Introduction Package Description Illustration Summary Empirical Transition Matrix of Multistate Models: The etm Package Arthur Allignol1,2,∗ Martin Schumacher2 Jan Beyersmann1,2 1 Freiburg 2 Institute Center for Data Analysis and Modeling, University of Freiburg of Medical Biometry and Medical Informatics, University Medical Center Freiburg ∗ [email protected] DFG Forschergruppe FOR 534 1 Introduction Package Description Illustration Summary Introduction I I Multistate models provide a relevant modelling framework for complex event history data MSM: Stochastic process that at any time occupies one of a set of discrete states I I Health conditions Disease stages Allignol A. etm Package 2 Introduction Package Description Illustration Summary Introduction I I Multistate models provide a relevant modelling framework for complex event history data MSM: Stochastic process that at any time occupies one of a set of discrete states I I I Data consist of: I I I Health conditions Disease stages Transition times Type of transition Possible right-censoring and/or left-truncation Allignol A. etm Package 2 Introduction Package Description Illustration Summary Introduction I Survival data 1 0 Allignol A. etm Package 3 Introduction Package Description Illustration Summary Introduction I Illness-death model with recovery 1 2 0 Allignol A. etm Package 3 Introduction Package Description Illustration Summary Introduction I Time-inhomogeneous Markov process Xt∈[0,+∞) I I Finite state space S = {0, . . . , K } Right-continuous sample paths Xt+ = Xt Allignol A. etm Package 4 Introduction Package Description Illustration Summary Introduction I Time-inhomogeneous Markov process Xt∈[0,+∞) I I I Finite state space S = {0, . . . , K } Right-continuous sample paths Xt+ = Xt Transition hazards αij (t)dt = P(Xt+dt = j | Xt = i), i, j ∈ S, i 6= j I Completely describe the multistate process Allignol A. etm Package 4 Introduction Package Description Illustration Summary Introduction I Time-inhomogeneous Markov process Xt∈[0,+∞) I I I Finite state space S = {0, . . . , K } Right-continuous sample paths Xt+ = Xt Transition hazards αij (t)dt = P(Xt+dt = j | Xt = i), i, j ∈ S, i 6= j I I Completely describe the multistate process Cumulative transition hazards Z t Aij (t) = αij (u)du 0 Allignol A. etm Package 4 Introduction Package Description Illustration Summary Introduction I Transition probabilities Pij (s, t) = P(Xt = j | Xs = i), i, j ∈ S, s ≤ t Allignol A. etm Package 5 Introduction Package Description Illustration Summary Introduction I Transition probabilities Pij (s, t) = P(Xt = j | Xs = i), i, j ∈ S, s ≤ t I Matrix of transition probabilities P(s, t) = (I + dA(u)) (s,t] I a (K + 1) × (K + 1) matrix Allignol A. etm Package 5 Introduction Package Description Illustration Summary Introduction I The covariance matrix is computed using the following recursion formula: c P̂(s, t)) = cov( c P̂(s, t−)){(I + ∆Â(t)) ⊗ I} {(I + ∆Â(t))T ⊗ I}cov( c Â(t)){I ⊗ P̂(s, t−)T } + {I ⊗ P̂(s, t−)}cov(∆ Allignol A. etm Package 6 Introduction Package Description Illustration Summary Introduction I The covariance matrix is computed using the following recursion formula: c P̂(s, t)) = cov( c P̂(s, t−)){(I + ∆Â(t)) ⊗ I} {(I + ∆Â(t))T ⊗ I}cov( c Â(t)){I ⊗ P̂(s, t−)T } + {I ⊗ P̂(s, t−)}cov(∆ I Estimator of the Greenwood type I I Allignol A. Enables integrated cumulative hazards of not being necessarily continuous Reduces to usual Greenwood estimator in the univariate setting etm Package 6 Introduction Package Description Illustration Summary Introduction I The covariance matrix is computed using the following recursion formula: c P̂(s, t)) = cov( c P̂(s, t−)){(I + ∆Â(t)) ⊗ I} {(I + ∆Â(t))T ⊗ I}cov( c Â(t)){I ⊗ P̂(s, t−)T } + {I ⊗ P̂(s, t−)}cov(∆ I Estimator of the Greenwood type I I I Enables integrated cumulative hazards of not being necessarily continuous Reduces to usual Greenwood estimator in the univariate setting Found to be the preferred estimator in simulation studies for survival and competing risks data Allignol A. etm Package 6 Introduction Package Description Illustration Summary In R I survival and cmprsk estimate survival and cumulative incidence functions, respectively I I I Outputs can be used to compute transition probabilities in more complex models when transition probabilities take an explicit form cmprsk does not handle left-truncation Variance computation “by hand” Allignol A. etm Package 7 Introduction Package Description Illustration Summary In R I survival and cmprsk estimate survival and cumulative incidence functions, respectively I I I I I Outputs can be used to compute transition probabilities in more complex models when transition probabilities take an explicit form cmprsk does not handle left-truncation Variance computation “by hand” mvna estimates cumulative transition hazards changeLOS computes transition probabilities I I Lacks variance estimation Cannot handle left-truncation Allignol A. etm Package 7 Introduction Package Description Illustration Summary In R I survival and cmprsk estimate survival and cumulative incidence functions, respectively I I I I I Outputs can be used to compute transition probabilities in more complex models when transition probabilities take an explicit form cmprsk does not handle left-truncation Variance computation “by hand” mvna estimates cumulative transition hazards changeLOS computes transition probabilities I I Lacks variance estimation Cannot handle left-truncation =⇒ etm Allignol A. etm Package 7 Introduction Package Description Illustration Summary Package Description I The main function etm etm(data, state.names, tra, cens.name, s, t = "last", covariance = TRUE, delta.na = TRUE) Allignol A. etm Package 8 Introduction Package Description Illustration Summary Package Description I The main function etm etm(data, state.names, tra, cens.name, s, t = "last", covariance = TRUE, delta.na = TRUE) I 4 methods I I I I I print summary plot xyplot 2 data sets Allignol A. etm Package 8 Introduction Package Description Illustration Summary Illustration: DLI Data I 614 patients who received allogeneic stem cell transplantation for chronic myeloid leukaemia between 1981 and 2002 I All patients achieved complete remission Allignol A. etm Package 9 Introduction Package Description Illustration Summary Illustration: DLI Data I 614 patients who received allogeneic stem cell transplantation for chronic myeloid leukaemia between 1981 and 2002 I I All patients achieved complete remission Patients in first relapse were offered a donor lymphocyte infusion (DLI) I I Infusion of lymphocytes harvested from the original stem cell donor DLI produces durable remissions in a substantial number of patients Allignol A. etm Package 9 Introduction Package Description Illustration Summary Illustration: DLI Data Alive in Remission Alive with DLI 8 4 Alive in Relapse Alive in Remission 6 7 Dead in Remission Alive in Relapse 5 2 Dead with DLI in Relapse 0 3 Dead in Relapse 1 Dead in Remission Allignol A. etm Package 10 Introduction Package Description Illustration Summary Illustration: DLI Data I Current leukaemia free survival (CLFS): Probability that a patient is alive and leukaemia-free at a given point in time after the transplant I Probability of being in state 0 or 6 at time t Allignol A. etm Package 11 Introduction Package Description Illustration Summary Illustration: DLI Data I Current leukaemia free survival (CLFS): Probability that a patient is alive and leukaemia-free at a given point in time after the transplant I Probability of being in state 0 or 6 at time t [ CLFS(t) = P̂00 (0, t) + P̂06 (0, t) Allignol A. etm Package 11 Introduction Package Description Illustration Summary Illustration: DLI Data I Current leukaemia free survival (CLFS): Probability that a patient is alive and leukaemia-free at a given point in time after the transplant I Probability of being in state 0 or 6 at time t [ CLFS(t) = P̂00 (0, t) + P̂06 (0, t) X P̂06 (s, t) = P̂(s, u−) s<u≤v ≤r ≤t × P̂44 (v , r −) Allignol A. dN02 (u) dN24 (v ) P̂22 (u, v −) × Y0 (u) Y2 (v ) dN46 (r ) P̂66 (r , t) Y4 (r ) etm Package 11 Introduction Package Description Illustration Summary Illustration: DLI Data I Current leukaemia free survival (CLFS): Probability that a patient is alive and leukaemia-free at a given point in time after the transplant I Probability of being in state 0 or 6 at time t [ CLFS(t) = P̂00 (0, t) + P̂06 (0, t) [ c CLFS(t)) var( = c P̂00 (0, t)) + var( c P̂06 (0, t)) + 2cov( c P̂00 (0, t), P̂06 (0, t)) var( Allignol A. etm Package 11 Introduction Package Description Illustration Summary Illustration: DLI Data > > > > > > 0 1 2 3 4 5 6 7 8 tra <- matrix(FALSE, 9, tra[1, 2:3] <- TRUE tra[3, 4:5] <- TRUE tra[5, 6:7] <- TRUE tra[7, 8:9] <- TRUE tra 0 1 2 3 FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 9) 4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE 5 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE 6 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE 7 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE 8 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE > dli.etm <- etm(dli.data, as.character(0:8), tra, "cens", s = 0) Allignol A. etm Package 12 Introduction Package Description Illustration Summary Illustration: DLI Data > clfs <- dli.etm$est["0", "0", ] + dli.etm$est["0", "6", ] > var.clfs <- dli.etm$cov["0 0", "0 0", ] + + dli.etm$cov["0 6", "0 6", ] + 2 * dli.etm$cov["0 0", "0 6", ] Allignol A. etm Package 13 Introduction Package Description Illustration Summary Illustration: DLI Data > clfs <- dli.etm$est["0", "0", ] + dli.etm$est["0", "6", ] 0.6 0.4 0.2 Probability 0.8 1.0 > var.clfs <- dli.etm$cov["0 0", "0 0", ] + + dli.etm$cov["0 6", "0 6", ] + 2 * dli.etm$cov["0 0", "0 6", ] 0.0 CLFS LFS 0 Allignol A. 5 10 etm Package Year 15 20 13 Introduction Package Description Illustration Summary Summary I etm provides a way to easily estimate and display the matrix of transition probabilities from multistate models I Permits to compute interesting quantities that depend on the matrix of transition probabilities Empirical transition matrix valid under the Markov assumption I I Stage occupation probability estimates still valid for more general models Allignol A. etm Package 14 Introduction Package Description Illustration Summary Bibliography Allignol, A., Schumacher, J. and Beyersmann, J. (2009). A note on variance estimation of the Aalen-Johansen Estimator of the cumulative incidence function in competing risks, with a view towards left-truncated data. Under revision. Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer-Verlag, New-York. Datta, S. and Satten, G. A. (2001). Validity of the Aalen-Johansen Estimators of Stage Occupation Probabilities and Nelson-Aalen Estimators of Integrated Transition Hazards for non-Markov Models. Statistics & Probability Letters, 55:403–411. Klein, J. P., Szydlo, R. M., Craddock, C. and Goldman, J. M. (2000) Estimation of Current Leukaemia-Free Survival Following Donor Lymphocyte Infusion Therapy for Patients with Leukaemia who Relapse after Allografting: Application of a Multistate Model Statistics in Medicine, 19:3005–3016. I Thanks to Mei-Jie Zhang (Medical College of Wisconsin) for providing us with the DLI data Allignol A. etm Package 15 Introduction Package Description Illustration Summary Empirical Transition Matrix I A(t) the matrix of cumulative transition hazards Allignol A. etm Package 16 Introduction Package Description Illustration Summary Empirical Transition Matrix I A(t) the matrix of cumulative transition hazards I Non-diagonal entries estimated by the Nelson-Aalen estimator Âij (t) = X ∆Nij (tk ) , i 6= j Yi (tk ) tk ≤t Allignol A. etm Package 16 Introduction Package Description Illustration Summary Empirical Transition Matrix I A(t) the matrix of cumulative transition hazards I Non-diagonal entries estimated by the Nelson-Aalen estimator Âij (t) = X ∆Nij (tk ) , i 6= j Yi (tk ) tk ≤t I Diagonal entries Âii (t) = − X Âij (t) j6=i Allignol A. etm Package 16 Introduction Package Description Illustration Summary Empirical Transition Matrix I Empirical transition matrix P̂(s, t) = (I + d Â(u)) (s,t] Allignol A. etm Package 17 Introduction Package Description Illustration Summary Empirical Transition Matrix I Empirical transition matrix P̂(s, t) = (I + d Â(u)) (s,t] I Â(t) is a matrix of step-functions with a finite number of jumps on (s, t] Y P̂(s, t) = I + ∆Â(tk ) s<tk ≤t I ∆Â(t) = Â(t) − Â(t−) Allignol A. etm Package 17 Introduction Package Description Illustration Summary DLI Example 1.0 Current Leukaemia Free Survival 0.6 0.4 0.0 0.2 Current Leukaemia Free Survival 0.8 Early Late 0 5 10 15 20 Time Allignol A. etm Package 18
© Copyright 2026 Paperzz