MAT 4830 Mathematical Modeling 4.4 Matrix Models of Base Substitutions I http://myhome.spu.edu/lauw Preview Markov Model Maple • Matrices Example from 4.3 Suppose a 40-base ancestral and descendent DNA sequences are S0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT S1 : ACATGTTGCTTGACGACAGGTCCATGCGCCTGAGAACGGC S1 \ S0 A G C T S1 \ S0 A A G C T 7 9 1 9 1 11 9 2 11 11 2 7 11 11 1 0 11 1 9 A 7 0 1 1 G 1 9 2 0 G C 0 2 7 2 C 0 T 1 0 1 6 T 1 9 0 0 2 9 6 9 P(S1 i | S0 j ) Notations Pi P (a base is of type i), i A, G , C , T Pi| j P ( S1 i | S0 j ) i, j For each sequence S k , we define base distribution vector as pk PA PG PC PT T Notations Pi PAbuse (a baseofis of type i), i A, G , C , T notations Pi| j P ( S1 i | S0 j ) i, j For each sequence S k , we define base distribution vector as pk PA PG PC PT T Example from 4.3 p0 PA PG T 9 PT 40 PC 11 40 9 40 11 40 T S0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT S1 : ACATGTTGCTTGACGACAGGTCCATGCGCCTGAGAACGGC S1 \ S0 A A G C T 7 0 1 S1 \ S0 A 1 A G C T 7 9 1 9 1 11 9 2 11 11 2 7 11 11 1 0 11 1 9 G 1 9 2 0 G C 0 2 7 2 C 0 T 1 0 1 6 T 1 9 0 0 2 9 6 9 Pi| j P( S1 i | S0 j ) Example from 4.3 p1 PA PG T 9 PT 40 PC 12 40 8 40 11 40 T S0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT S1 : ACATGTTGCTTGACGACAGGTCCATGCGCCTGAGAACGGC S1 \ S0 A A G C T 7 0 1 S1 \ S0 A 1 A G C T 7 9 1 9 1 11 9 2 11 11 2 7 11 11 1 0 11 1 9 G 1 9 2 0 G C 0 2 7 2 C 0 T 1 0 1 6 T 1 9 0 0 2 9 6 9 Pi| j P( S1 i | S0 j ) Example from 4.3 What is the realtionship between p0 , p1 , and Pi| j ? 9 p0 40 9 p1 40 11 40 12 40 11 40 11 40 9 40 8 40 T T S1 \ S0 A G A G C T 7 9 1 9 1 11 9 2 11 11 2 7 11 11 1 0 11 1 9 C 0 T 1 9 0 0 2 9 6 9 Pi| j P( S1 i | S0 j ) Transition Matrix Encode the conditional prob. into a matrix PA| A P G| A M Pi| j PC | A PT | A PA|G PA|C PG|G PG|C PC |G PC |C PT |G PT |C PA|T PG|T PC |T PT |T Example from 4.3 Pi| j P( S1 i | S0 j ) PA| A P G| A M PC | A PT | A PA|G PA|C PG|G PG|C PC |G PC |C PT |G PT |C 7 9 PA|T 1 PG|T 9 PC |T 0 PT |T 1 9 1 0 11 9 2 11 11 2 7 11 11 1 0 11 1 9 0 2 9 6 9 S1 \ S0 A G A G C T 7 9 1 9 1 11 9 2 11 11 2 7 11 11 1 0 11 1 9 C 0 T 1 9 0 0 2 9 6 9 Example from 4.3 p1 Mp0 1 9 7 40 9 0 11 12 1 9 2 40 9 11 11 11 0 2 7 40 11 11 8 1 1 0 11 40 9 1 9 9 40 11 0 40 2 11 9 40 6 9 9 40 Example from 4.3 p1 Mp0 1 9 7 40 9 0 11 12 1 9 2 40 9 11 11 11 0 2 7 40 11 11 8 1 1 0 11 40 9 1 9 9 40 11 0 40 2 11 9 40 6 9 9 40 Example from 4.3 p1 Mp0 1 9 7 40 9 0 11 12 1 9 2 40 9 11 11 11 0 2 7 40 11 11 8 1 1 0 11 40 9 1 9 9 40 11 0 40 2 11 9 40 6 9 9 40 Example from 4.3 ? PA| A P G| A PC | A PT | A A G C PA|G PA|C PG|G PG|C PC |G PC |C PT |G PT |C T A Key words: • Mutually Exclusive Events • Exhaustive Events PA|T P ( S0 A) PG|T P ( S0 G ) PC |T P ( S0 C ) PT |T P ( S0 T ) Estimation Use the transition matrix, we can estimate the base distribution vectors pk of descendent sequences Sk , k 1, 2,3,... by pk Mpk 1 Estimation Use the transition matrix, we can estimate the base distribution vectors pk of descendent sequences Sk , k 2,3,... by pk Mpk 1 M Pi| j P( Sk i | S k 1 j ) Assumptions The prob. of base substitution is the same for consecutive pair of generation. The mutation from Sk-1 to Sk only depends on Sk-1. Homework (Maple) Given S0 to S1 , produce the frequency array as an matrix S1 \ S0 A G C T A 7 0 1 G 1 9 2 C 0 2 7 T 1 0 1 7 1 1 0 0 2 1 6 0 1 1 9 2 0 2 7 2 0 1 6 Homework (Maple) Given S0 to S1 , produce the frequency array as an matrix (return as a function value) Homework (Maple) Given S0 to S1 , produce the transition matrix PA| A P G| A M PC | A PT | A PA|G PA|C PG|G PG|C PC |G PC |C PT |G PT |C 7 9 PA|T 1 PG|T 9 PC |T 0 PT |T 1 9 1 11 9 2 11 11 2 7 11 11 1 0 11 0 1 9 0 2 9 6 9 Homework (Maple) Given S0 to S1 , produce the transition matrix Warnings Do NOT use other package/commands. Maple: Matrices Load the Linear Algebra Package Maple: Matrices Define a matrix All entries are initialized to zeros Maple: Matrices Define a matrix with specified entries Maple: Matrices Indexing Classwork Given S0 to S1 , produce the frequency array as an matrix Your first version may be ‘bulky”. See if you can produce a better version Maple: Strings Handling You will need this from two lectures ago. For your reference, I attached the slides below. Maple: Strings Handling Assignments Maple: Strings Handling Subscripting Maple: Strings Handling Subscripting Maple: Strings Handling Subscripting Maple: Strings Handling Counting
© Copyright 2025 Paperzz