ( y ) (0.4) 4 0 3.3744 0.0256 y y 131.8125 She should pay $132. (cor. to the nearest dollar) © Hong Kong Educational Publishing Co. 58 (a) Binomial Distribution (d) (b) P( X 3) 1 P( X 3) 1 0.794 569 0.2054 (cor. to 4 d. p.) 4. (a) P (Y 4) C49 (0.8)4 (0.2)5 0.016 515 1 0.0165 (cor. to 4 d. p.) (c) (b) P (Y 2) P(Y 0) P(Y 1) P(Y 2) C09 (0.8) 0 (0.2) 9 C19 (0.8)1 (0.2) 8 C 29 (0.8) 2 (0.2) 7 0.0003 (cor. to 4 d. p.) 2. (a) (c) P( X 8) C816 (0.25)8 (0.75)16 8 0.016 515 1 C59 (0.8)5 (0.2) 4 0.0197 (cor. to 4 d. p.) (b) 0.0826 (cor. to 4 d. p.) P( X 3) 1 P( X 3) (d) 1 [ P( X 0) P( X 1) P( X 2) P( X 3)] 16 0 1 [C (0.25) (0.75) 16 0 0 P(3 Y 5) P (Y 4) P (Y 5) C79 (0.8) 7 (0.2) 2 C89 (0.8) 8 (0.2)1 16 1 C (0.25) (0.75) 16 1 1 P (Y 7) P(Y 7) P(Y 8) P(Y 9) C99 (0.8) 9 (0.2) 0 0.7382 (cor. to 4 d. p.) C216 (0.25) 2 (0.75)16 2 C316 (0.25)3 (0.75)16 3 ] 0.5950 (cor. to 4 d. p.) 5. 3. (a) (a) P( X 2) C1020 (0.4)10 (0.6)10 C (0.2) (0.8) 12 2 2 0.1171 (cor. to 4 d. p.) 10 0.283468 0.2835 (cor. to 4 d. p.) (b) (b) P( X 3) P( X 0) P( X 1) P( X 2) P( X 3) 0 12 12 1 1 P( X 3) P( X 0) P( X 1) P( X 2) P( X 3) C020 (0.4) 0 (0.6) 20 C120 (0.4)1 (0.6)19 C220 (0.4) 2 (0.6)18 C320 (0.4) 3 (0.6)17 0.0160 (cor. to 4 d. p.) C (0.2) (0.8) C (0.2) (0.8) 0.283468 12 0 P ( X 10) 11 C312 (0.2) 3 (0.8) 9 0.794569 (c) 0.7946 (cor. to 4 d. p.) P(14 X 16) P( X 14) P( X 15) P( X 16) C1420 (0.4)14 (0.6) 6 C1520 (0.4)15 (0.6) 5 (c) P (6 X 8) C1620 (0.4)16 (0.6) 4 0.0064 (cor. to 4 d. p.) P( X 6) P( X 7) P( X 8) C612 (0.2) 6 (0.8) 6 C712 (0.2) 7 (0.8) 5 C812 (0.2)8 (0.8) 4 0.0193 (cor. to 4 d. p.) (d) P( X 2) 1 P( X 2) 1 P( X 0) P( X 1) P( X 2) 1 C020 (0.4)0 (0.6) 20 C120 (0.4)1 (0.6)19 C220 (0.4) 2 (0.6)18 0.9964 (cor. to 4 d. p.) 59 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide 6. X ~ B(8, 0.5) 12. The probability function of X is f ( x) C x8 (0.5) x (0.5)8 x Let X be the number of light bulbs that are still working after 800 hours of use. Then X ~ B(7, 0.4). C x8 (0.5) 8 , where x 0, 1, 2, …, 8 7. P(exactly 3 of light bulbs are working after X ~ B(20, 0.25) 800 hours of use) P ( X 3) C37 (0.4) 3 (0.6) 4 The probability function of X is f ( x) C x20 (0.25) x (0.75) 20 x , 0.2903 (cor. to 4 d. p.) where x 0, 1, 2, …, 20 pp.97 98 8. (a) 1 X ~ B (13, ) 6 13. The probability function of X is x x 13 x 1 5 f ( x) C 6 6 13 x (a) P( X x) , where x 0, 1, 2, …, 13 (b) (b) P(the number of ‘3’s obtained is 6) P( X 6) 1 C613 6 0.0103 6 0 1 2 3 4 5 6 0.0135 0.0725 0.1757 0.2522 0.2377 0.1536 0.0689 P( X 2) P ( X 0) P ( X 1) P ( X 2) 0.0135 0.0725 0.1757 0.2617 7 5 6 (cor. to 4 d. p.) 0.5 P( X 3) P( X 2) P( X 3) 0.2617 0.2522 9. (a) 0.5139 X ~ B(6, 0.95) 0.5 The probability function of X is f ( x) C x6 (0.95) x (0.05) 6 x , The least value of x is 3. where x 0, 1, 2, …, 6 14. (b) (a) Z ~ B(n, 0.4) The probability function of Z is f ( z ) Czn (0.4) z (0.6) n z ,where z 0, 1, 2, …, n P(5 cups of yogurt do not go bad) P ( X 5) C56 (0.95) 5 (0.05)1 0.2321 (cor. to 4 d. p.) (b) (i) P ( Z 4) C45 (0.4) 4 (0.6) 5 4 10. 0.0768 Let X be the number of blank pages which are printed out. (ii) Then X ~ B(4, 0.4). P ( Z 4) C46 (0.4) 4 (0.6) 6 4 P(More than 2 blank pages are printed out) P( X 2) 0.1382 (cor. to 4 d. p.) P( X 3) P( X 4) C34 (0.4) 3 (0.6)1 C 44 (0.4) 4 (0.6) 0 (iii) 0.1792 P ( Z 4) C47 (0.4) 4 (0.6) 7 4 0.1935 (cor. to 4 d. p.) 11. Let X be the number of females being selected. Then X ~ B(12, 0.55). 15. W ~ B(15, p) The probability function of W is f (w) Cw15 p w (1 p)15 w , C 41 2 (0.55) 4 (0.45) 8 where w 0, 1, 2, …, 15 0.0762 (cor. to 4 d. p.) © Hong Kong Educational Publishing Co. (a) P(exactly 4 females) P ( X 4) 60 Binomial Distribution (b) P (W 4) (i) 19. (a) (i) C415 (0.3) 4 (1 0.3)15 4 Then X ~ B(5, 0.25). 0.2186 (cor. to 4 d. p.) P(no hearts) P( X 0) C05 (0.25)0 (0.75)5 P (W 4) (ii) C415 (0.5) 4 (1 0.5)15 4 0.237 305 0.0417 (cor. to 4 d. p.) 0.2373 (cor. to 4 d. p.) P (W 4) (iii) Let X be the number of hearts obtained. C415 (0.7) 4 (1 0.7)15 4 (ii) P(exactly one heart) P( X 1) 0.0006 (cor. to 4 d. p.) C15 (0.25)1 (0.75) 4 0.395 508 16. P(Y 5) 0.370 74 (a) 0.3955 (cor. to 4 d. p.) C p (1 p) 0.370 74 5 5 5 0 p 5 0.370 74 (iii) 1 5 p (0.370 74) 0.82 (cor. to 2 d. p.) (b) P(exactly two hearts) P( X 2) C25 (0.25) 2 (0.75)3 0.263 672 0.2637 (cor. to 4 d. p.) P (Y 3) C35 (0.82) 3 (0.18) 2 0.1786 (cor. to 4 d. p.) 17. (b) P ( X 0) P ( X 1) P ( X 2) P( X 0) 0.175 656 (a) 0.237 305 0.395 508 0.263 672 C (0.22) (0.78) 0.175 656 n 0 0 P(at most two hearts) P ( X 2) n 0.8965 (cor. to 4 d. p.) 0.78n 0.175 656 n log 0.78 log 0.175 656 20. log 0.175 656 log 0.78 7 (cor. to the nearest integer) n (b) (a) target. 1 Then X ~ B 6, . 4 P( X 4) P(hit exactly 3 times) P( X 3) C47 (0.22) 4 (0.78) 3 0.0389 (cor. to 4 d. p.) 18. 1 C36 4 0.1318 Let X be the number of seeds germinate. p Then X ~ B 6, . 100 (b) P( X 0) 0.000 1911 0 Let X be the number of times that Patrick hits the 6 p p C 06 1 0.000 1911 100 100 6 (c) p 76 (cor. to the nearest integer) 2 4 3 4 (cor. to 4 d. p.) P(hit exactly once) P( X 1) 1 1 C16 4 0.3560 61 3 3 4 (cor. to 4 d. p.) P(hit exactly twice) P ( X 2) 1 C 26 4 0.2966 100 p 0.000 1911 100 100 p 23.999 937 71 3 5 3 4 (cor. to 4 d. p.) © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide (d) P(hit at least 4 times) P( X 4) 3. (a) Mean n(0.65) 12(0.65) 7.8 P( X 4) P( X 5) P( X 6) 1 C46 4 0.0376 4 2 5 1 6 3 1 3 1 3 C56 C66 4 4 4 4 4 (cor. to 4 d. p.) 0 Standard deviation n(0.65)(0.35) 12(0.65)(0.35) 1.6523 (cor. to 4 d. p.) 11.2 pp.102 – 104 (b) Mean n(0.65) 20(0.65) 13 pp.102 104 1. (a) E ( X ) 16(0.4) Standard deviation 6.4 n(0.65)(0.35) Var ( X ) 16(0.4)(0.6) 20(0.65)(0.35) 3.84 (b) 2.1331 (cor. to 4 d. p.) E ( X ) 60(0.7) 42 (c) Mean n(0.65) 600(0.65) 390 Var ( X ) 60(0.7)(0.3) 12.6 (c) Standard deviation n(0.65)(0.35) E ( X ) 120(0.32) 600(0.65)(0.35) 38.4 11.6833 (cor. to 4 d. p.) Var ( X ) 120(0.32)(0.68) 26.112 Var ( X ) 10.5 4. 2. (a) n(0.7)(0.3) 10.5 E (Y ) 40 p 40(0.3) n 50 12 5. Var (Y ) 40 p(1 p) E (Y ) 7.68 12 p 7.68 40(0.3)(0.7) p 0.64 8.4 (b) 6. E (Y ) 40 p 40(0.5) (a) Z ~ B(n, 0.3) E ( Z ) 15 n(0.3) 15 20 n 50 Var (Y ) 40 p(1 p) 40(0.5)(0.5) (b) 10 (c) Var ( Z ) 50(0.3)(0.7) 10.5 E (Y ) 40 p 40(0.7) 28 7. (a) E (Y ) 26.4 80 p 26.4 Var (Y ) 40 p(1 p) p 0.33 40(0.7)(0.3) 8.4 (b) Standard deviation of Y 80(0.33)(0.67) 4.2057 (cor. to 4 d. p.) © Hong Kong Educational Publishing Co. 62 Binomial Distribution 8. (a) Var ( Z ) 6 p.104 3 2 n 6 5 5 n 25 (b) Var ( X ) 3.75 np (1 p ) 3.75...........(2) 3 E (Z ) 25 5 (2) (1): 15 9. E( X ) 5 np 5................(1) 14. 1 p 0.75 p 0.25 Substituting p 0.25 into (1), n(0.25) 5 n 20 Let X be the number of girls in the Lee family. Then X ~ B(3, 0.5). Mean 3(0.5) 1.5 15. Mean 8 np 8…………..(1) Variance 3(0.5)(0.5) 0.75 Variance 5.44 np(1 – p) 5.44……(2) (2) (1): 10. Let X be the number of students who catch influenza after the vaccination. 1 p 0.68 p 0.32 Substituting p 0.32 into (1), Then X ~ B(40, 0.05). n(0.32) 8 Mean 40(0.05) 2 n 25 Variance 40(0.05)(0.95) 1.9 16. E ( X ) 12.6 np 12.6..............(1) Var ( X ) E ( X 2 ) [ E ( X )]2 11. Let X be the number of cockroaches that are killed. 168.714 12.6 2 Then X ~ B(8, 0.9). 9.954 Mean 8(0.9) 7.2 Variance 8(0.9)(0.1) 0.72 12. np(1 p) 9.954……….(2) (2) (1): 1 p 0.79 p 0.21 Substituting p 0.21 into (1), n(0.21) 12.6 n 60 Let X be the number of smokers being selected. Then X ~ B(16, 0.4). Mean 16(0.4) 17. 6.4 Var (Y ) 11.2 np(1 p) 11.2...............(1) Var (Y ) E (Y 2 ) [ E (Y )]2 Variance 16(0.4)(0.6) 3.84 11.2 3147.2 [ E (Y )]2 E (Y ) 56 np 56.................(2) 13. X ~ B(15, 0.125) E ( X ) 15(0.125) 1.875 (1) (2): Var(X) 15(0.125)(1 0.125) 1.640 625 Substituting p 0.8 into (2), n(0.8) 56 n 70 63 1 p 0.2 p 0.8 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide E ( Z ) 36 18. 21. (a) np 36................(1) John gets. Var ( Z ) 0.2496n 1 Then X ~ B 20, . 4 E( X ) np(1 p) 0.2496n p(1 p) 0.2496 p p 0.2496 0 1 20 4 5 2 (1) (1) 4(1)(0.2496) 2 p 2(1) 0.48 or 0.52 Var ( X ) For p 0.48, 1 3 20 4 4 1.936 492 Substituting p 0.48 into (1), n(0.48) 36 n 75 1.9365 (cor. to 4 d. p.) For p 0.52, Substituting p 0.52 into (1), (b) n(0.52) 36 n 69.230 769 , which is not an integer. Let X be the number of correct answers P( X ) P ( X 5 1.936 492) P ( X 3.063 508) p 0.52 is rejected. n 75 and p 0.48 1 P ( X 3) 1 P ( X 0) P ( X 1) P ( X 2) P ( X 3) 20 19. 19 2 18 3 1 3 1 3 1 C12 0 C22 0 4 4 4 4 4 E ( X ) 67.5 np 67.5...............(1) 3 17 1 3 C32 0 4 4 0.7748 (cor. to 4 d. p.) Var ( X ) 82.5 p np (1 p ) 82.5 p n(1 p ) 82.5 n np 82.5..............( 2) 22. Substituting (1) into (2), n 67.5 82.5 n 150 (a) E (Y ) 130(0.014) 1.82 Substituting n 150 into (1), 150 p 67.5 Var (Y ) 2 130(0.014)(1 0.014) p 0.45 20. 1.794 52 Let X be the number of heads. (b) Then X ~ B(n, p). P(Y 3.159 597) 1 P(Y 3) np 52.5...................(1) Variance 24.9375 1 P(Y 0) P(Y 1) P(Y 2) P(Y 3) np(1 p) 24.9375…....(2) 1 (0.986)130 C1130(0.014)(0.986)129 1 p 0.475 p 0.525 C2130(0.014) 2 (0.986)128 C3130(0.014)3 (0.986)127 0.1106 (cor. to 4 d. p.) Substituting p 0.525 into (1), n(0.525) 52.5 n 100 © Hong Kong Educational Publishing Co. P(Y ) P(Y 1.82 1.794 52 Mean 52.5 (2) (1): Y ~ B(130, 0.014) 64 Binomial Distribution 4. 11.3 (a) Let X be the number of respondents agree. pp.110 – 115 Then X ~ B(5, 0.35). pp.110 113 P(exactly 3 respondents agree) P( X 3) C35 (0.35)3 (0.65) 2 1. Let X be the number of boys they have. 0.181 147 Then X ~ B(4, 0.49). 0.1811 (cor. to 4 d. p.) P(they have 2 boys) P ( X 2) (b) C 24 (0.49) 2 (0.51) 2 0.3747 (cor. to 4 d. p.) P(at least 3 respondents agree) P( X 3) P( X 3) P ( X 4) P( X 5) 0.181 147 C45 (0.35) 4 (0.65) (0.35)5 2. (a) (b) Y ~ B(3, 0.4) 0.231 695 The probability function of Y is f ( y ) C y3 (0.4) y (0.6) 3 y , where y 0, 1, 2, 3. 0.2352 (cor. to 4 d. p.) (c) Mean 3(0.4) 1.2 1 P ( X 3) Variance 3(0.4)(0.6) 1 0.235 169 5 0.72 3. (a) P(fewer than 3 respondents agree) P ( X 3) 0.7648 (cor. to 4 d. p.) Let X be the number of patients recover from the 5. (a) disease. X ~ B(2, p) P(a system of large engines fails) P( X 2) Then X ~ B(10, 0.6). P(exactly 2 patients recover) p2 P( X 2) C210 (0.6) 2 (0.4)8 0.010 617 (b) Y ~ B(4, 2p) P(a system of small engines fails) P (Y 2) 0.0106 (cor. to 4 d. p.) P (Y 3) P (Y 4) (b) P(at most 2 patients recover) C34 ( 2 p ) 3 (1 2 p ) ( 2 p ) 4 P ( X 2) 32 p 3 64 p 4 16 p 4 P ( X 0) P ( X 1) P ( X 2) 32 p 3 48 p 4 (0.4)1 0 C11 0 (0.6)(0.4)9 0.010 617 0.001 678 0.010 617 (c) 0.0123 (cor. to 4 d. p.) (c) P(at least 2 patients recover) Both systems have an equal chance of failure. P( X 2) P(Y 2) p 2 32 p 3 48 p 4 P( X 2) 48 p 2 32 p 1 0 1 P( X 2) 1 [ P( X 0) P( X 1)] p (32) (32) 2 4(48)(1) 2(48) 0.0329 or 0.6338 (rejected) 1 0.001 678 0.9983 (cor. to 4 d. p.) (cor. to 4 d. p.) 65 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide 6. (a) Let X be the number of defective batteries in a 9. (a) package of 10. 1 P (all 3 attempts fail) Then X ~ B(10, 0.02). 1 (1 0.6) 3 Proportion P ( X 1) 0.936 1 P ( X 1) (b) 1 P ( X 0) P ( X 1) Let X be the number of members who are qualified in a team. 1 (0.98)1 0 C11 0 (0.02)(0.98) 9 Then X ~ B(5, 0.936). 0.0162 (cor. to 4 d. p.) (b) P(an athlete will be qualified for the final) P(a team is qualified for the final) P( X 4) Let Y be the number of packages need to be P( X 4) P( X 5) replaced. C45 (0.936) 4 (1 0.936) (0.936) 5 Then Y ~ B(10, 0.0162) approximately. 0.9640 (cor. to 4 d. p.) P(3 of the packages need to be replaced) P (Y 3) 10. C31 0 (0.0162) 3 (0.9838) 7 (a) (i) 0.0005 (cor. to 4 d. p.) X ~ B(8, 0.3) The probability function of X is f ( x) C x8 (0.3) x (0.7)8 x , where x 0, 1, 2, …, 8. 7. Let X be the number of games she wins. Then X ~ B(5, p). P( X 4) 3 p4 (ii) of relevant experience) C45 p 4 (1 p ) p 5 3 p 4 P ( X 3) 5 p 4 4 p5 3 p 4 C38 (0.3) 3 (0.7) 5 4p 2p 0 2 p 1 0 5 4 p 8. (a) 0.2541 (cor. to 4 d. p.) 1 2 (b) (i) where x 0, 1, 2, …, 8. Then X ~ B(12, 0.05). (ii) Proportion P( X 2) 1 P ( X 2) 1 P ( X 0) P ( X 1) P( X 2) P(Y 5) 1 P(Y 5) 1 P(Y 6) P(Y 7) P(Y 8) C 212 (0.05) 2 (0.95)10 1 C68 (0.7) 6 (0.3) 2 C78 (0.7) 7 (0.3) (0.7) 8 0.0196 (cor. to 4 d. p.) 0.4482 (cor. to 4 d. p.) Let Y be the number of defective discs in a sample of 12 by using the new machines. Then Y ~ B(12, 0.02). Proportion P(Y 1) 1 P(Y 1) 1 P(Y 0) P(Y 1) 1 (0.98)12 C112 (0.02)(0.98)11 0.0231 P( X 2) The proportion increases. © Hong Kong Educational Publishing Co. P(at least 3 applicants have less than 10 years of relevant experience) P( X 3) 1 (0.95)12 C112 (0.05)(0.95)11 Y ~ B(8, 0.7) The probability function of Y is f ( y ) C y8 (0.7) y (0.3) 8 y , Let X be the number of defective discs in a sample of 12. (b) P(3 applicants have less than 10 years 66 Binomial Distribution 11. (a) pp.113 115 Let A be the event that a bird is diagnosed to have H5N1 virus and B be the event that a bird 13. has the virus. (a) P(exactly 3 students can type more than 30 Chinese characters per minute) The required probability P( B | A) P( B A) P( A) P( A | B) P( B) P( A | B) P( B) P( A | B) P( B) 0.02 0.95 0.98 0.05 0.02 0.95 19 68 P(2 boys and 1 girl can do this) + P(1 boy and 2 girls can do this) (0.4 0.4) (0.5 0.5 2) (0.4 0.6 2) (0.5 0.5) 0.2 (b) Let A be the event that a student can type more than 30 Chinese characters per minute. P(A) P(boy and A) + P(girl and A) 0.6 0.4 + 0.4 0.5 (b) Let X be the number of the birds have the virus if 0.44 they are diagnosed to have the virus. 49 X ~ B 3, 68 30 Chinese characters per minute) 0.44 n P(at least two birds have the virus) P ( X 2) P ( X 2) P ( X 3) 2 49 19 49 C 68 68 68 (c) sample of m students. Then X ~ B(m, 0.44). P ( X m 1) 0.95 1 P ( X m) 0.95 0.8094 (cor. to 4 d. p.) (a) 1 0.44m 0.95 P(all 4 forgotten digits are different) 0.44m 0.05 m log 0.44 log 0.05 P410 10 4 0.504 (b) log 0.05 log 0.44 m 3.648 969 m P(forgotten digits only consist of 1, 2, 5 or 9 and can appear more than once) 44 4 10 0.0256 (c) Let X be the number of students can type more than 30 Chinese characters per minute in a 3 3 2 12. P(All n student can type more than 14. (a) Let X be the number of forgotten digits have The minimum number is 4. Let X be the number of games Aaron wins. 2 Then X ~ B 5, . 3 already appeared among the first 3 digits. P(Aaron wins) P( X 3) Then X ~ B(4, 0.3). P( X 3) P( X 4) P( X 5) P(exactly 2 of them) P ( X 2) 2 1 2 1 2 C35 C45 3 3 3 3 3 3 C 24 (0.3) 2 (0.7) 2 2 4 5 0.7901 (cor. to 4 d. p.) 0.2646 (b) 67 Aaron’s expected gain 2 $ 5 p 3 10 $ p 3 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide (c) (d) Calvin’s expected gain 1 $ 5 q 3 5 $ q 3 16. (a) Let X be the number of imperfect fans. Then X ~ B(10, 0.01). P(Victor rejects) P( X 1) 1 P( X 0) P( X 1) 1 (0.99)10 C110 (0.01)(0.99)9 0.0043 (cor. to 4 d. p.) In order to be a fair game, their expected gains should be equal. 10 5 p q 3 3 q 2p (b) Let Y be the number of imperfect fans. Then Y ~ B(10, 0.1). P(Victor accepts) P(Y 1) 15. (a) Let X be the number of successful throws. P(Y 0) P(Y 1) Then X ~ B(10, 0.8). The mean E ( X ) 10(0.8) 8 (0.9)10 C110 (0.1)(0.9)9 0.7361 (cor. to 4 d. p.) (c) (b) Yes, since even though 10% of the fans are imperfect, it seems to have a good chance P( X 7) C710 (0.8) 7 (0.2) 3 (0.7361) that Victor accept the claim ‘only 1% of 0.201 326 592 the fans are imperfect’. P( X 8) C810 (0.8)8 (0.2) 2 0.301 989 888 17. P( X 9) C910 (0.8) 9 (0.2) Let X be the number of dishes fail the test in a sample of 5 dishes. 0.268 435 456 Let Y be the number of dishes fail the test in a sample P( X 10) (0.8) 0.107 374 182 10 of 3 dishes. Then X ~ B(5, 0.05) and Y ~ B(3, 0.05). P( X 6) 1 P( X 7) P( X 8) P( X 9) P( X 10) P(accepting a batch) P ( X 0) P ( X 1) P (Y 0) 0.120 873 882 (0.95) 5 C15 (0.05)(0.95) 4 (0.95) 3 Michael’s expected gain $[50 P( X 6) 14 P( X 7) 16 P( X 8) 0.9484 (cor. to 4 d. p.) 18 P( X 9) 20 P( X 10)] 18. $9 (cor. to the nearest dollar) (a) Let X be the number of times a person correctly answers. Then X ~ B(8, 0.5). (c) It is not a fair game. P(a person fails the test) P ( X 7) Let $y be the amount that Michael should pay. Michael’s expected gain $0 y P( X 6) 14 P( X 7) 16 P( X 8) 1 P( X 7) P( X 8) 1 C78 (0.5) 7 (0.5) (0.5)8 18 P( X 9) 20 P( X 10) 0 0.9648 (cor. to 4 d. p.) 0.120 873 882 y 14.629 732 34 0 y 121.033 03 (b) Michael should pay $121. Let Y be the number of times he gets the outcomes of a rolled dice. 1 Then Y ~ B(4, ). 6 P(He passes) P(Y 3) P(Y 3) P(Y 4) (cor. to the nearest dollar) 3 1 5 1 C 34 6 6 6 0.016 203 7 4 0.0162 (cor. to 4 d. p.) © Hong Kong Educational Publishing Co. 68 Binomial Distribution (c) P(William passes the test) P( X 7) P( X 6) P(Y 3) (b) Let Y be the number of batches being rejected. Then Y ~ B(20, 0.058 153 8) approximately. C78 (0.5)7 (0.5) (0.5)8 C68 (0.5)6 (0.5)2 P(no more than 2 out of 20 batches 0.016 203 7 tested will be rejected) P(Y 2) 0.0369 (cor. to 4 d. p.) P(Y 0) P(Y 1) P(Y 2) 19. (a) (i) (0.941 846 2) 20 C120 (0.058 153 8)(0.941 846 2)19 Let X be the number of patients agree C220 (0.058 153 8) 2 (0.941 846 2)18 the trial. 0.8929 (cor. to 4 d. p.) Then X ~ B(10, 0.4). P(exactly 2 patients agree) P( X 2) C (0.4) (0.6) 10 2 2 (c) 8 Let Z be the number of defective modules found in a sample of n modules. 0.120 932 Then Z ~ B(n, 0.04). 0.1209 (cor. to 4 d. p.) P(a batch is accepted) P ( Z 1) P ( Z 0) P ( Z 1) (ii) P(at most 2 patients agree) (0.96) n C1n (0.04)(0.96) n 1 P ( X 2) (0.96) n (0.04n)(0.96) n 1 P ( X 0) P ( X 1) P ( X 2) (0.96 0.04n) 0.96 n 1 (0.6)1 0 C11 0 (0.4)(0.6)9 0.120 932 When n 13, P( Z 1) 0.167 289 0.1673 (cor. to 4 d. p.) (0.96 0.04 13) 0.9612 0.906 810 4 (iii) 0.9 P(at least 2 patients agree) P( X 2) When n 14, P( Z 1) P( X 2) P( X 2) P( X 2) [1 P( X 2)] (0.96 0.04 14) 0.961 3 0.120 932 (1 0.167 289) 0.894 066 1 0.9536 (cor. to 4 d. p.) 0 .9 (b) (i) The maximum value of n is 13. No, since the patients are receiving two kind of trials with the different probability (ii) of withdrawing. pp.118 – 126 No, since the number of patients to be pp.118 120 invited is not a constant. 20. (a) 1. Let X be the number of defective modules found (a) in a sample. Then X ~ B(10, 0.04). P(a batch is rejected) P ( X 1) 1 P ( X 0) P ( X 1) 1 (0.96)1 0 C11 0 (0.04)(0.96)9 0.058 153 8 0.0582 (cor. to 4 d. p.) 69 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide (b) (c) P( X 4) 1 P( X 4) 1 P( X 3) P( X 3) P( X 4) 1 0.678 543 0.207 642 C48 (0.25)4 (0.75)4 0.0273 (cor. to 4 d. p.) 4. (a) P (Y 5) C515 (0.35)5 (0.65)10 0.212 339 (c) 0.2123 (b) P (Y 5) P(Y 0) P(Y 1) P (Y 2) P(Y 3) P(Y 4) (0.65)15 C115 (0.35)(0.65)14 C215 (0.35) 2 (0.65)13 C315 (0.35)3 (0.65)12 C415 (0.35) 4 (0.65)11 0.351 943 0.3519 (cor. to 4 d. p.) 2. (a) P (Y 0) C018 (0.24) 0 (0.76)18 0 (c) 0.0072 (cor. to 4 d. p.) (b) P (Y 6) 1 P ( X 6) 1 P ( X 5) P ( X 5) 1 0.212 339 0.351 943 P(Y 6) 0.4357 (cor. to 4 d. p.) C618 (0.24) 6 (0.76)18 6 0.1317 (cor. to 4 d. p.) 5. (c) (a) P (Y 11) C28 (0.73) 2 (0.27)6 C38 (0.73)3 (0.27)5 P(Y 12) P(Y 13) P(Y 14) P(Y 15) C48 (0.73) 4 (0.27) 4 C58 (0.73)5 (0.27)3 P(Y 16) P(Y 17) P(Y 18) 0.005 780 8 0.031 259 0 0.105 643 9 18 18 C12 (0.24)12 (0.76) 6 C13 (0.24)13 (0.76) 5 0.228 503 9 18 18 C14 (0.24)14 (0.76) 4 C15 (0.24)15 (0.76) 3 0.3712 (cor. to 4 d. p.) 18 18 C16 (0.24)16 (0.76) 2 C17 (0.24)17 (0.76)1 18 C18 (0.24)18 (0.76) 0 0.0002 (cor. to 4 d. p.) 3. (a) P ( 2 X 5) P ( X 2) P ( X 3) P ( X 4) P ( X 5) (b) P (3 X 7) P( X 4) P( X 5) P( X 6) 0.105 643 9 0.228 503 9 C68 (0.73)6 (0.27) 2 P( X 3) 0.6431 (cor. to 4 d. p.) C38 (0.25)3 (0.75)5 0.207 642 0.2076 (cor. to 4 d. p.) (b) 6. (a) P(1 X 5) P( X 2) P( X 3) P( X 4) P( X 5) C218 (0.31) 2 (0.69)16 C318 (0.31) 3 (0.69)15 P( X 3) C418 (0.31) 4 (0.69)14 C518 (0.31) 5 (0.69)13 0.4856 (cor. to 4 d. p.) P( X 0) P( X 1) P( X 2) (0.75)8 C18 (0.25)(0.75)7 C28 (0.25)2 (0.75)6 0.678 543 (b) 0.6785 (cor. to 4 d. p.) P(11 X 15) P( X 11) P( X 12) P( X 13) P( X 14) 18 18 C11 (0.31)11 (0.69) 7 C12 (0.31)12 (0.69) 6 18 18 C13 (0.31)13 (0.69) 5 C14 (0.31)14 (0.69) 4 0.0080 (cor. to 4 d. p.) © Hong Kong Educational Publishing Co. 70 Binomial Distribution 7. (a) Let X be the number of sunny days in April. 12. X ~ B(200, 0.67) Mean E(X) Then X ~ B(30, 0.4). 200(0.67) 134 P(exactly 4 sunny days) P ( X 4) C 430 (0.4) 4 (0.6) 26 Standard deviation 0.0012 (cor. to 4 d. p.) Var ( X ) 200(0.67)(0.33) (b) P(exactly 6 days that are not sunny) P ( X 24) 6.6498 (cor. to 4 d. p.) C 2340 (0.4) 2 4 (0.6) 6 13. 7.80 10 6 (cor. to 3 sig. fig.) E (Y ) 27 36 p 27 p 0.75 8. Let X be the number of guests drive to the venue. Then X ~ B(15, 0.46). 14. P(all parking spaces are occupied) P ( X 10) (a) Var(Z) 2.88 12 p(1 p) 2.88 12 p 2 12 p 2.88 0 P ( X 10) P( X 11) P ( X 12) P ( X 13) (12) (12) 2 4(12)(2.88) 2(12) 0.4 or 0.6 P ( X 14) P ( X 15) p 15 15 C10 (0.46)10 (0.54) 5 C11 (0.46)11(0.54) 4 15 15 C12 (0.46)12 (0.54) 3 C13 (0.46)13 (0.54) 2 15 C14 (0.46)14 (0.54) (0.46)15 (b) 0.0890 (cor. to 4 d. p.) 9. (a) P(Z 4) C412 (0.4) 4 (0.6)8 X ~ B(4, 0.52) 0.2128 (cor. to 4 d. p.) The probability function of X is f ( x) C x4 (0.52) x (0.48) 4 x , For p 0.6, P(Z 4) C412 (0.6) 4 (0.4)8 where x 0, 1, 2, 3, 4 (b) 0.0420 (cor. to 4 d. p.) P(the family has exactly 1 girl) P ( X 1) 15. C14 (0.52)(0.48) 3 (a) 0.2300 (cor. to 4 d. p.) 10. E ( X ) 48 n(0.32) 48 n 150 E ( X ) 50(0.85) (b) 42.5 P( X 24) 150 C24 (0.32) 24 (0.68)126 Var ( X ) 50(0.85)(0.15) 4.0622 10 6 (cor. to 5 sig. fig.) 6.375 11. For p 0.4, 16. E ( X ) 120(0.15) 18 Let X be the number of members who are university graduates. Then X ~ B(12, 0.28). E ( X 2 ) Var ( X ) [ E ( X )]2 Mean E(X) 120(0.15)(0.85) 18 2 12(0.28) 3.36 339.3 Standard deviation Var ( X ) 12(0.28)(0.72) 1.5554 (cor. to 4 d. p.) 71 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide 17. Let X be the number of students who are late. 21. Then X ~ B(45, 0.1). Then X ~ B(8, 0.9). Mean E(X) P(all the hostages are rescued) P( X 6) 45(0.1) 4.5 P( X 6) P( X 7) P( X 8) C68 (0.9) 6 (0.1) 2 C78 (0.9) 7 (0.1) (0.9)8 Variance Var(X) 0.9619 (cor. to 4 d. p.) 45(0.1)(0.9) 4.05 22. 18. Let X be the number of helicopters arrive successfully. (a) Let X be the number of customers using an X ~ B(15, 0.25) Octopus card. Mean E(X) Then X ~ B(25, 0.7). 15(0.25) 3.75 P(exactly 12 customers pay the bill using Octopus card) P( X 12) Standard deviation C1225 (0.7)12 (0.3)13 Var ( X ) 0.0115 (cor. to 4 d. p.) 15(0.25)(0.75) 1.6771 (cor. to 4 d. p.) (b) P(at most 20 customers pay the bill using an Octopus card) 19. (a) Let X be the number of defective food P ( X 20) containers. 1 P ( X 20) Then X ~ B(6, 0.1). 1 P ( X 21) P ( X 22) P ( X 23) P(a box contains 2 defective food containers) P ( X 2) 1 C 2215 (0.7) 2 1(0.3) 4 C 2225 (0.7) 2 2 (0.3) 3 P ( X 24) P ( X 25) C 2235 (0.7) 2 3 (0.3) 2 C 2245 (0.7) 2 4 (0.3) (0.7) 2 5 C 26 (0.1) 2 (0.9) 4 0.9095 (cor. to 4 d. p.) 0.0984 (cor. to 4 d. p.) (b) pp.120 125 P(a box contains more than 2 defective food containers) P ( X 2) 23. P( X 0) 0.008 393 (1 p)10 0.008 393 1 P ( X 2) 1 1 P ( X 0) P ( X 1) P ( X 2) 1 p (0.008 393)10 1 (0.9) 6 C16 (0.1)(0.9) 5 C 26 (0.1) 2 (0.9) 4 p 0.38 (cor. to 2 d. p.) 0.0159 (cor. to 4 d. p.) 24. 20. (a) P( X n) 0.005 489 (0.42) n 0.005 489 Let X be the number of defective items in the batch. n log 0.42 log 0.005 489 log 0.005 489 n log 0.42 Then X ~ B(12, 0.15). P(a batch will be returned) P ( X 2) 1 P ( X 2) 1 P ( X 0) P( X 1) 6 (cor. to the nearest integer) 1 (0.85)12 C112 (0.15)(0.85)11 (b) 0.5565 (cor. to 4 d. p.) P( X 3) C36 (0.42)3 (0.58)3 0.2891 (cor. to 4 d. p.) © Hong Kong Educational Publishing Co. 72 Binomial Distribution 25. E (Z ) np 1 1 p p 6 Var ( Z ) 5 6 np (1 p ) 5 6 (1 p ) 5 5 6 1 6 (b) P(repairing 8 air-conditioners) + P(replacing 1 air-conditioner) C880 (0.2)8 (1 0.2 0.1) 72 C180 (0.1)(1 0.1 0.2) 79 5.218 10 7 (cor. to 4 sig. fig.) 28. (a) Then X ~ B(5, 0.7). P(get more than 10 points) P( X 3) P( X 3) P( X 4) P( X 5) C35 (0.7) 3 (0.3) 2 C45 (0.7) 4 (0.3) (0.7) 5 0.8369 (cor. to 4 d. p.) P( X k ) P( X k 1) (b) nk C ( p ) (1 p ) C kn 1 ( p ) k 1 (1 p ) n k 1 n k k Let X be the number of shots that she hits the orange region. 25 9 25 np (1 p ) 9 1 1 25 n 1 6 6 9 n 20 Var ( Z ) 26. P(total cost is $4000) P(get exactly 11 points) P ( X 3) C35 (0.7) 3 (0.3) 2 0.3087 n! (1 p ) ( n k )!k! n! ( p) ( n k 1)!( k 1)! n!(1 p ) ( n k 1)!( k 1)! ( n k )!k! n! p ( k 1)(1 p ) (n k ) p 29. (a) 1 ) 6 P( X 1) P( X 0) X ~ B(5, 5 5 6 0.401 878 0.4019 (cor. to 4 d. p.) 27. (a) Let X be the number of air-conditioners needed P( X 1) to be repaired and Y be the number of P ( X 0) P ( X 1) air-conditioners need to be replaced every year. 5 5 1 5 C15 6 6 6 0.803 755 Then X ~ B(80, 0.2) and Y ~ B(80, 0.1). Expected costs of repairing $ E (500 X ) 4 0.8038 (cor. to 4 d. p.) $[500 E ( X )] $[500 80(0.2)] $8000 (b) Expected costs of replacing $ E (4000Y ) P( B) P( X 1) 1 P ( X 1) 1 0.401 878 0.598 122 $[4000 E (Y )] P( A B) P( X 1) 1 P( X 1) $4000 80 0.1 $32 000 1 0.803 755 0.196 245 P( A B) P ( B) 0.196 245 0.598 122 P( A | B) 0.3281 (cor. to 4 d. p.) 73 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide 30. (a) Let X be the number of defective toys in a box. (c) Then X ~ B(5, 0.1). 1 P( X 8) 1 P( X 0) P( X 1) P( X 2) P(a box delivered contains 2 defective toys) P(2 toys chosen are not defective | X 2) P( X 3) P( X 4) P( X 5) P( X 6) P( X 7) P(X 2) C3 25 C25 (0.1) 2 (0.9)3 C2 6 14 7 13 1 3 1 3 0.382 827 3 C620 C720 4 4 4 4 0.1018 (cor. to 4 d. p.) 0.021 87 (b) P(Peter passes the test) P( X 8) P(a box delivered contains a defective toy) P(2 toys chosen are not defective | X 1) (d) P(X 1) C4 25 C15 (0.1)(0.9) 4 C2 If the total number of questions is 10, let Y be the correct answers he gets. 1 Then Y ~ 10, . 4 0.196 83 P(Peter passes the test) P(Y 4) (c) 1 P(Y 4) P(a box delivered contains defective toy(s)) 1 P(Y 0) P(Y 1) P(Y 2) P(Y 3) P(2 toys chosen are not defective and X 1) 10 3 1 3 C310 4 4 C2 25 C35 (0.1)3 (0.9) 2 C2 (a) Let X be the number of correct answers Peter 32. gets. (a) 8 7 Let A be the event that a battery passes the test Korea. P ( B | A) P( A B) P ( A) P(he gets 5 correct answers) P( X 5) 5 The answer in (c) will be increased. and B be the event that a battery is produced in 1 Then X ~ 20, . 4 15 1 3 C520 4 4 0.2023 (cor. to 4 d. p.) (b) 2 0.2241 (cor. to 4 d. p.) 0.219 51 31. 9 3 1 3 1 3 1 C110 C210 4 4 4 4 4 C4 C3 25 C15 (0.1)(0.9) 4 25 C25 (0.1) 2 (0.9)3 C2 C2 0 .5 0 .4 0 . 5 0 . 4 0 . 2 0 . 8 0 . 3 0 .6 10 27 P(he gets more than 5 correct answers) P ( X 5) (b) 1 P ( X 5) produced in Korea in the selected batteries. 10 Then X ~ B 4, . 27 1 P ( X 0) P ( X 1) P ( X 2) P ( X 3) P ( X 4) P ( X 5) 20 19 2 18 3 1 3 1 3 1 C12 0 C22 0 4 4 4 4 4 3 17 4 P(at least 2 of them are from USA or Japan) P ( X 2) P ( X 0) P ( X 1) P ( X 2) 16 1 3 1 3 C32 0 C42 0 4 4 4 4 5 4 3 2 17 10 17 10 17 C14 C 24 27 27 27 27 27 0.8532 (cor. to 4 d. p.) 15 1 3 C52 0 4 4 0.382 827 3 0.3828 (cor. to 4 d. p.) © Hong Kong Educational Publishing Co. Let X be the number of batteries that are 74 2 Binomial Distribution 33. (a) Let X and Y be the number of components fail 35. (a) Let X be the number of routers function in a in devices A and B respectively. 3-router network. Then X ~ B(2, q) and Y ~ B(4, q). Then X ~ B(3, p). P(failure of A) P(a 3-router network operates) P ( X 2) P ( X 2) P ( X 2) P ( X 3) q2 C 23 p 2 (1 p ) p 3 P(failure of B) P(Y 2) 3 p2 3 p3 p3 3 p2 2 p3 P(Y 3) P(Y 4) C34 q 3 (1 q) q 4 q 3 ( 4 4q q ) (b) q 3 (4 3q) Let Y be the number of routers function in a 5-router network. Then Y ~ B(5, p). (b) P(a 5-router network operates) P(failure of A) P(failure of B) q 2 q 3 (4 3q ) 1 q ( 4 3q ) P (Y 3) P (Y 3) P (Y 4) P (Y 5) C35 p 3 (1 p ) 2 C 45 p 4 (1 p) p 5 3q 2 4q 1 0 10 p 3 (1 2 p p 2 ) 5 p 4 5 p 5 p 5 (3q 1)(q 1) 0 10 p 3 20 p 4 10 p 5 5 p 4 5 p 5 p 5 1 q 1 3 10 p 3 15 p 4 6 p 5 For 34. (a) P(a 5-router network operates) > P(a 3-router network operates) 10 p3 15 p 4 6 p5 3 p 2 2 p3 Let X be the number of defective components in the sample. 6 p 3 15 p 2 12 p 3 0 Then X ~ B(30, p). P ( X 1) 0.04 2 p3 5 p 2 4 p 1 0 ( p 1)(2 p 2 3 p 1) 0 C130 p(1 p) 29 0.04.................(1) ( p 1) 2 (2 p 1) 0 P( X 2) 0.1 C p (1 p) 0.1.................(2) 30 2 2 (2) (1): 1 p 1 2 28 30 2 C p 2 .5 C13 0 (1 p ) 14.5 p 2.5(1 p) 36. (a) 17 p 2.5 p 0.15 (cor. to 2 d. p.) (b) P(cannot win) P(three ‘1’) + P(two ‘1’ and one ‘3’) 3 2 5 5 3 C23 9 9 9 350 729 Let Y and Z be the number of defective components in instruments A and B respectively. Then Y ~ B(3, 0.15) and Z ~ B(4, 0.15) approximately. (b) P(type A functions properly) P(Y 1) P(Y 0) P(Y 1) P(Y 500) P( X 10) P(two ‘3’ and one ‘5’) + P(two ‘5’ and one ‘1’) + P(two ‘5’ and one ‘3’) + P(three ‘5’) (0.85)3 C13 (0.15)(0.85) 2 2 2 2 3 1 1 5 1 3 C23 C23 C23 9 9 9 9 9 9 0.939 P(type B functions properly) 1 9 52 729 P( Z 2) P( Z 0) P( Z 1) P( Z 2) (0.85) 4 C14 (0.15)(0.85)3 C24 (0.15) 2 (0.85) 2 3 0.988 Type B is more reliable. 75 © Hong Kong Educational Publishing Co. 11 New Progress in Senior Mathematics Module 1 Book 2 (Extended Part) Solution Guide P(Y 100) 1 P(Y 0) P(Y 500) Extended Questions 350 52 729 729 109 243 42. 1 (c) (i) (a) p.126 Let X be the number of guinea pigs which are infected. Then X ~ B(7, 0.7). P(4 out of 7 guinea pigs are infected) The probability function of Y is 350 729 for y 0 109 for y 100 f ( y ) 243 52 for y 500 729 0 otherwise P ( X 4) C 47 (0.7) 4 (0.3) 3 0.2269 (cor. to 4 d. p.) (b) P(the 7th guinea pig is the 4th one infected) P(X 4 and the 7th guinea pig is infected) 4 C47 (0.7) 4 (0.3) 3 7 0.1297 (cor. to 4 d. p.) Let Z be the number of customers get no prize. 350 Then Z ~ B 20, . 729 43. (a) (i) Total number of matches have been selected 4 (ii) Among the 4 matches selected, one is from P(less than 5 customers get no price) P( Z 5) P( Z 0) P( Z 1) P( Z 2) P( Z 3) P( Z 4) 20 any box and the other three are from another box. 19 379 350 379 C120 729 729 729 2 Number of combinations C 34 18 350 379 C220 729 729 3 17 4 16 4 350 379 C320 729 729 (iii) find one of the box is empty) 350 379 C420 729 729 0.0096 (cor. to 4 d. p.) (ii) P(picks 4 matches and one box is empty) 1 C34 2 1 4 Let A be the number of customers getting a $500 coupon. 52 Then A ~ B 20, . 729 (b) 1 C N2 N k 2 19 52 677 C 729 729 0.3497 (cor. to 4 d. p.) 39 41 (HKALE Questions) © Hong Kong Educational Publishing Co. P(exactly k matches in the other box | P(pick 2N k matches and one box is empty) 20 1 (HKASLE Questions) 4 find one of the box is empty) P(only 1 customer getting a $500 coupon) P ( A 1) 37 38 P(exactly 2 matches in the other box | 76 2N k Binomial Distribution Open-ended Questions 44. p.126 For n 10, p 0.4, m 8, q 0.5: E ( X ) 10(0.4) 4 E (Y ) 8(0.5) 4 E(X) E(Y) For n = 20, p 0.3, m 30, q 0.2: E ( X ) 20(0.3) 6 E (Y ) 30(0.2) 6 E(X) E(Y) The two possible sets of values: n 10, p 0.4, m 8, q 0.5; n 20, p 0.3, m 30, q 0.2. (or other reasonable answers) 45. For p 0.1 or 0.9, Var(Z) 50(0.1)(0.9) 4.5 For p 0.25 or 0.75, Var(Z) 50(0.25)(0.75) 9.375 Two possible pairs of values of p: p 0.1 or 0.9; p 0.25 or 0.75 and their variances are 4.5 and 9.375 respectively. (or other reasonable answers) 77 © Hong Kong Educational Publishing Co.
© Copyright 2026 Paperzz