Convex Function

Convex Function
Prof. (Dr.) Rajib Kumar Bhattacharjya
Professor, Department of Civil Engineering
Indian Institute of Technology Guwahati, India
Room No. 005, M Block
Email: [email protected], Ph. No 2428
CONVEX FUNCTION
𝑓 𝑋
𝑋
CONVEX FUNCTION
𝑓 𝑋
𝑋
CONVEX
CONVEX
CONVEX FUNCTION
A function 𝑓 𝑋 is said to be convex if for any pair of points 𝑋1 = π‘₯11 , π‘₯21 , π‘₯31 , … , π‘₯𝑛1
and 𝑋2 = π‘₯12 , π‘₯22 , π‘₯32 , … , π‘₯𝑛2 𝑇 and all πœ† where 0 ≀ πœ† ≀ 1
𝑓 πœ†π‘‹2 + 1 βˆ’ πœ† 𝑋1 ≀ πœ†π‘“ 𝑋2 + 1 βˆ’ πœ† 𝑓 𝑋1
That is, if the segment joining the two points lies entirely above or on the graph of
𝑓 𝑋
πœ†π‘“ 𝑋2 + 1 βˆ’ πœ† 𝑓 𝑋1
𝑓 πœ†π‘‹2 + 1 βˆ’ πœ† 𝑋1
𝑋1
𝑋2
πœ†π‘‹2 + 1 βˆ’ πœ† 𝑋1
𝑇
CONCAVE FUNCTION
A function 𝑓 𝑋 is said to be convex if for any pair of points 𝑋1 = π‘₯11 , π‘₯21 , π‘₯31 , … , π‘₯𝑛1
and 𝑋2 = π‘₯12 , π‘₯22 , π‘₯32 , … , π‘₯𝑛2 𝑇 and all πœ† where 0 ≀ πœ† ≀ 1
𝑓 πœ†π‘‹2 + 1 βˆ’ πœ† 𝑋1 β‰₯ πœ†π‘“ 𝑋2 + 1 βˆ’ πœ† 𝑓 𝑋1
That is, if the segment joining the two points lies entirely above or on the graph of
𝑓 𝑋
πœ†π‘“ 𝑋2 + 1 βˆ’ πœ† 𝑓 𝑋1
𝑓 πœ†π‘‹2 + 1 βˆ’ πœ† 𝑋1
𝑋1
𝑋2
πœ†π‘‹2 + 1 βˆ’ πœ† 𝑋1
𝑇
A function 𝑓 𝑋 will be called strictly convex if
𝑓 πœ†π‘‹2 + 1 βˆ’ πœ† 𝑋1 < πœ†π‘“ 𝑋2 + 1 βˆ’ πœ† 𝑓 𝑋1
A function 𝑓 𝑋 will be called strictly concave if
𝑓 πœ†π‘‹2 + 1 βˆ’ πœ†
> πœ†π‘“ 𝑋2 + 1 βˆ’ πœ† 𝑓 𝑋1
Further a function may be convex within a region and concave elsewhere
𝑓 𝑋
CONCAVE
CONVEX
𝑋
Theorem 1: A function 𝑓 𝑋 is convex if for any two points 𝑋1 and 𝑋2 , we have
𝑓 𝑋2 β‰₯ 𝑓 𝑋1 + 𝛻𝑓 𝑇 𝑋1 𝑋2 βˆ’ 𝑋1
Proof: If 𝑓 𝑋 is convex, we have
𝑓 πœ†π‘‹2 + 1 βˆ’ πœ† 𝑋1 ≀ πœ†π‘“ 𝑋2 + 1 βˆ’ πœ† 𝑓 𝑋1
𝑓 𝑋1 + πœ† 𝑋2 βˆ’ 𝑋1
πœ† 𝑓 𝑋2 βˆ’ 𝑓 𝑋1
𝑓 𝑋2 βˆ’ 𝑓 𝑋1
≀ 𝑓 𝑋1 + πœ† 𝑓 𝑋2 βˆ’ 𝑓 𝑋1
β‰₯ 𝑓 𝑋1 + πœ† 𝑋2 βˆ’ 𝑋1
β‰₯
βˆ’ 𝑓 𝑋1
𝑓 𝑋1 + πœ† 𝑋2 βˆ’ 𝑋1 βˆ’ 𝑓 𝑋1
πœ† 𝑋2 βˆ’ 𝑋1
𝑋2 βˆ’ 𝑋1
By defining βˆ†π‘‹ = πœ† 𝑋2 βˆ’ 𝑋1
𝑓 𝑋2 βˆ’ 𝑓 𝑋1
β‰₯
𝑓 𝑋1 + πœ† 𝑋2 βˆ’ 𝑋1
βˆ†π‘‹
By taking limit as βˆ†π‘‹ β†’ 0
𝑓 𝑋2 βˆ’ 𝑓 𝑋1
β‰₯ 𝛻𝑓 𝑇 𝑋1 𝑋2 βˆ’ 𝑋1
𝑓 𝑋2 β‰₯ 𝑓 𝑋1 + 𝛻𝑓 𝑇 𝑋1 𝑋2 βˆ’ 𝑋1
βˆ’ 𝑓 𝑋1
𝑋2 βˆ’ 𝑋1
Theorem 2: A function 𝑓 𝑋 is convex if Hessian matrix H 𝑋 is positive semi
definite.
Proof: From the Taylor’s series
𝑓 𝑋 βˆ— + β„Ž = 𝑓 𝑋 βˆ— + 𝛻𝑓 𝑇 𝑋 βˆ— β„Ž +
1
β„Žπ»β„Žπ‘‡
2!
Let 𝑋 βˆ— =𝑋1 , 𝑋 βˆ— + β„Ž = 𝑋2 and β„Ž = 𝑋2 βˆ’ 𝑋1
We have
1
𝑋 βˆ’ 𝑋1 𝐻 𝑋2 βˆ’ 𝑋1
2! 2
𝑇
1
+
𝑋 βˆ’ 𝑋1 𝐻 𝑋2 βˆ’ 𝑋1
2! 2
𝑇
𝑓 𝑋2 = 𝑓 𝑋1 + 𝛻𝑓 𝑇 𝑋1 𝑋2 βˆ’ 𝑋1 +
𝑓 𝑋2 βˆ’ 𝑓 𝑋1 =
Now
if
𝛻𝑓 𝑇
𝑋1 𝑋2 βˆ’ 𝑋1
𝑓 𝑋2 βˆ’ 𝑓 𝑋1 β‰₯ 𝛻𝑓 𝑇 𝑋1 𝑋2 βˆ’ 𝑋1
𝑋2 βˆ’ 𝑋1 𝐻 𝑋2 βˆ’ 𝑋1
𝑇
β‰₯0
That is 𝐻 should be positive semi definite
Theorem 3: A local minimum of a convex function 𝑓 𝑋 is a global minimum
Proof: Suppose there exist two different local minima, say 𝑋1 and 𝑋2 , for
the function 𝑓 𝑋 .
Let
𝑓 𝑋2 < 𝑓 𝑋1
Since 𝑓 𝑋 is convex between 𝑋1 and 𝑋2 we have
𝑓 𝑋2 β‰₯ 𝑓 𝑋1 + 𝛻𝑓 𝑇 𝑋1 𝑋2 βˆ’ 𝑋1
𝑓 𝑋2 βˆ’ 𝑓 𝑋1 β‰₯ 𝛻𝑓 𝑇 𝑋1 𝑋2 βˆ’ 𝑋1
Or
𝑓 𝑇 𝑋1 𝑋2 βˆ’ 𝑋1 ≀ 0
Or
𝑓 𝑇 𝑋1 𝑆 ≀ 0
Where S = 𝑋2 βˆ’ 𝑋1
This is the condition of descent direction
As such 𝑋1 is not an optimal points and
function value will reduce if you go along
the direction S
Convex optimization problem
𝑓 𝑋
Standard form
Convex
Minimize 𝑓 𝑋
Subject to
g 𝑋 ≀0
h 𝑋 =0
𝑋
The problem will be convex, if
g 𝑋 is a convex function
βˆ’π‘“ 𝑋
h 𝑋 is a affine function
h 𝑋 = 𝐴𝑋 + 𝐡
h 𝑋 = 0 can be written as
h 𝑋 ≀0
π‘Žπ‘›π‘‘
βˆ’h 𝑋 ≀ 0
If h 𝑋 ≀ 0 is convex, then βˆ’h 𝑋 ≀ 0 is concave
Hence only way that h 𝑋 = 0 will be convex is that h 𝑋
to be affine
Convex
Concave