Learning Target 7-5: Triangle Congruency Proofs. Objective: Prove that two triangles are congruent using a two-column or flow proof. 7-5 Example #1: A. Use the following information to solve the two column proof ̅̅̅̅ ≅ 𝐶𝐷 ̅̅̅̅ Given: 𝐴𝐵 ̅̅̅̅ 𝐴𝐷 ≅ ̅̅̅̅ 𝐶𝐵 Prove: ∆𝐴𝐵𝐷 ≅ ∆𝐵𝐶𝐷 Statement: ̅̅̅̅ ≅ 𝐶𝐷 ̅̅̅̅ 1. 𝐴𝐵 Reason: 1. Given 2. 2. Given 3. 3. Reflexive Property 4. ∆𝐴𝐵𝐷 ≅ ∆𝐵𝐶𝐷 4. B. Develop a flow proof using your proof from part A. Example #2: A.) Use the following information to develop a two-column proof. ̅̅̅̅ ∥ ̅̅̅̅ Given: 𝑃𝑄 𝑅𝑆 ∠𝑃𝑅𝑄 ≅ ∠𝑆𝑄𝑅 Prove: ∆𝑃𝑄𝑅 ≅ ∆𝑆𝑅𝑄 Statement: 1. ∠𝑃𝑅𝑄 ≅ ∠𝑆𝑄𝑅 Reason: 1. 2. 2. 3. 3. Alternate Interior Angles are Congruent ̅̅̅̅ ≅ 𝑅𝑄 ̅̅̅̅ 4. 𝑅𝑄 4. 5. ∆𝑃𝑄𝑅 ≅ ∆𝑆𝑅𝑄 5. B. Develop a flow proof using your proof from part A. Example #3: A. Develop a flow proof using the information below. ̅̅̅̅ ≅ ̅̅̅̅ Given: 𝑃𝑄 𝑅𝑆 ∠𝑃𝑄𝑆 ≅ ∠𝑅𝑆𝑄 Prove: ∆𝑃𝑄𝑆 ≅ ∆𝑅𝑆𝑄 B. Develop a two-column proof using your proof from part A. Example #4: A.) Write a flow proof from the info below. Given: ∠𝑁𝐸𝑅 ≅ ∠𝑁𝑉𝑅 ̅̅̅̅ 𝑅𝑁 bisects ∠𝐸𝑅𝑉 Prove: ∆𝐸𝑁𝑅 ≅ ∆𝑉𝑁𝑅 B. Develop a two-column proof using your proof from part A. Example #5: Write a two-column proof Given: ∠𝐵 ≅ ∠𝐷 ̅̅̅̅ bisects𝐵𝐷 ̅̅̅̅ 𝐴𝐶 Prove: ∆𝐴𝐵𝐶 ≅ ∆𝐷𝐵𝐶 Statement: 1. Reason: 1. 2. 2. 3. 3. Definition of Bisect 4. 4. Vertical Angles are Congruent 5. ∆𝐴𝐵𝐶 ≅ ∆𝐷𝐵𝐶 5.
© Copyright 2026 Paperzz