cs259-Rupak

Watermarking of SAT Using
Combinatorial Isolation Lemmas
Rupak Majumdar
EECS Dept. University of California, Berkeley, CA
Jennifer L. Wong
CS Dept. University of California, Los Angeles, CA
DAC, June, 2001
[email protected]
Watermarking
• Embedding of Information for ID or
Proof of Authorship
• Technique Adds Extra Constraints to the
Problem
• Effective Intellectual Property Protection
Technique
Boolean Satisfiability
• Instance: A set of
variables V and a
collection C of
clauses over V.
• Solution: A truth
assignment for V
such that at least one
variable in each
clause evaluates
to true.
V = {v1, v2, v3}
C = {{v1, v2}, {v1’}, {v1’, v3},
{v1’, v2’, v3’}, {v3}}
Solution: v1 = False
v2 = True
v3 = True
Boolean Satisfiability
• First NP-complete Problem
• Applications
–
–
–
–
–
Deterministic Test Pattern Generation
Delay Fault Testing
Logic Verification/Synthesis
FPGA Routing
AI, Operations Research, Combinatorial
Optimization
• Backtrack Search, Local Search, Algebraic
Manipulation, Recursive Learning, …
• Watermarking Techniques
– Constraint-Based (Kahng ’98, Qu ‘99)
Fairness & Watermarking
• All possible watermarking signatures
of a given length result in a similar
solutions space
• Difficulty of finding a solution after
WM (given length) -> Runtime
• Quantify by # solutions
1111
0010
1101
Solution Space
Fairness & Watermarking
V = {v1, v2, v3, v4}
C = { (v1 + v3 + v4’) (v2 + v4) (v1’+ v2+ v3’+ v4) (v2’+v3+v4’) }
Embed a Signature of 4 bits
Signature Solutions Signature Solutions Signature Solutions Signature Solutions
0001
3
0011
3
0111
4
1111
4
0010
5
0101
4
1011
5
0100
2
0110
6
1101
4
1000
5
1001
5
1110
4
1010
5
1100
4
Ave Solution Distance 0.85 & Ave Variance 0.21
Fair Technique
Credibility & Watermarking
# solutions after WM
# solutions of with quality  threshold
• Effort required to find a particular solution
Credibility & Watermarking
V = {v1, v2, v3, v4}
C = { (v1 + v3 + v4’) (v2 + v4) (v1’+ v2+ v3’+ v4) (v2’+v3+v4’) }
Embed Signatures which are Multiples of Length 4
Signature Length (bits) 4
8 12
Ave # solutions
4.1 2.1 1.3
Min/Max # Solutions
2/5 1/4 0/3
Ave . Discrepency
0.5 0.6 0.72
16 20
24
28 32
0.5 0.2 0.3 0.1 0
0/1 0/1 0/1 0/1 0/0
0.5 0.32 0.42 0.18 0
Watermarking Flow
Signature
Initial
Specification
Additional
Constraints
Overconstrained
Specification
Off-the-Shelf
Problem Solver
Watermarked
Solution
Isolation Lemma (Valiant & Vazirani)
If f is any CNF formula in x1, x2, …, xn and w1, …wk
{0,1}n, then one can construct in linear time a formula
fk’ whose satisfying assignments v satisfy f and the
equations v•w1 = v•w2 = …= v•wk = 0. Furthermore, one
can construct a polynomial-size CNF formula fk in
variables x1, x2, …, xn,y1, …, ym for some m s.t. there is a
bijection between solutions of fk and fk’ defined by
equality on the values of x1, x2, …, xn.
• “NP is as easy as detecting unique solutions”
• Isolates a solution by randomized reduction
Unique and Fair Solutions to SAT
• CNF Formula over k Variables
• Add Multiple Watermarks of length k
– Adding Additional Constraints to
the Formula
Let a  b  c denote the CNF formula
(a’ V b’ V c’) (a’ V b V c) (a V b V c’) (a V b’ V c)
Unique and Fair Solutions to SAT
•
•
•
•
f is a CNF formula
vi is the ith variable in the set V
wj is the jth watermark of k-bits
xy is the yth created variable
f *= f  ( vi1  vi2  …  vij  1)
Unique and Fair Solutions to SAT
V = {v1, v2, v3, v4}
f = { {v
(v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} }
Unique and Fair Solutions to SAT
V = {v1, v2, v3, v4}
f = { {v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} }
v1 v2 v3 v4
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
0
1
Unique and Fair Solutions to SAT
V = {v1, v2, v3, v4}
f = { {v1,v2’, v3} {v1’, v3, v4} {v2,v3’,v4} }
Watermark = 0101
Positions of 1’s = {2, 4}
f
*=
f  ( v2  v4  1)
Unique and Fair Solutions to SAT
f
*=
f  ( v2  v4  1)
( v2  v4  1) = (x1  v2  v4 )  (x1  1)
Create x1
V* = {v1, v2, v3, v4, x1}
(x1  v2  v4)
{x1’,v2’, v4’} {x1’,v2, v4}
{x1,v2’, v4} {x1,v2, v4’}
(x1  1)
{x2’}
Unique and Fair Solutions to SAT
f **= { {v1,v2’,v3} {v1’,v3,v4} {v2,v3’,v4} {x1’,v2’,v4’}
{x1’,v2,v4} {x1,v2’,v4} {x1,v2,v4’} {x1’}}
V1
V2 V3
V4
X1  V2  V4
X1  1
0
0
1
1
0
1
1
1
0
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
Unique and Fair Solutions to SAT
V* = {v1, v2, v3, v4, x1, x2}
• f *= { {v1,v2’,v3} {v1’,v3,v4} {v2,v3’,v4} {x1’,v2’,v4’}
{x1’,v2,v4} {x1,v2’,v4} {x1,v2,v4’} {x1’}}
Watermark = 0011
Positions of 1’s = {3, 4}
f
**=
f
*
 ( v3  v4  1)
Unique and Fair Solutions to SAT
f **= f *  ( v3  v4  1)
( v3  v4  1) = (x2  v3  v4 )  (x2  1)
Create x2
V** = {v1, v2, v3, v4, x1, x2}
x2  v3  v4
x2  1
{x2’,v3’, v4’} {x2’,v3, v4}
{x2,v3’, v4} {x2,v3, v4’}
{x2’}
Unique and Fair Solutions to SAT
f **= {
{v1,v2’,v3} {v1’,v3,v4} {v2,v3’,v4} {x1’,v2’,v4’}
{x1’,v2,v4} {x1,v2’,v4} {x1,v2,v4’} {x1’} {x2’,v3’, v4’}
{x2’,v3, v4} {x2,v3’, v4} {x2,v3, v4’} {x2’} }
V1 V2 V3 V4
X1 
V2  V4
0
0
0
0
0
0
1
1
1
1
1
1
0
1
0
X1  1
1
1
1
X 2
V3  V4
0
0
0
X2  1
1
1
1
Experimentation Enviroment
• SAT Instances
– DIMACS Instances
– Created Instance with Known # Solutions
• Public Domain SAT Solvers
– WalkSAT (Selman & Kautz ’94)
– GSAT (Selman & Kautz ’92)
– NTAB (Crawford & Auton ‘93)
– Rel_SAT (Bayardo & Schrag ‘97)
Credibility
Created Instances
0.7
Normalized Number of
Solutions
0.6
0.5
0.4
0.3
0.2
0.1
0
v
0
1000
v
1 0 s - 0 s -2 0 0 0
10
-2 0 v
1 0 0 s s -2 0 0 v
0
1 0 0 0 0 0 s -2 5 v
00v
10
s -1 0
0
0
v
0
1
s -5 0
Ins
1 0 0 0 0 s -1 5 0 v
ta n
10v
2500
50sce
-1 0 v
s
100s
1x
2x
3x
4x
5x
10x
a
dded W
e
b
m
E
of
Length
te r m a r
k
Credibility (trade-off strength & runtime)
DIMACS
400
Normalized Runtime
(seconds)
350
300
250
200
150
100
50
0
100x
50x
25x
Le
ng
10x
th
o
Wa f Em
5x
ter
b
e
ma dd
ed
rk
2x
1x
i
u i8c
ii1 f225 2
6
pa
-0 9
i
r8- a1
7
f10 i16b
1
-c
1
jnh
0
0
pa f600 1
r
pa par3 16r16
2 -2 1
pa ha
ces
n
n
3
r
a
c
t
3
o
-c
g1
Ins
25 1 2- i4
.17
Fairness (Runtime)
DIMACS
Fairness (Runtime)
Created Instances
Conclusion
• Ultimate Fairness and Credibility
• Arbitrary Problem Application
• Connection between Watermarking &
Sound Mathematics & Theoretical
Computer Science