Advanced Mathematics Name: ___________________ 1. Determine the truth-values of the following symbolized statements. Let A, B, and C be true; G, H, and K, false; M and N, unknown truth-value. 2. a. A • ∼G b. ∼A ∨ G c. ∼(A ⊃ G) d. ∼G ≡ (B ⊃ K) e. (A ⊃ ∼C) ∨ C f. B • (∼H ⊃ A) g. M ⊃ ∼G h. (M ∨ ∼A) ∨ H i. (N • ∼N) ≡ ∼K j. ∼(M ∨ ∼M) ⊃ N Use a truth table to decide whether each of the following symbolized statements is tautologous, selfcontradictory or contingent. 3. Logic 11-27-16 a. D ⊃ (B ∨ ∼B) b. K • (∼M ∨ ∼K) c. (S ⊃ H) ≡ (∼H • S) d. (R ⊃ E) ∨ ∼H e. (N • ∼(D ∨ ∼E)) ≡ D Use truth tables to determine whether each pair of statements are logically equivalent, contradictory, consistent, or inconsistent. a. G • ∼D D ∨ ∼G b. ∼(M ⊃ B) ∼B • ∼M c. ∼A ≡ C (A • ∼C) ∨ (C • ∼A) d. J ⊃ ∼(L ∨ N) (∼L ⊃ N) • J e. ∼((E ⊃ K) • ∼O) O ∨ (E • ∼K) f. ∼(H ∨ ∼(R • S)) (∼S • R) ⊃ ∼H 4. Symbolize the arguments and then use the truth table to decide whether they are valid. a. ∼(A ∨ B) ∼A ⊃ B ∼B b. ∼E ∨ (G ≡ E) ∼(E • G) ∼G c. P ⊃ ∼D (∼R ⊃ D) ∨ P R⊃P d. ∼(S ∨ C) (S • C) ⊃ ∼H C⊃H
© Copyright 2026 Paperzz