Math Review Coordinate systems 2-D, 3-D Vectors Matrices Matrix operations 1 Math Review Cornerstone of graphics Basis for most algorithms Systematic notation Simplifying communication Organizing ideas Compact representation CS-321 Dr. Mark L. Hornick 2 2-D Coordinate Systems y P 0 Rectangular or Cartesian 0 x y CS-321 Dr. Mark L. Hornick x P 3 Points and Vectors y A point at (x,y) can be represented by vector P from the origin (0,0). P 0 y In general, a vector represents the difference (directed distance) between two points. x V P2 P1 V P2 P1 0 x x2 x1 , y2 y1 Vx , V y CS-321 Dr. Mark L. Hornick 4 2-D Vector Representations V Vy Vx Cartesian components V Vx ,Vy Magnitude and direction angle |V| V a Vx a tan CS-321 Dr. Mark L. Hornick 2 1 Vy 2 Vy V x 5 2-D Vector Operations Addition V1 V2 V1x V2x ,V1y V2 y V1+V2 -V2 Subtraction V2 V1 V1 V2 V1x V2x ,V1y V2 y CS-321 Dr. Mark L. Hornick V1-V2 V1 V2 6 2-D Vector Operations Scalar multiply aV aVx , aVy V Vy Vx aV aVy aVx CS-321 Dr. Mark L. Hornick 7 2-D Unit Vector For any vector V, V can also be written as av V avx , av y V Vx a V V V 2 x Vy 2 y vx2 v y2 1 CS-321 Dr. Mark L. Hornick 8 Direction cosines Vy Vy Vx cos a , cos V V β V α Vx cos a cos 1 2 2 CS-321 Dr. Mark L. Hornick 9 3-D Coordinate Systems In a Right-handed coordinate system, the z axis defined by the vector cross product of the x and y axes. y P z CS-321 Dr. Mark L. Hornick x 10 3-D Vector Operations Addition V1 V2 V1x V2x ,V1y V2 y ,V1z V2z Scalar multiply aV aVx , aVy , aVz CS-321 Dr. Mark L. Hornick 11 3-D Vector Representations V Vx ,Vy ,Vz Cartesian components Magnitude and direction cosines V Vx Vy Vz 2 z V γ β x α y 2 2 Vy Vx Vz cos a , cos , cos V V V cos a cos cos 1 2 CS-321 Dr. Mark L. Hornick 2 2 12 3-D Vector Operations Inner (dot) product V1 θ V2 V1 V2 V1x V2x V1y V2 y V1z V2z V1 V2 cos Portion of V 2 in V1 direction Projections V 2 cos θ CS-321 Dr. Mark L. Hornick V1 V 2 V1 13 3-D Vector Cross Product V1y V2z V1z V2 y , V1 V2 V1z V2 x V1x V2 z , V V V V 1 2 1 2x x y y “Right-hand rule” V1 x V2 V2 θ V1 CS-321 Dr. Mark L. Hornick ux uy uz V1x V1y V1z V2 x V2 y V2z 14 Matrices Rectangular matrix (m x n) (rows x cols) Row vector Column vector a11 a12 a a 21 22 A am1 am 2 R a1 a2 a1 C a2 a3 CS-321 Dr. Mark L. Hornick a1n a2 n amn a3 15 Scalar Matrix Multiplication u v w M x y z au av aw aM ax ay az CS-321 Dr. Mark L. Hornick 16 Matrix Addition a b M d e c f u v w N x y z a u b v c w MN d x e y f z Matrices must have same dimensions CS-321 Dr. Mark L. Hornick 17 Matrix Transpose u v w M x y z u x T M v y w z CS-321 Dr. Mark L. Hornick 18 Matrix Multiplication a11 a12 a a22 21 A am1 am 2 a1n b11 b12 b b a2 n 21 22 B amn bp1 bp 2 C AB cij b1q b2 q bpq n cij aik bkj k 1 Matrices must be conformable (n=p) CS-321 Dr. Mark L. Hornick 19 Matrix Multiplication Example A B 1 2 3 4 5 6 C 2 1 3 4 5 7 = 23 30 53 66 1 2 2 3 3 5 2 6 15 23 C row = A row, C column = B column CS-321 Dr. Mark L. Hornick 20 Identity Matrix and Inverse 1 0 0 1 I 0 0 1 0 0 1 Ax b 1 xA b 1 AA A A I Inverse computed by Gaussian elimination, determinants, or other methods; used directly or indirectly to solve sets of linearCS-321 equations 21 Dr. Mark L. Hornick Determinants 1 A-1 = adj(A) det(A) CS-321 Dr. Mark L. Hornick 22 Determinants Only on square matrices For an upper triangular matrix n A a kk k 1 Gaussian elimination is the best method Swapping two rows changes the sign of A Multiplying a row by s, multiplies A by s Adding row multiples has no effect CS-321 Dr. Mark L. Hornick 23
© Copyright 2026 Paperzz