Productivity in Luxembourg Chiara Peroni Research division, STATEC Conseil Economique et Social, 1st July 2016 The aim of this talk I Why productivity? I I Source of economic growth Measure of living standard I Productivity measures the ability to use resources efficiently and to produce more I Different methods & data sources give insights into different sources of productivity growth I The measurement of productivity is challenging Outline of this talk 1. 2. 3. 4. 5. 6. 7. 8. Definition of productivity Drivers of productivity The study of productivity in Luxembourg: Measures based on aggregate data Measures based on firm-level data The evolution of productivity in Luxembourg Challenges of measuring productivity The research ahead Productivity is.. .. not working harder but working smarter! (OECD) I Productivity expresses how well countries/industries/firms use their resources. I Measured as ratio of output to inputs used to produce those output. I It is a relative concept. Productivity measures I Partial vs. total factor productivity measures: I I I Labour productivity compares output to the labour input. Total Factor Productivity (TFP) compares output to the stock of capital and labour. They are related: ∆(GDP/L) = ∆(K /L) + ∆(TFP) Labour prod. growth = capital deepening + TFP growth the best restaurant in the world.. Source: http://www.osteriafrancescana.it/ Drivers of productivity What explains productivity? Why productivity differ? I I Efficiency, technical progress, factor allocation. Internal drivers: I I I I I I Quality of inputs. Intangible assets: know-how, organisation, reputation. Knowledge capital: skills, management, HR practices. Innovation and R&D. More recently: workers’ incentives, job satisfaction. External drivers: I Technological spillovers, trade, market structure. Productivity and efficiency Concepts of efficiency: I Productive efficiency: ability of a producer to obtain maximal output from a given level of inputs use. I Allocative efficiency: state of an industry where resources employed by most productive producers. How we study productivity I I I Several data sources and methods to analyse productive efficiency and allocative efficiency. Two projects: LuxKLEMS: National Accounts data to compute productivity indices at national and industry level. LuxPROD: firm-level data to investigate issues: I I Productivity, mark-ups and international trade. Resource mis-allocation and productivity slowdown in Luxembourg. LuxKLEMS National Accounts framework: I Countries use resources to produce goods and services: I Stock of capital (K), Labour (L), Energy (E), Materials (M), and purchased Services (S). I Use aggregate data for many countries and industries. I Objective: comparative indices of Total Factor Productivity (TFP). I Analyse productive efficiency and technical progress. Productive efficiency GDP Efficient frontier Di Ci K /L Technical progress Efficient frontier (t + 1) GDP Di,t+1 Di Ci Ci,t+1 Efficient frontier (t) K /L Changes in TFP = changes in eff. + tech. progress TFP evolution in Luxembourg Source: Penn world tables. TFP (1980=100) 120 DEU 100 140 160 TFP evolution: country comparison FRA LUX 80 BEL 1980 1985 1990 1995 2000 Source: Penn world tables. 2005 2010 2015 Technical progress and efficiency in Luxembourg Source: Penn world tables. LuxKLEMS: the work ahead Need to adapt LuxKLEMS to the new data framework: I New European System of National Accounts (ESA2010): I I I I Implemented by EU countries in 2014; Major data revisions for all years; R&D recorded as investment expenditure. New industry classification NACE Rev.2. New topics I I Quality of life: does well-being matter to productivity?; Quality of environment: environmental efficiency. Capital GDP Labor WB CO2 Productivity in Luxembourg: a summary Productivity reflects economic cycle and structural changes: I Fall in GDP during crisis due to fall in TFP. I Fall in productivity is persistent. I Luxembourg productivity slow-down preceded the crisis. I Similar patterns across countries. I Aggregate conceals industry and within-industry variations. Studies on firm-level data: Allocative efficiency I Aggregate productivity depends on efficiency in the allocation of resources across producers. I State of an industry where (important portion of) resources are employed by most productive producers. I Micro data inform on how industries responded to the negative productivity shock. I Data: Structural Business Statistics & Business Register. Entry, exit and size Sources of allocative efficiency: I I I I Some firms become more productive (within); More productive firms become larger in size (between); Exit of inefficient producers; Entry of new firms. Next: some results on labour productivity in Luxembourg industries. Source: Business Register data. Sources of labour productivity growth Transportation and Storage 1999 2002 2005 2008 2011 1999 2002 2005 2008 2011 −.2 1999 2002 2005 2008 2011 .2 0 −.05 2005 2008 2011 −.2 −.4 1999 2002 2005 2008 2011 2005 Between Entry Exit −.1 −.15 −.2 2002 2002 2008 Prod. Growth Within 0 −.05 −.1 1999 1999 Administrative Activites .4 .05 Prof., Sci. and Tech. Activities 0 .05 Accomodation and Food Service −.1 −.05 −.15 −.1 −.5 −.05 −.1 0 0 0 0 .05 .05 .1 Wholesale and Retail Trade .1 Construction .5 Manufacturing 1999 2002 Source: U. Kilinc on BR data. 2005 2008 2011 2011 .01 .005 0 .015 .005 0 .01 0 1996 1998 2000 2002 2004 2006 2008 2010 1996 1998 2000 2002 2004 2006 2008 2010 Exit Rate Entry Rate .01 .03 .02 .03 .02 .01 0 .015 .025 .015 0 Administrative Activites .02 1996 1998 2000 2002 2004 2006 2008 2010 Prof., Sci. and Tech. Activities .04 1996 1998 2000 2002 2004 2006 2008 2010 Accomodation and Food Service .04 1996 1998 2000 2002 2004 2006 2008 2010 1996 1998 2000 2002 2004 2006 2008 2010 Transportation and Storage .005 .01 0 .005 .01 .015 .003 .002 .001 0 Wholesale and Retail Trade .02 Construction .02 .004 Manufacturing .025 Entry and exit 1996 1998 2000 2002 2004 2006 2008 2010 Source: U. Kilinc on BR data. Some new results based on macro data: TFP in service industries (very preliminary) Wholesale trade 40 95 60 TFP (1995=100) 100 105 TFP (1995=100) 80 100 120 110 Construction 2000 2005 Source: CH Di Maria on NA data. 2010 2015 2000 2005 2010 2015 Some new results based on macro data: TFP in manufacturing industries metals 130 80 140 90 TFP (1995=100) 100 TFP (1995=100) 150 160 110 170 120 mining 2000 2005 Source: CH Di Maria on NA data. 2010 2015 2000 2005 2010 2015 Strengths of our approach Combines different data sources: I I I I LuxKLEMS: productivity indices based on minimal assumptions; Robust to availability of new data (obviously not to sample-wide revisions); Evidence based on micro-data allows robustness checks and explains aggregate outcomes; Firm-level and national-level data give insights into sources of productivity growth. Challenges of measuring productivity I Data availability. I I Inputs to production are often estimated or proxied. I I I Coverage, transmission lags, revisions; Capital stock: cumulated investment by asset type; Human capital highly problematic. The measurement of productivity in services is difficult. I I Output of services is hard to define and measure. Financial services: FISIM to capture implicitly priced services of banks. Take-homes: I I I I Productivity compares output to inputs to production. Different methods give insights into sources of productivity growth: productive efficiency; allocative efficiency; changes in technology. A key issue in the analysis of productivity is the definition and measurement of inputs and output(s). Why is this important? I I Apparent slow-down in Luxembourg’s productivity. The results have policy implications. Further research I I I I I Continue the current work to produce up-to-date figures. Continue research effort on productivity drivers. Measures of productivity in key industries. New important issues (well-being, environment). We need data! References Kilinc, U. 2016. Resource Misallocation and Productivity Slowdown: Luxembourg’s Manufacturing in the Post-Recession, Mimeo. Kilinc, U. 2015. Productivity, Markups and International Trade: The Case of Small Open Economy, Mimeo. Ben-Aoun, L. and U. Kilinc. 2015. Dynamics of Net Job Creation, Firm Entry and Exit in Luxembourg’s Main Sectors, in Stabilité dans un environnement à risques, Perspectives de Politique Économique, Bilan Compétitivité 2015, no. 30, pp. 218-222. Kilinc, U. 2014. Aspects of Business Demography, in Dynamiques des entreprises du Luxembourg, Compétitivité de la nation, Cahier économique, No 118, pp. 64-71. Kilinc, U. 2014. Factor Allocation and Firm-Level Productivity Dynamics in Luxembourg’s Manufacturing Sector, Economie et Statistiques Working papers du STATEC, No 71. Kilinc, U. 2012. A Note on Measuring Firm-Level Capital Stock and Productivity in Luxembourg’s Manufacturing Sector, in 2012 Competitiveness Report, Perspectives de Politique Économique, Observatoire de la Compétitivité, pp. 165-179. Kilinc, U. 2014. Factor Allocation Dynamics in Manufacturing Sector, in Dynamiques des entreprises du Luxembourg, Compétitivité de la nation, Cahier économique, No 118, pp. 42-47. References DiMaria, C.H., Sarracino, F., and Peroni,C. 2015. Happiness matters: the role of well-being in productivity mimeo. DiMaria, C.H., Sarracino, F., and Peroni,C. 2015. Happiness matters: the role of well-being in productivity in Stabilité dans un environnement à risques, Perspectives de Politique Économique, Bilan Compétitivité 2015, no. 30: 25336. Peroni, C. 2014. Total Factor Productivity at the industry level , in Dynamiques des entreprises du Luxembourg, Compétitivité de la nation, Cahier économique, No 118, pp. 46-58. Peroni, C. 2013. Productivity and Competitiveness in Luxembourg, in 2013 Competitiveness Report, Perspectives de Politique Économique, Observatoire de la Compétitivité, no 27: pp. 169-195. DiMaria, C.H. and Peroni,C. 2012. A new unit labour cost changes decomposition: four pillars of cost competitiveness recovery, mimeo. Peroni, C. 2012. Environmental efficiency indices: towards a new approach to green-growth accounting, Economie et Statistiques Working Paper Series, no. 61, October 2012. Peroni, C. 2012. Productivity and competitiveness in Luxembourg: the evolution of total Factor productivity in luxembourg from 1995 to 2010 Perspectives de Politiques Economiques, no. 25: 164. Peroni, C. 2011. A review of Total Factor Productivity of Luxembourg in 2011 Competitiveness Report, Perspectives de Politique Economique, Observatoire de la Compétitivité, 2011, NO. 17: 198212. References Dubrocard, A., Gomes Ferreira, Y.,and Peroni, C. 2010. Productivité et comptitivité au Luxembourg: une comparaison par Pays et par branches Perspectives de Politiques Economiques, no. 14: 183. Ciccone, J, and DiMaria, C.H. 2008. Productivité et comptitivité! Perspectives de Politiques Economiques, no.8: 154. Asikainen, A.L., and Dubrocard, A. 2008. Innovation et Productivité Perspectives de Politiques Economiques, no.9: 168. Asikainen, A.L. 2008. Innovation and Productivity in Luxembourg Economie et statistiques, no. 23: 122. Ciccone, J, and DiMaria, C.H. 2006. Vers des mesures de la productivité totale des facteurs au Grand-Duché de Luxembourg, défis et pistes de recherche Perspectives de Politiques Economiques, no. 6: 11424. Ciccone, J, and DiMaria, C.H. 2006. La productivité totale des facteurs au Luxembourg, Cahiers Economiques, no. 102: 1-88. Ciccone, J, and DiMaria, C.H. 2003. Analyses théoriques et empiriques des déterminants de la productivité globale des facteurs: une application au Grand-Duché de Luxembourg Perspectives de Politiques Economiques, no. 1: 1127. References Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer. 2015. The Next Generation of the Penn World Table.American Economic Review, 105(10): 3150-82. Syverson, C. 2011. What determines productivity? Journal of Economic Literature 2011, 49:2, 326365. Coelli, Rao, ODonnell and Battese (2005). An Introduction to Efficiency and Productivity Analysis (2nd Ed.). Springer.
© Copyright 2026 Paperzz