CPS 616 - W2017 Lab 2 - Asymptotic Efficiencies SOLUTIONS 1. Solutions Before answering any of the questions one needs to simplify the function f: f(n) = 5nlog n2 = 10n log n because ∀a,b∈ℝ, log ab = b.log a a. 10n log n ∈ O(n(log n2)2): n(log n2)2 = n(2 log n)2 = 4n(log n)2 Find n0,c ∈ℝ such that ∀n>n0 |10n log n)| c.| 4n(log n)2| i.e. s.t. ∀n>n0 10 c. 4 (log n) Simplifying on both sides i.e. s.t. ∀n>n0 10/4c log n Simplifying on both sides This inequality is true when n0=10 and c=10 b. 10n log n ∉ Ω(n2log n): lim | 10𝑥 𝑙𝑜𝑔𝑥 𝑥→∞ 4𝑥(log 𝑥)2 c. 𝑥→∞ 4 log 𝑥 |= 10 1 lim 4 𝑥→∞ log 𝑥 =0 10n log n ∈ (nlog(n+1)3): nlog(n+1)3 = 3nlog(n+1) lim | 10𝑥 log 𝑥 |= 𝑥→∞ 3𝑥 log(𝑥+1) = d. 10 | = = lim | 10 lim | 10 lim log 𝑥 = 3 𝑥−∞ log(𝑥+1) 1/(𝑥 𝑙𝑛10) |= 3 𝑥→∞ 1/((𝑥+1)𝑙𝑛10) 10 lim (log 𝑥)′ 3 𝑥−∞ (log(𝑥+1))′ 𝑥+1 10 𝑥 3 lim | 3 𝑥→∞ 10 |= by L’Hopital’s rule 𝑥 1 ( lim |𝑥| + lim |𝑥|) = 𝑥→∞ 𝑥→∞ 10 3 (1 + 0) = 10/3 10n log n ∈ o(n2): Lim | 𝑥→∞ 10𝑥 log 𝑥 𝑥2 = 10 lim | 𝑥→∞ | = lim | 10 log 𝑥 𝑥→∞ 1/(𝑥 𝑙𝑛10) 1 |= 𝑥 10 | = 10 lim | 𝑥→∞ log 𝑥 𝑥 | = 10 lim | 𝑥→∞ (log 𝑥)′ (𝑥)′ | by L’Hopital’s rule 1 lim |𝑥| = 0 𝑙𝑛10 𝑥→∞ 2. Solutions a. Θ(5n-1 . 2n+1) = Θ(4×10n-1) = Θ(0.4×10n) = Θ(10n) b. Θ(2n log(n+2) 2 × log(n/2)) = Θ(2n ×2log(n+2) × (log(n)-log(2))) = Θ(n log(n+2)log (n)-log(2) n log(n+2)) = Θ(n (log(n))2 - n log(n)) = Θ(n (log n)2) c. Θ(√((n-1)(n3+1)) = Θ(√(n4-n3+n-1)) = Θ(√(n4) = Θ(n2)
© Copyright 2026 Paperzz