HOMEWORK #4 – SOLUTIONS Page 141 +∞ d) −∞ e) 4) a) 2 b) ‐2 c) f) HA: y = 2, y = ‐2 VA: x = 0, x = 3, x = ‐2 8) (presented in class). 3x + 5 = 3 Numerator and denominator have same degree x→∞ x − 4 16) lim t2 + 2 20) lim 3 = 0 t→−∞ t + t 2 − 1 deg (N) < deg (D) x 3 − 2x + 3 32) lim = −∞ deg (N) > deg(D) x→∞ 5 − 2x 2 34) ( ) ( ( lim tan −1 x 2 − x 4 = tan −1 lim x 2 − x 4 x→∞ −π tan ( −∞ ) = 2 x→∞ −1 arctan is continuous. 40) 43) −∞ x2 + 1 x2 + 1 y= 2 = ⇒ 2x − 3x − 2 ( 2x + 1) ( x − 2 ) 1 HA : y = 2 1 VA : x = − , x = 2 2 )) = ( VA : x = 5 48) ) x x2 − 1 x ( x − 1) ( x + 1) x ( x + 1) x3 − x y= 2 = = = x − 6x + 5 ( x − 5 ) ( x − 1) ( x − 5 ) ( x − 1) x−5 HA : none SA : y = x + 6 VA : x = 1, x = 3 ⇒ D = ( x − 1) ( x − 3) = x 2 − 4x + 3 HA : y = 1 ⇒ N has same degree as D and is x 2 x2 ∴ f ( x) = 2 x − 4x + 3 58) a) After t minutes, 25t liters of brine with 30g of salt per liter has been pumped into the tank. Therefore it contains ( 5000 + 25t ) liters of water and 25t ⋅ 30 = 750t grams of salt. 750t 30t g = 5000 + 25t 200 + t L 30t g lim = 30 t→∞ t + 200 L ∴C ( t ) = b) which says that the salt concentration approaches that of the brine being pumped in.
© Copyright 2026 Paperzz