GIS in Marine and Coastal Environments I-IV AAG Centennial Meeting, Philadelphia March 17, 2004 1 A New Object-Oriented Data Model for Oceans, Coasts, Seas, and Lakes Dawn Wright, Oregon State University Pat Halpin, Duke University Michael Blongewicz, DHI Joe Breman and Steve Grisé, ESRI AAG Centennial Meeting, Philadelphia March 17, 2004 dusk.geo.orst.edu/djl/arcgis 2 ArcGIS “Custom” Data Models • Basemap • Administrative Boundaries • Utilities • Parcels • Transportation • Imagery etc ... • Conservation/Biodiv • Hydro • Groundwater Hydro • Forestry • Geology • Petroleum • Marine • IHO-S57 • Atmospheric etc ... 3 Marine Data Collection Image courtesy of PISCO, OrSt 4 5 Figure courtesy of Anne Lucas, U. of Bergen, Norway A Georelational to a Geodatabase Model • coverage and shapefile data structures – homogenous collections of points, lines, and polygons with generic, 1- and 2-dimensional "behavior" • can’t distinguish behaviors – Point for a marker buoy, same as point for OBS • “smart features” in a geodatabase – lighthouse must be on land, marine mammal siting must be in ocean 6 Purpose of Marine Data Model • basic template for implementing GIS projects – input, formatting, geoprocessing, creating maps, performing analyses • basic framework for writing program code and maintaining applications – development of tools for the community • promote networking and data sharing through established standards 7 “Generic” Marine Data Model User Group Data Model Project Data Model User Group Data Model Project Data Model User Group Data Model Inheritance Design Strategy Project Data Model 8 Steps in Data Modeling (1) Model the user's view of data – what are the basic features needed to solve the problem? (2) Select the geographic representation – points, lines, areas, rasters, TINs Bathymetry Marine mammal movement Sidescan sonar/Backscatter Atmospheric influences Shoreline Sea state Marine boundaries (e.g., MPAs) Wave activity Geophysical time series Sea surface temperature Sub-bottom profiling Salinity Magnetics Sensor calibration data Gravity Current meters Seismics Density Sediment transport etc. ... etc. ... Image by Joe Breman, ESRI 9 Users’s View of Data 10 Steve Grisé, ESRI 11 Steps in Data Modeling (cont.) (3) Define objects and relationships – draw a UML diagram (4) Match to geodatabase elements – specify relationships, “behaviors” (5) Organize geodatabase structure 12 InstantaneousPoint (ex: CTD) Michael Blongewicz X InstantaneousPoints MarineID 1 2 3 MarineCode AAA BBB CCC SeriesID 1 1 1 IPointType 1 1 1 RecordedTime 05/04/58 12:00 00 05/04/58 12:30 00 05/04/58 13:00 00 TimeStamp Y Measurement MeasureID 1 2 3 4 5 MarineID 1 1 1 2 2 ZLoc -0.8 -1.5 -3.5 -0.8 -1.5 Xloc Yloc ServiceTrip SeviceDesc Measurement MeasuringDevice MeasuringDevice MDeviceID 1 2 3 4 5 Name Bob Poncho Juanita Mia Anita MeasuredType MTypeID VarName 1 2 3 4 5 Type VarDesc MeasurementID 1 1 1 2 2 VarUnits Oranges Bananas Cubic cm Rocks Limes Z MDeviceID 1 1 2 2 3 MeasuredData MDeviceID 1 1 1 1 1 East 12.1 11.3 9.3 14.0 7.3 North 10.8 12.5 -3.5 15.1 12.0 Speed 8.6 7.9 7.5 3.9 9.1 Direction 121 220 130 234 115 13 14 Image courtesy of the Neptune Project, www.neptune.washington.edu, University of Washington Center for Environmental Visualization TimeDurationPoint (ex: moored ADCP) TimeDurationPoints MarineID 1 2 3 Michael Blongewicz Z MarineCode AAA BBB CCC Measurement X Measurement MeasureID 1 2 3 4 5 MarineID 1 1 1 2 2 ZLoc -0.8 -1.5 -3.5 -0.8 -1.5 Xloc Yloc ServiceTrip SeviceDesc Y TimeSeriesTurnTable FeatureID 1 1 2 2 2 TSTypeID 1 2 3 4 5 TSType TSTypeID 1 2 3 4 5 Variable CurrentSpeed Salinity CurrentSpeed Temperature Salinity Units TimeSeries3 FeatureID TSTypeID TSDateTime TSValue 1 12:00:00 16.7 TimeSeries2 1 12:20:00 14.0 FeatureID TSTypeID 1 TSDateTime TSValue 21.9 12:40:00 1 1 12:00:00 13:00:0016.7 11.2 TimeSeries1 1 1 12:20:00 13:20:0014.0 12.4 12:40:00 FeatureID TSTypeID 1 TSDateTime TSValue 21.9 1 12:00:00 13:00:00 16.7 11.2 1 1 12:20:00 13:20:00 14.0 12.4 1 1 12:40:00 21.9 1 13:00:00 11.2 1 13:20:00 12.4 15 TimeSeriesPoints (ex: ADCP in series) Michael Blongewicz TimeSeriesPoints MarineID 1 2 3 MarineCode AAA BBB CCC Zlocation 0 0 0 X Y TimeSeriesTurnTable FeatureID 1 1 2 2 2 TSTypeID 1 2 3 4 5 Z TSType TSTypeID 1 2 3 4 5 Variable CurrentSpeed Wind CurrentSpeed Temperature Wave Heights Units TimeSeries3 FeatureID TSTypeID TSDateTime TSValue 1 12:00:00 16.7 1 12:20:00 14.0 FeatureID TSTypeID TSDateTime TSValue 1 12:40:00 1 12:00:00 16.7 21.9 TimeSeries1 1 13:00:00 1 12:20:00 14.0 11.2 1 13:20:00 FeatureID TSTypeID TSDateTime TSValue 1 12:40:00 21.9 12.4 1 1 12:00:00 16.7 13:00:00 11.2 1 1 12:20:00 14.0 12.4 13:20:00 1 12:40:00 21.9 1 13:00:00 11.2 1 13:20:00 12.4 TimeSeries2 16 17 Implications (1) Inputting & Formatting Data Provides common data structures Allows control of required data fields from collection through analysis phases 18 Implications (2) Geoprocessing & Analysis Allows explicit spatial & temporal relationships to be used in geoprocessing and analysis 19 Build Better Models / Analysis GIS Applications Data Space Statistical Applications GIS Applications Geographic Space Geographic Space 2. Statistical methods Redefine Model Sample Data 1. Sampling Model Habitat 4. Model validation 3. GIS models Implications (3) Data Sharing Within / Between Projects Internet Map Services (Geography Network, NSDI, OBIS…) Internet Map Services: data conflation tools Data Type: Tools/Protocols: vector data XML raster data DODS metadata Z39.50 FGDC Distributed Generic Distributed Oceanographic Information Retrieval Data System map WMS Web Mapping Services 21 Project is Ongoing • Case studies , tool development – Interested participants via web site ~275 people, 31 countries • Refine UML - abstract and feature classes, descriptions, rules/behaviors • 2004 ESRI UC sessions – 2005 ESRI Press book • Agency “buy-in” • Publicizing and publishing • Tie-in w/ other model efforts 22 More information dusk.geo.orst.edu/djl/arcgis inc. downloads, join MDM listserv Next talk and… 5236. Thursday, 10 a.m., Alyssa Aaby, Salon D 23
© Copyright 2026 Paperzz