Watermarking of SAT Using Combinatorial Isolation Lemmas Rupak Majumdar EECS Dept. University of California, Berkeley, CA Jennifer L. Wong CS Dept. University of California, Los Angeles, CA DAC, June, 2001 [email protected] Watermarking • Embedding of Information for ID or Proof of Authorship • Technique Adds Extra Constraints to the Problem • Effective Intellectual Property Protection Technique Boolean Satisfiability • Instance: A set of variables V and a collection C of clauses over V. • Solution: A truth assignment for V such that at least one variable in each clause evaluates to true. V = {v1, v2, v3} C = {{v1, v2}, {v1’}, {v1’, v3}, {v1’, v2’, v3’}, {v3}} Solution: v1 = False v2 = True v3 = True Boolean Satisfiability • First NP-complete Problem • Applications – – – – – Deterministic Test Pattern Generation Delay Fault Testing Logic Verification/Synthesis FPGA Routing AI, Operations Research, Combinatorial Optimization • Backtrack Search, Local Search, Algebraic Manipulation, Recursive Learning, … • Watermarking Techniques – Constraint-Based (Kahng ’98, Qu ‘99) Fairness & Watermarking • All possible watermarking signatures of a given length result in a similar solutions space • Difficulty of finding a solution after WM (given length) -> Runtime • Quantify by # solutions 1111 0010 1101 Solution Space Fairness & Watermarking V = {v1, v2, v3, v4} C = { (v1 + v3 + v4’) (v2 + v4) (v1’+ v2+ v3’+ v4) (v2’+v3+v4’) } Embed a Signature of 4 bits Signature Solutions Signature Solutions Signature Solutions Signature Solutions 0001 3 0011 3 0111 4 1111 4 0010 5 0101 4 1011 5 0100 2 0110 6 1101 4 1000 5 1001 5 1110 4 1010 5 1100 4 Ave Solution Distance 0.85 & Ave Variance 0.21 Fair Technique Credibility & Watermarking # solutions after WM # solutions of with quality threshold • Effort required to find a particular solution Credibility & Watermarking V = {v1, v2, v3, v4} C = { (v1 + v3 + v4’) (v2 + v4) (v1’+ v2+ v3’+ v4) (v2’+v3+v4’) } Embed Signatures which are Multiples of Length 4 Signature Length (bits) 4 8 12 Ave # solutions 4.1 2.1 1.3 Min/Max # Solutions 2/5 1/4 0/3 Ave . Discrepency 0.5 0.6 0.72 16 20 24 28 32 0.5 0.2 0.3 0.1 0 0/1 0/1 0/1 0/1 0/0 0.5 0.32 0.42 0.18 0 Watermarking Flow Signature Initial Specification Additional Constraints Overconstrained Specification Off-the-Shelf Problem Solver Watermarked Solution Isolation Lemma (Valiant & Vazirani) If f is any CNF formula in x1, x2, …, xn and w1, …wk {0,1}n, then one can construct in linear time a formula fk’ whose satisfying assignments v satisfy f and the equations v•w1 = v•w2 = …= v•wk = 0. Furthermore, one can construct a polynomial-size CNF formula fk in variables x1, x2, …, xn,y1, …, ym for some m s.t. there is a bijection between solutions of fk and fk’ defined by equality on the values of x1, x2, …, xn. • “NP is as easy as detecting unique solutions” • Isolates a solution by randomized reduction Unique and Fair Solutions to SAT • CNF Formula over k Variables • Add Multiple Watermarks of length k – Adding Additional Constraints to the Formula Let a b c denote the CNF formula (a’ V b’ V c’) (a’ V b V c) (a V b V c’) (a V b’ V c) Unique and Fair Solutions to SAT • • • • f is a CNF formula vi is the ith variable in the set V wj is the jth watermark of k-bits xy is the yth created variable f *= f ( vi1 vi2 … vij 1) Unique and Fair Solutions to SAT V = {v1, v2, v3, v4} f = { {v (v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} } Unique and Fair Solutions to SAT V = {v1, v2, v3, v4} f = { {v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} } v1 v2 v3 v4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 Unique and Fair Solutions to SAT V = {v1, v2, v3, v4} f = { {v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} } Watermark = 0101 Positions of 1’s = {2, 4} f *= f ( v2 v4 1) Unique and Fair Solutions to SAT f *= f ( v2 v4 1) ( v2 v4 1) = (x1 v2 v4 ) (x1 1) Create x1 V* = {v1, v2, v3, v4, x1} (x1 v2 v4) {x1’,v2’, v4’} {x1’,v2, v4} {x1,v2’, v4} {x1,v2, v4’} (x1 1) {x2’} Unique and Fair Solutions to SAT f **= { {v1,v2’,v3} {v1’,v3,v4} {v2,v3’,v4} {x1’,v2’,v4’} {x1’,v2,v4} {x1,v2’,v4} {x1,v2,v4’} {x1’}} V1 V2 V3 V4 X1 V2 V4 X1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 Unique and Fair Solutions to SAT V* = {v1, v2, v3, v4, x1, x2} • f *= { {v1,v2’,v3} {v1’,v3,v4} {v2,v3’,v4} {x1’,v2’,v4’} {x1’,v2,v4} {x1,v2’,v4} {x1,v2,v4’} {x1’}} Watermark = 0011 Positions of 1’s = {3, 4} f **= f * ( v3 v4 1) Unique and Fair Solutions to SAT f **= f * ( v3 v4 1) ( v3 v4 1) = (x2 v3 v4 ) (x2 1) Create x2 V** = {v1, v2, v3, v4, x1, x2} x2 v3 v4 x2 1 {x2’,v3’, v4’} {x2’,v3, v4} {x2,v3’, v4} {x2,v3, v4’} {x2’} Unique and Fair Solutions to SAT f **= { {v1,v2’,v3} {v1’,v3,v4} {v2,v3’,v4} {x1’,v2’,v4’} {x1’,v2,v4} {x1,v2’,v4} {x1,v2,v4’} {x1’} {x2’,v3’, v4’} {x2’,v3, v4} {x2,v3’, v4} {x2,v3, v4’} {x2’} } V1 V2 V3 V4 X1 V2 V4 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 X1 1 1 1 1 X 2 V3 V4 0 0 0 X2 1 1 1 1 Experimentation Enviroment • SAT Instances – DIMACS Instances – Created Instance with Known # Solutions • Public Domain SAT Solvers – WalkSAT (Selman & Kautz ’94) – GSAT (Selman & Kautz ’92) – NTAB (Crawford & Auton ‘93) – Rel_SAT (Bayardo & Schrag ‘97) Credibility Created Instances 0.7 Normalized Number of Solutions 0.6 0.5 0.4 0.3 0.2 0.1 0 v 0 1000 v 1 0 s - 0 s -2 0 0 0 10 -2 0 v 1 0 0 s s -2 0 0 v 0 1 0 0 0 0 0 s -2 5 v 00v 10 s -1 0 0 0 v 0 1 s -5 0 Ins 1 0 0 0 0 s -1 5 0 v ta n 10v 2500 50sce -1 0 v s 100s 1x 2x 3x 4x 5x 10x a dded W e b m E of Length te r m a r k Credibility (trade-off strength & runtime) DIMACS 400 Normalized Runtime (seconds) 350 300 250 200 150 100 50 0 100x 50x 25x Le ng 10x th o Wa f Em 5x ter b e ma dd ed rk 2x 1x i u i8c ii1 f225 2 6 pa -0 9 i r8- a1 7 f10 i16b 1 -c 1 jnh 0 0 pa f600 1 r pa par3 16r16 2 -2 1 pa ha ces n n 3 r a c t 3 o -c g1 Ins 25 1 2- i4 .17 Fairness (Runtime) DIMACS Fairness (Runtime) Created Instances Conclusion • Ultimate Fairness and Credibility • Arbitrary Problem Application • Connection between Watermarking & Sound Mathematics & Theoretical Computer Science
© Copyright 2026 Paperzz