The NIRSpec Critical Design Review

The NIRSpec Critical Design
Review
Oct 8th 2008 - Dec 11th 2008
T. Beck (& M. Stiavelli)
The NIRSpec CDR
• Quick NIRSpec instrument overview
• Brief Overview of ESA’s CDR process
and goals
• NIRSpec CDR Results
• Next Steps & Schedules
• Some Operational “Issues” of interest
NIRSpec Instrument Overview
“The most complicated
instrument ever to fly in
space”
• Multi-Object
Spectrograph Mode
(MOS) with an MSA
• Integral Field Unit (IFU)
• 4 Fixed Slits + 1 Broad
Aperture
JWST Focal Plane, NIRSpec tilted by 41.5o
R~100, 1000 and 3000
spectroscopy over 3
Bands:
I = 0.7 - 1.8mm
II = 1.7 - 3.0mm
III = 2.9 - 5.0mm
NIRSpec Instrument Overview
Reflective Surfaces CAA
FOR
Filter
(FWA)
RMA
(MSA/IFU/FS)
COLL
Grating
(GWA)
CAM
Detector
NIRSpec Instrument Overview
MSA Focal Plane
• 4 MSA Quadrants
• IFU Entrance
Aperture
• Fixed Slits
• New, 1.”6x1.”6 sq
aperture
• (IFU “Virtual Slit”
Positions)
ESA’s CDR Goals
•
•
•
•
•
•
•
•
•
•
•
Verify that the instrument system performance will meet both the scientific
and functional requirements
Verify that the instrument detailed design is robust, shows adequate
margins, and is compliant with product assurance reqs
External and internal interfaces are defined/documented in the relevant ICDs
Instrument verification/test plans are realistic and adequate
The instrument level qualification plan is complete, satisfactory and complies
with the subsystem qualification plans.
The instrument schedule is realistic with adequate margin
The identified risks are thoroughly assessed with clearly defined mitigation
plans
PA practices are fully implemented
Ops concept is defined and is consistent with Flight SW architecture
Commanding and control of the instrument is properly defined in FSW
Critical technologies have been identified and performance demonstrated.
ESA’s CDR Process
•
•
•
•
•
•
•
•
CDR Board + 5 “Panels”
Document Delivery to Panel and Board members (late September 2008)
CDR “Kickoff” Meeting = 1 day of instrument presentations, 1 day of face-toface meeting with the panels (Oct. 8-9, 2008)
Panel members are tasked with identifying “Review Item Discrepancies”
(RIDs) = discrepancies/inconsistencies/errors in documentation, design or
instrument performance vs. requirements
One month of document reading with weekly telecons between panel
members - RIDs continuously input into online tracking system.
Colocation Meeting - All RIDs from all panels discussed among the large
group and actions determined
Board Meeting - Final presentations on findings, issues from RIDs flagged
with actions noted. (Dec. 11th 2008).
Final Board Report released to team (yesterday!)
ESA’s CDR Process
ESA’s CDR Process and Goals
Board
(T. Beck)
Panel # 1
SYSTEM PANEL (SP)
R. Meynart
G. Bagnasco
PANEL # 2
MECH-THERMAL PANEL( MP)
R. Bureo
J.C. Salvignol
PANEL # 3
OPTICAL PANEL (OP)
B. Harnish
M. Te Plate
(M. Stiavelli)
PANEL # 4
ELEC-SW PANEL (EP)
F. Marliani
P. Rumler/P. Strada
PANEL # 5
PA PANEL (PP)
M.v. Eesbeek
M. Falcolini
System Design
Structure Design
Optical Design
Electrical Design
Quality Assurance
Overall Science & Func Perfo
Mechanicms Design
Relevant Perfo
Harness Design
Product Assurance
Calibration
Thermal Design
OGSE
SW Design
Cleanliness & Contamination
Operations
Relevant Perfo
Relevant AIV
Relevant Perfo
Risk Management
FDIR
MGSE
EGSE
Safety
Budgets
Relevant AIV
Relevant AIV
Schedule
Overall AIV
• ESA led review, co-chaired by NASA Independent Review Office
• 18 Board members from ESA , NASA and STScI
• 60 Panel members from ESA , NASA, IST, and STScI
NIRSpec CDR Results
• During the Reviews, Panels came up with a total of:
– 192 RIDS
• 70 RIDS Classified as “Major”
• 92 RIDS Classified as “Minor”
• ALL RIDS have either been Closed or accepted with a
well defined action
• NO Items were elevated to the Board for Resolution
• (At the time of the NIRSpec Instrument CDR, the MSS
subsystem had not had it’s CDR - this is taking place
TODAY & TOMORROW at GSFC)
NIRSpec CDR Results
• Issues Highlighted by the CDR Board:
– Grating Wheel Assembly (GWA) Wavefront Error is significantly out
of spec - continued troubleshooting, updates in budgets
– Refocus Mechanism Assembly (RMA) deforms at cryogenic
temperatures causing WFE (coated on back, have SiC backups)
– Board requests a report by February 2009 on the recent failure of
the RMA gearbox lifetime testing
– HAWAII 2RG performance - Detector Noise and sensitivity
degradation due to radiation damage still not established
– MSS CDR delayed until January - after NIRSpec CDR, which
resulted in a lack of proper documentation on the MSS. Board
requests a report by Feb. 2009 on conclusions from the MSS CDR incl. clear analysis of MSS problems and qualification plans/status.
– Schedule delays in some elements (e.g., GWA) will impact flight
model tests - now planned to perform FM cryo tests in two phases.
NIRSpec CDR Results
• Issues Highlighted by the CDR Board:
– Stray light reduction mask - out of field stray light may be blocked
by a static, oversized pupil mask positioned in front of the FWA,
board endorsed feasibility study for implementing such a mask.
– Concern regarding software validation flow from ICE/MSS/DS
through to ISIM level, recommends that the project define and
describe in detail an appropriate NIRSpec FSW validation
process based on top-level requirements.
– Performance Budgets are not yet consolidated and verified with
measurement values - requests that budgets are maintained and
updated systematically as new data become available. (incl.
GWA WFE, FOR WFE, Detector noise/sensitivity/dark current).
– Total of 70 actions assigned to Astrium, ESA and NASA on
“Major” RID items - (many = updates to qual plans and
verification matrix for consistency with test plans)
NIRSpec CDR Results
• Total of 70 actions assigned to Astrium, ESA and NASA
on “Major” RID items, including:
– many = updates to qual plans and verification matrix for
consistency with test plans, error budgets
– Report from NASA on Prasedymium-Iron-Boron for use in the
MSS magnet arm, risk due to corrosion, brittleness,
contamination and loss of magnetic strength
– Confirmation that acrylic adhesive Y966 can be used at cryotemperature (reports of risk due to lack of adhesion)
NIRSpec CDR Results
• CDR Board Conclusions:
– The NIRSpec CDR will be satisfactorily
concluded when the recommendations
highlighted (previously) and actions from
the CDR panel teams have been
addressed and concluded.
– The board requests a report on the
status of the identified major issues and
RID actions by May 2009.
NIRSpec - The Future
• DM (Demonstration Model) ambient tests ongoing, cryotests in
Spring 2009 (Focal plane detector at MSA plane)
• FM (Flight Model) plan with schedule mitigation has been developed
– Main deliveries: grating wheel assembly, filter wheel assembly, microshutter subsystem, detector subsystem
– Plan for dual cryogenic test with intermediate refurbishing
– Likely to be implemented for grating wheel
Old Baseline (1 Cryo test)
New Baseline 2 Cryo Tests
•
•
The PLAN:
NIRSpec DM (ETU) Delivery in
July 2009 (26d contingency)
•
NIRSpec FM mid 2010 delivery
to GSFC (40d contingency)
NIRSpec -Operational “Issues”
of Interest
• MSA = A complicated component!
– Stuck open/closed shutters
From T. Boker’s presentation at CDR Kickoff
NIRSpec -Operational “Issues”
of Interest
NIRSpec -Operational “Issues”
of Interest
NIRSpec -Operational “Issues” of Interest
NIRSpec -Operational “Issues”
of Interest
• “Plugging” moves quadrants into useable space (NOTE: most of the MSA quads considered for
flight aren’t quite as bad as the ENG-grade
images presented in images here)
NIRSpec -Operational “Issues”
of Interest
• MSA Quad lifetime tests show that shutters can
become stuck open/closed during operations,
after many moves of the MSA magnet arm
– MSA open/closed shutters may change over time!
– MSA Quadrant heating (heat to ~270K) unsticks the
shutters and returns the MSA to it’s nominal
performance
– MSA Quadrant heating may need to take place after
every ~2000 moves (TBD/TBR!)
– NIRSpec will be unusable during the heating process
(nominal duration TBR!, but on order of ~15hrs).
– We may need an updatable map of stuck open/closed
shutters that can be updated in the APT MSA planning
tool