ARNOLD DIFFUSION IN ARBITRARY DEGREES OF FREEDOM

ARNOLD DIFFUSION IN ARBITRARY DEGREES OF FREEDOM
AND 3-DIMENSIONAL NORMALLY HYPERBOLIC INVARIANT
CYLINDERS
P. BERNARDβˆ— , V. KALOSHIN# , K. ZHANGβˆ—βˆ—
1. Introduction
Let (πœƒ, 𝑝) ∈ 𝕋𝑛 × π‘ˆ be the phase space of an integrable Hamiltonian system 𝐻0 (𝑝)
with 𝕋𝑛 being the 𝑛-dimensional torus 𝕋𝑛 = ℝ𝑛 /℀𝑛 βˆ‹ πœƒ = (πœƒ1 , β‹… β‹… β‹… , πœƒπ‘› ) and π‘ˆ being
an open set in ℝ𝑛 , 𝑝 = (𝑝1 , β‹… β‹… β‹… , 𝑝𝑛 ) ∈ 𝐡 𝑛 . Assume that 𝐻0 is strictly convex, i.e.
Hessian βˆ‚π‘2𝑖 𝑝𝑗 𝐻0 is strictly positive definite.
Consider a smooth time periodic perturbation
π»πœ€ (πœƒ, 𝑝, 𝑑) = 𝐻0 (𝑝) + πœ€π»1 (πœƒ, 𝑝, 𝑑),
𝑑 ∈ 𝕋 = ℝ/𝕋.
We study Arnold diffusion for this system, namely, existence of orbits {(πœƒ, 𝑝)(𝑑)}𝑑 such
that
βˆ£π‘(𝑑) βˆ’ 𝑝(0)∣ > 𝑂(1) independently of πœ€.
We say that 𝐻0 has a resonance of order π‘š < 𝑛 at a point 𝑝 ∈ 𝐡 𝑛 if there are π‘š
linearly independent integer vectors π‘˜1 , . . . , π‘˜π‘š ∈ ℀𝑛 such that π‘˜π‘— β‹… βˆ‡π»0 (𝑝) = 0 for
𝑗 = 1, β‹… β‹… β‹… , π‘š. We say that a resonance is of co-dimension 𝑠 if it is of order 𝑛 βˆ’ 𝑠. Due
to the theorem on implicit function and convexity of 𝐻0 a resonance of codimension
𝑠 (if non empty) locally defines a surface of dimension 𝑠. We would like to study
dynamics near a resonance of codimension one, i.e. near a segment in 𝐡 𝑛 . For any
resonance of codimension one there is an integer linear symplectic transformation
which brings integer vectors π‘˜1 , . . . , π‘˜π‘›βˆ’1 ∈ ℀𝑛 , defining the resonance, to the form
π‘˜π‘— = (0, β‹… β‹… β‹… , 1𝑗 , 0, β‹… β‹… β‹… , 0). Since we are interested in a local property assume that a
resonance, denoted Ξ“, of codimension one is of the following form:
(βˆ‚π‘1 𝐻0 (𝑝), β‹… β‹… β‹… , βˆ‚π‘π‘›βˆ’1 𝐻0 (𝑝)) = (πœƒΛ™1 , β‹… β‹… β‹… , πœƒΛ™π‘›βˆ’1 ) = 0 for πœ€ = 0.
βˆ‘
In the case 𝐻0 (𝑝) = 21 𝑛𝑗=1 𝑝2𝑗 we have Ξ“ = {(𝑝1 , β‹… β‹… β‹… , π‘π‘›βˆ’1 ) = 0}. Thus, it is naturally
parametrized by 𝑝𝑛 .
Consider the space of 𝐢 π‘Ÿ perturbations 𝐢 π‘Ÿ (𝕋𝑛 × π‘ˆ × π•‹, ℝ) with a natural 𝐢 π‘Ÿ norm
given maximum of all partial derivatives of order up to π‘Ÿ. Denote by 𝑆 π‘Ÿ the unit
sphere in this space.
1
2
P. Bernard, V. Kaloshin, K. Zhang
Theorem 1.1. For π‘Ÿ β‰₯ 4, there is an open and dense set 𝒰 βŠ‚ 𝑆 π‘Ÿ , a nonnegative
function 𝑙 : 𝑆 π‘Ÿ βˆ’β†’ ℝ+ with π‘™βˆ£π’° > 0 and a positive function πœ€0 = πœ€0 (𝐻1 ), we write
𝒱 = {πœ–π»1 : 𝐻1 ∈ 𝒰}. We have that, for an open and dense set of πœ–π»1 ∈ 𝒱 the
Hamiltonian system π»πœ– = 𝐻0 + πœ–π»1 has an orbit {(πœƒ, 𝑝)(𝑑)}𝑑 whose action component
βˆ£π‘(𝑇 ) βˆ’ 𝑝(0)∣ > 𝑙(𝐻1 ).
Moreover, for all 0 < 𝑑 < 𝑇 the action component 𝑝(𝑑) stays close to the codimension
one resonance Ξ“.
Remark 1.1. This Theorem provides a form of Arnold diffusion for generic Hamiltonian systems. The type of generic condition in Theorem 1.1 is a version of Mather’s
cusp residue condition introduced in [Ma3].
The present work is in large part inspired by the work of Mather [Ma3, Ma4, Ma5].
In [Ma3], Mather announced a much stronger version of Arnold diffusion for 𝑛 = 2
(the system is time-periodic hence the degree of freedom is 2 12 ). The proof of Mather’s
result is partially written and available [Ma4], and he has given lectures about the
proof [Ma5]. One of the ideas underlying his proof is to construct diffusion along a
segment of a resonance and away from other low order resonances. Conceptually, the
proof of our result is similar to the part of Mather’s proof [Ma4] for single resonances.
The novelty of our approach is the use of normal form theory and normally hyperbolic
cylinders in an a priori stable setting. Application of normal forms to construct
normally 3-dimensional hyperbolic invariant cylinders in apriori stable situation in
3 degrees of freedom is proposed in [KZZ]. Independently in the case of arbitrary
degrees of freedom it is proposed in [Be3]. In the latter it is shown that such cylinders
have length independent of πœ–.
The proof of this Theorem proceeds in three steps.
Step 1. Build a normal form for π»πœ€ for for 𝑝 near Ξ“. In section 3 we prove the
existence of a normal form, which takes a particular nice form along subsegments of
Ξ“, which we will call passage segments, defined in the next section. The length and
choice of the passage segments depends on 𝐻0 and 𝐻1 only.
Step 2. For 𝐻1 ∈ 𝒰, we establish existence of finitely many 3-dimensional normally
hyperbolic cylinder along Ξ“. This is discussed in Section 4.
Step 3. For a generic perturbation, we show that there exists diffusion orbit along a
passage segment, using the normally hyperbolic cylinders. This steps uses variational
methods of Bernard [Be1] and of Cheng-Yan [CY1, CY2] which are based on ideas of
Mather (see [Ma4]). These constructions are discussed in Section 5 and Section 6.
Arnold diffusion along normally hyperbolic invariant cylinders
3
2. Notations and terminology
We denote πœƒπ‘  = (πœƒ1 , β‹… β‹… β‹… , πœƒπ‘›βˆ’1 ), 𝑝𝑠 = (𝑝1 , β‹… β‹… β‹… , π‘π‘›βˆ’1 ) and πœƒπ‘“ = πœƒπ‘› , 𝑝𝑓 = 𝑝𝑛 . These are
the slow-fast variables associated to the resonance Ξ“ = {βˆ‚π‘π‘  𝐻0 (𝑝) = 0}. It is natural
to use 𝑝𝑓 as a parameter for Ξ“, i.e. we may write Ξ“ ∩ 𝐡 = {π‘βˆ— (𝑝𝑓 ) = (π‘π‘ βˆ— (𝑝𝑓 ), 𝑝𝑓 ), 𝑝𝑓 ∈
[π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ]}.
The averaged Hamiltonian associated to the resonance Ξ“ is given by
∫∫
𝑠
𝑍(πœƒ , 𝑝) =
𝐻1𝑠 (πœƒπ‘  , 𝑝𝑠 , πœƒπ‘“ , 𝑝𝑓 , 𝑑) π‘‘πœƒπ‘“ 𝑑𝑑.
We would like to impose the following set of non-degeneracies and notations. Consider
the function 𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) as a family of functions on π•‹π‘›βˆ’1 parametrized by 𝑝𝑓 .
Call a value 𝑝𝑓 on Ξ“ regular if 𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) has a unique global maximum on
𝑠
𝕋 βˆ‹ πœƒπ‘  at some πœƒβˆ—π‘  = πœƒπ‘  (𝑝𝑓 ). We say the maximum is non-degenerate if the Hessian
of 𝑍 with respect to πœƒπ‘  is strictly negative definite.
Call a value 𝑝𝑓 on Ξ“ bifurcation if 𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) has exactly two global maxima on
𝑠
𝕋 βˆ‹ πœƒπ‘  at some πœƒ1𝑠 = πœƒ1𝑠 (𝑝𝑓 ) and πœƒ2𝑠 = πœƒ2𝑠 (𝑝𝑓 ).
Call a regular 𝑝𝑓 on Ξ“ non-degenerate if the unique maximum is non-degenerate.
If 𝑝𝑓 is a bifurcation, it is called non-degenerate if both maxima are non-degenerate,
furthermore, the values at these maxima moves with different speed with respect to
the parameter 𝑝𝑓 Otherwise, it is called degenerate.
The generic condition that defines 𝒰 βŠ‚ π‘†π‘Ÿ is a higher dimensional version of the
conditions (C1)-(C3) given by Mather [Ma3]. These conditions may be described as
follows: Each value 𝑝𝑓 ∈ [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ] is a non-degenerate regular or bifurcation point.
Note that the non-degeneracy condition implies that there are at most finitely many
bifurcation points. Let π‘Ž1 < β‹… β‹… β‹… < π‘Žπ‘ βˆ’1 be the set of bifurcation points in the interval
(π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ), and consider the partition of the interval [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ] by {[π‘Žπ‘— , π‘Žπ‘—+1 ]}π‘ βˆ’1
𝑗=0 .
Here we give an explicit quantitative version of the above condition: There exists
πœ† > 0 such that
[G0] There are smooth functions πœƒπ‘—π‘  (𝑝𝑓 ) : [π‘Žπ‘— βˆ’ πœ†, π‘Žπ‘—+1 + πœ†] βˆ’β†’ 𝕋𝑛 , 𝑗 = 0, β‹… β‹… β‹… , 𝑠 βˆ’ 1,
such that for each 𝑝𝑓 ∈ [π‘Žπ‘— βˆ’ πœ†, π‘Žπ‘—+1 + πœ†], πœƒπ‘—π‘  (𝑝𝑓 ) is a local maximum of
𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) satisfying βˆ’βˆ‚πœƒ2𝑠 πœƒπ‘  𝑍(πœƒπ‘—π‘  , 𝑝) β‰₯ πœ†πΌ.
[G1] For 𝑝𝑓 ∈ (π‘Žπ‘— , π‘Žπ‘—+1 ), πœƒπ‘—π‘  is the unique maximum for 𝑍. for 𝑝𝑓 = π‘Žπ‘—+1 , πœƒπ‘—π‘  and
𝑠
πœƒπ‘—+1
are the only maxima.
𝑓
[G2] At 𝑝 = π‘Žπ‘—+1 the maximum value of 𝑍 has different derivatives with respect
to 𝑝𝑓 , i.e.
𝑑
𝑑
𝑠
𝑓
𝑠
𝑍(πœƒ
(π‘Ž
),
𝑝
(𝑝
))
=
βˆ•
𝑍(πœƒπ‘—+1
(π‘Žπ‘—+1 ), π‘βˆ— (𝑝𝑓 )).
𝑗+1
βˆ—
𝑗
𝑑𝑝𝑓
𝑑𝑝𝑓
4
P. Bernard, V. Kaloshin, K. Zhang
Theorem 2.1. The set 𝒰 of functions 𝐻1 ∈ π‘†π‘Ÿ such that the corresponding 𝑍(πœƒπ‘  , 𝑝)
satisfies conditions [G0]-[G2] is open and dense.
The proof of Theorem 2.1 will be given in Appendix A.
Write πœ”(𝑝) = βˆ‚π‘ 𝐻0 (𝑝) = (βˆ‚π‘π‘  𝐻0 , βˆ‚π‘π‘“ 𝐻0 ), clearly for any 𝑝 ∈ Ξ“ we have that πœ”(𝑝) =
(0, βˆ‚π‘π‘“ 𝐻0 )). We say that 𝑝𝑓 has an additional resonance if there exists integers π‘˜π‘› , 𝑙
such that π‘˜π‘› βˆ‚π‘π‘“ 𝐻0 (𝑝) + 𝑙 = 0. Given a large integer 𝐾, let
(1)
Σ𝐾 = {𝑝 ∈ Ξ“ ∩ 𝐡;
βˆƒπ‘˜π‘› , 𝑙 ∈ β„€, βˆ£π‘˜π‘› ∣, βˆ£π‘™βˆ£ ≀ 𝐾, π‘˜π‘› β‹… βˆ‚π‘π‘“ 𝐻0 (𝑝) + 𝑙 = 0}.
Given 𝐻1 ∈ 𝒰, we will define a small 𝛿 = 𝛿(𝐻1 , 𝑛, π‘Ÿ) > 0 and integer 𝐾 = 𝐾(𝛿, 𝑛, π‘Ÿ)
and call the elements of Σ𝐾 punctures. We need to exclude a neighborhood of
1
the punctures from Ξ“ ∩ 𝐡. Let π‘ˆ3πœ– 16 (Σ𝐾 ) stand for 3πœ– 6 neighborhood of Σ𝐾 , then
Ξ“ ∩ 𝐡 βˆ– π‘ˆ3πœ– 16 (Σ𝐾 ) is a collection of disjoint segments. Each of these segments is
called a passage segment. On a neighborhood of each passage segment there exists a
convenient normal form for the Hamiltonian π»πœ– .
3. Normal forms
Let Ξ“0 = {(𝑝𝑠 = π‘βˆ— (𝑝𝑓 )) : 𝑝𝑓 ∈ [π‘Žβˆ’ , π‘Ž+ ]} be one of the passage segments. The goal
of this segment is to prove the following theorem:
Theorem 3.1. [Normal Form] For π»πœ– = 𝐻0 + πœ–π»1 , 𝐻1 ∈ 𝒰 with π‘Ÿ β‰₯ 4. Given any
small 𝛿 > 0, there exists 𝑐(𝑛, π‘Ÿ) > 0, πœ–0 = πœ–0 (𝛿, 𝑛, π‘Ÿ), such that for
2
𝐾(𝛿, 𝑛, π‘Ÿ) = 𝑐(𝑐(𝑛, π‘Ÿ)βˆ’1 𝛿)βˆ’ π‘Ÿβˆ’3
and define Σ𝐾 and Ξ“0 accordingly, we have that for 0 < πœ– < πœ–0 there exists a 𝐢 ∞
change of coordinates Ξ¦ defined on π‘ˆπœ– 16 (Ξ“0 ) with
(2)
π‘πœ– = π»πœ– ∘ Ξ¦ = 𝐻0 (𝑝) + πœ–π‘(πœƒπ‘  , 𝑝) + πœ–π‘…(πœƒ, 𝑝, 𝑑)
such that βˆ₯𝑅βˆ₯𝐢 2 ≀ 𝑐𝛿 for a constant 𝑐 independent of πœ†, 𝑛 and π‘Ÿ. Moreover, βˆ₯Ξ¦ βˆ’
1
1
𝑖𝑑βˆ₯𝐢 0 ≀ 𝐷′ πœ– 2 and βˆ₯Ξ¦ βˆ’ 𝑖𝑑βˆ₯𝐢 2 ≀ 𝐷′ πœ– 6 for some constant 𝐷′ .
Remark 3.1. [Length of passage segment] On the interval, the distance between 2
adjacent rationals with denominator at most 𝐾 is 𝐾12 . It follows that the distance
4
between 𝑝𝑓1 , 𝑝𝑓2 ∈ Σ𝐾 (see (3)) is at least βˆ₯βˆ‚ 2 𝐻0βˆ’1 βˆ₯ 𝐾12 β‰₯ 𝑐(𝑐(𝑛, π‘Ÿ)βˆ’1 𝛿) π‘Ÿβˆ’3 , assuming
that βˆ₯βˆ‚ 2 𝐻0βˆ’1 βˆ₯ is bounded by some universal constant.
To prove Theorem 3.1 we proceed in 3 steps. We first show that in general we
may do averaging near a resonance to provide a normal form π‘πœ– . We then show that
this normal form takes our desired form on the set π‘ˆπœ– 16 (Ξ“0 ). However, the averaging
procedure lowers smoothness, in particular, the technique requires the smoothness
Arnold diffusion along normally hyperbolic invariant cylinders
5
π‘Ÿ β‰₯ 𝑛 + 5. To obtain a result that does not require this relation between π‘Ÿ and 𝑛, we
use a smooth approximation trick that goes back to Moser.
3.1. Normal form near a resonance. We will prove a general result on the normal
form of an autonomous Hamiltonian system. The time periodic version will come as
a corollary.
Consider the Hamiltonian π»πœ– (πœ‘, 𝐽) = 𝐻0 (𝐽) + πœ–π»1 (πœ‘, 𝐽), where (πœ‘, 𝐽) ∈ π•‹π‘š × β„π‘š .
Let 𝐡 = {∣𝐽∣ ≀ 1} be the unit ball in β„π‘š . Given any integer vector π‘˜ ∈ β„€π‘š βˆ– {0},
let βˆ£π‘˜βˆ£ = max{π‘˜π‘– }. To avoid zero denominators in some calculations, we make the
unusual convention that ∣(0, β‹… β‹… β‹… , 0)∣ = 1.
Let 𝜌 : ℝ βˆ’β†’ ℝ be a 𝐢 ∞ bump function, i.e.
{
1, ∣π‘₯∣ ≀ 1
𝜌(π‘₯) =
0, ∣π‘₯∣ β‰₯ 2
and 0 ≀ 𝜌(π‘₯) ≀ 1 in between. Choose some 0 < 𝛽 < 1, for each π‘˜ ∈ β„€π‘š we define the
𝐽 𝐻0
function πœŒπ‘˜ (𝐽) = 𝜌( π‘˜β‹…βˆ‚
).
πœ–π›½ βˆ£π‘˜βˆ£
We have the following
Theorem 3.2. Let 𝛿 > 0 be a small parameter. For 𝐢 π‘Ÿ Hamiltonian π»πœ– = 𝐻0 + πœ–π»1
there exists constants 𝑐, πœ…π‘š and π‘π‘š such that if the parameters 𝛽, 𝐾, π‘Ÿ and πœ– satisfy
(1) π‘Ÿ β‰₯ π‘š + 4.
(2) π‘πœ…π‘š 𝐾 βˆ’π‘Ÿ+π‘š+3 βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ ≀ 21 𝛿.
(3) π‘π‘š πœ–1βˆ’4𝛽 βˆ₯𝐻0 βˆ₯4𝐢 3βˆ‘
βˆ₯𝐻1 βˆ₯2𝐢 π‘Ÿ ≀ 12 𝛿.
(Here πœ…π‘š = π‘˜βˆˆβ„€π‘š βˆ£π‘˜βˆ£βˆ’π‘šβˆ’1 , 𝑐 is independent constant and π‘π‘š depends only
on π‘š).
Then there exists a change of coordinates Ξ¦ defined on π•‹π‘š × π΅, such that
π»πœ–β€² = π»πœ– ∘ Ξ¦ = 𝐻0 (𝐽) + πœ–π‘…1 + πœ–π‘…2 ,
here we abuse notation by still using (πœ‘, 𝐽) for the new coordinates. We have that
βˆ‘
βˆ™ 𝑅1 = π‘˜βˆˆβ„€π‘š ,βˆ£π‘˜βˆ£β‰€πΎ πœŒπ‘˜ (𝐽)β„Žπ‘˜ (𝐽)𝑒2πœ‹π‘–(π‘˜β‹…πœ‘) , here β„Žπ‘˜ (𝐽) is the π‘˜ π‘‘β„Ž coefficient for the
Fourier expansion of 𝐻1 .
βˆ™ βˆ₯𝑅2 βˆ₯𝐢 π‘Ÿ ≀ 𝛿. We also have that βˆ₯Ξ¦βˆ’π‘–π‘‘βˆ₯𝐢 2 ≀ 𝐷′ 𝜎, where 𝐷′ is an independent
constant and 𝜎 = π‘π‘š πœ–1βˆ’4𝛽 βˆ₯𝐻0 βˆ₯4𝐢 4 βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ .
To apply it to the time periodic system, we consider the equivalent autonomous
system π»πœ– (πœƒ, 𝑝, 𝑠, 𝐸) = 𝐻0 (𝑝) + 𝐸 + πœ–π»1 (πœƒ, 𝑝, 𝑠), here 𝑠 is time and 𝐸 is the conjugate
action variable. Here (πœƒ, 𝑝, 𝑠, 𝐸) ∈ 𝕋𝑛 × β„π‘› × π•‹ × β„, hence the previous theorem
applies with π‘š = 𝑛 + 1. We have
6
P. Bernard, V. Kaloshin, K. Zhang
Theorem 3.3. Assume that 𝛿, 𝛽, 𝐾, π‘Ÿ and πœ– satisfy the conditions of the previous
theorem, then there exists a change of coordinates Ξ¦ under which
π»πœ–β€² = π»πœ– ∘ Ξ¦ = 𝐻0 (𝑝) + 𝐸 + πœ–π‘…1 + πœ–π‘…2
where
βˆ™
𝑅1 = 𝑅1 (𝑝, πœƒ, 𝑠) =
βˆ‘
πœŒπ‘˜,𝑙 (𝑝)β„Žπ‘˜,𝑙 (𝑝)𝑒2πœ‹π‘–(π‘˜β‹…πœƒ+𝑙𝑠) ,
(π‘˜,𝑙)βˆˆβ„€π‘› ×β„€,∣(π‘˜,𝑙)βˆ£β‰€πΎ
here β„Žπ‘˜,𝑙 (𝑝) are the coefficients of the Fourier expansion of 𝐻1 and πœŒπ‘˜,𝑙 (𝑝) =
𝐽 𝐻0 +𝑙
).
𝜌( π‘˜β‹…βˆ‚
πœ–π›½ ∣(π‘˜,𝑙)∣
βˆ™ βˆ₯𝑅2 βˆ₯𝐢 2 ≀ 𝛿.
βˆ™ Ξ¦ is identity in the 𝑠 (time) component and βˆ₯Ξ¦ βˆ’ 𝐼𝑑βˆ₯𝐢 2 ≀ 𝐷′ 𝜎.
We will then try to prove Theorem 3.2. To avoid cumbersome notations, we will
use two generic constants 𝑐 and π‘π‘š whose meaning will vary depending on context.
The constant 𝑐 is independent of all parameters, while the constant π‘π‘š depends only
on the dimension π‘š. These constants will be fixed at the end of the proof and they
are the constants in the statement of the Theorem.
We have the following basic estimates about the Fourier series of a function 𝑔(πœ‘, 𝐽).
Lemma 3.1. For 𝑔(πœ‘, 𝐽) ∈ 𝐢 π‘Ÿ (π•‹π‘š × π΅), we have
(1) Given any multi-index 𝛼 = (𝛼1 , β‹… β‹… β‹… , π›Όπ‘š ), let βˆ£π›Όβˆ£ = 𝛼1 + β‹… β‹… β‹… π›Όπ‘š . In what
follows whenever we use the letter 𝛼 it stands for a multi-index. We have
that βˆ₯βˆ‚π½ 𝛼 π‘”π‘˜ (𝐽)βˆ₯𝐢 0 ≀ βˆ£π‘˜βˆ£βˆ’π‘Ÿ+βˆ£π›Όβˆ£ βˆ₯𝑔βˆ₯𝐢 π‘Ÿ . Moreover, let 𝑙 ≀ 3 be an integer, then
βˆ₯π‘”π‘˜ (𝐽)𝑒2πœ‹π‘–(π‘˜β‹…πœ‘) βˆ₯𝐢 𝑙 ≀ π‘βˆ£π‘˜βˆ£βˆ’π‘Ÿ+𝑙 βˆ₯𝑔βˆ₯𝐢 π‘Ÿ .
Let’s also fix the notation that 𝑙 will always stand for a positive integer less
or equal to 3.
(2) Let β„Žπ‘˜ (𝐽) be a series of functions
such that βˆ₯βˆ‚π½ 𝛼 β„Žπ‘˜ (𝐽)βˆ₯𝐢 0 ≀ βˆ£π‘˜βˆ£βˆ’π‘Ÿ+βˆ£π›Όβˆ£ 𝑀 for
βˆ‘
some 𝑀 > 0. We have βˆ₯ π‘˜βˆˆβ„€π‘š β„Žπ‘˜ (𝐽)𝑒2πœ‹π‘–(π‘˜β‹…πœ‘) βˆ₯𝐢 𝑙 ≀ π‘πœ…π‘š 𝑀 assuming that
π‘Ÿ β‰₯ π‘š + 𝑙 +βˆ‘
1.
+
βˆ’π‘Ÿ+π‘š+3
(3) Let Π𝐾 𝑔 = βˆ£π‘˜βˆ£>𝐾 π‘”π‘˜ (𝐽)𝑒2πœ‹π‘–(π‘˜β‹…πœ‘) . Then βˆ₯Ξ +
βˆ₯𝑔βˆ₯𝐢 π‘Ÿ .
π‘˜ 𝑔βˆ₯𝐢 2 ≀ π‘πœ…π‘š 𝐾
Proof. 1. Let π‘˜π‘— = max{π‘˜1 , β‹… β‹… β‹… , π‘˜π‘š } and let 𝑏 = π‘Ÿ βˆ’ βˆ£π›Όβˆ£. We have that
βˆ₯βˆ‚π½ 𝛼 β„Žπ‘˜ βˆ₯𝐢 0 βˆ£π‘˜βˆ£π‘ = βˆ₯βˆ‚π½ 𝛼 β„Žπ‘˜ βˆ₯𝐢 0 π‘˜π‘—π‘ ≀ βˆ₯βˆ‚π‘π›Ό πœ‘π‘π‘— 𝑔βˆ₯𝐿1 ≀ βˆ₯βˆ‚π‘π›Ό πœ‘π‘π‘— 𝑔βˆ₯𝐢 0 ≀ βˆ₯𝑔βˆ₯𝐢 π‘Ÿ .
For the second claim we have that
βˆ‘
βˆ₯π‘”π‘˜ (𝐽)𝑒2πœ‹π‘–(π‘˜β‹…πœ‘) βˆ₯𝐢 𝑙 ≀
(2πœ‹)βˆ£π›½βˆ£ βˆ₯βˆ‚π½ 𝛼 π‘”π‘˜ (𝐽)βˆ₯𝐢 0 βˆ£π‘˜βˆ£βˆ£π›½βˆ£ ≀ π‘βˆ£π‘˜βˆ£βˆ’π‘Ÿ+𝑙 βˆ₯𝑔βˆ₯𝐢 π‘Ÿ .
βˆ£π›Ό+π›½βˆ£=𝑙
Arnold diffusion along normally hyperbolic invariant cylinders
2.
βˆ₯
βˆ‘
π‘˜βˆˆβ„€π‘š
βˆ‘
β„Žπ‘˜ (𝐽)𝑒2πœ‹π‘–(π‘˜β‹…πœ‘) βˆ₯𝐢 𝑙 ≀
βˆ’π‘šβˆ’1
βˆ‘
π‘˜βˆˆβ„€π‘š
7
𝑐𝑙 βˆ£π‘˜βˆ£βˆ’π‘Ÿ+𝑙 𝑀 ≀ 𝑐𝑙 πœ…π‘š 𝑀,
recall that πœ…π‘š = π‘˜βˆˆβ„€π‘š βˆ£π‘˜βˆ£
.
3.
βˆ‘
βˆ‘
βˆ₯Ξ +
βˆ£π‘˜βˆ£βˆ’π‘Ÿ+2 βˆ₯𝑔βˆ₯𝐢 π‘Ÿ ≀ 𝑐𝐾 βˆ’π‘Ÿ+π‘š+3
βˆ£π‘˜βˆ£βˆ’π‘šβˆ’1 βˆ₯𝑔βˆ₯𝐢 π‘Ÿ
𝐾 𝑔βˆ₯𝐢 2 ≀ 𝑐
βˆ£π‘˜βˆ£>𝐾
βˆ£π‘˜βˆ£>𝐾
≀ 𝑐𝐾
βˆ’π‘Ÿ+π‘š+3
πœ…π‘š βˆ₯𝑔βˆ₯𝐢 π‘Ÿ = π‘πœ…π‘š 𝐾 βˆ’π‘Ÿ+π‘š+3 βˆ₯𝑔βˆ₯𝐢 π‘Ÿ .
β–‘
Proof of Theorem 3.2. Let 𝐺(πœ‘, 𝐽) be the function that solves the cohomological
equation
{𝐻0 , 𝐺} + 𝐻1 = 𝑅1 + 𝑅+ ,
+
where 𝑅+ = Π𝐾 𝐻1 . We have the following explicit formula for 𝐺:
βˆ‘ (1 βˆ’ πœŒπ‘˜ (𝐽))β„Žπ‘˜ (𝐽)
𝑒2πœ‹π‘–(π‘˜β‹…πœ‘) .
𝐺=
π‘˜ β‹… βˆ‚ 𝐽 𝐻0
βˆ£π‘˜βˆ£β‰€πΎ
𝐺 is well defined thanks to the smoothing terms 1 βˆ’ πœŒπ‘˜ we introduced, as whenever
π‘˜ β‹… βˆ‚π½ 𝐻0 = 0 we also have 1 βˆ’ πœŒπ‘˜ = 0 and that term is considered non-present.
Let Φ𝑑 be the Hamiltonian flow generated by πœ–πΊ, and the change of coordinates
Ξ¦ = Ξ¦1 . By the Lie method of making coordinate changes, we get that
∫ 1
β€²
2
π»πœ– = 𝐻0 + πœ–π‘…1 + πœ–π‘…+ + πœ–
{𝐹𝑑 , 𝐺} ∘ Φ𝑑 𝑑𝑑,
0
∫1
where 𝐹𝑑 = 𝑅1 + 𝑅+ + 𝑑(𝐻1 βˆ’ 𝑅1 βˆ’ 𝑅+ ). Write 𝑅2 = 𝑅+ + πœ– 0 {𝐹𝑑 , 𝐺} ∘ Φ𝑑 𝑑𝑑.
It follows from Lemma 3.1 that βˆ₯𝑅+ βˆ₯𝐢 2 ≀ π‘πœ…π‘š 𝐾 βˆ’π‘Ÿ+π‘š+2 βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ ≀ 12 𝛿, it remains
∫1
to treat πœ– 0 {𝐹𝑑 , 𝐺} ∘ Φ𝑑 𝑑𝑑. To estimate the norm of 𝐹𝑑 , it is convenient to write
𝐹𝑑 = 𝐹𝑑′ + (1 βˆ’ 𝑑)𝑅1 , where 𝐹𝑑′ = (1 βˆ’ 𝑑)𝑅+ + 𝑑𝐻1 . Notice that the coefficients of
the Fourier expansion of 𝐹𝑑′ is simply a constant times that of 𝐻1 , Lemma 3.1 then
implies that
βˆ₯𝐹𝑑′ βˆ₯𝐢 3 ≀ π‘πœ…π‘š βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ
as long as π‘Ÿ β‰₯ π‘š + 4.
We still need to estimate the norm of 𝑅1 and 𝐺. These estimates require, additional
estimates of the smoothing terms πœŒπ‘˜ as well as the small denominators π‘˜ β‹… βˆ‚π½ 𝐻0 . We
have the following
- For any π‘˜ ∈ β„€π‘š and any 𝐽 such that πœŒπ‘˜ (𝐽) βˆ•= 0, we have that ∣(π‘˜ β‹… βˆ‚π½ 𝐻0 )βˆ’1 ∣ ≀
2πœ–βˆ’π›½ βˆ£π‘˜βˆ£βˆ’1 .
8
P. Bernard, V. Kaloshin, K. Zhang
βˆ₯(π‘˜ β‹… βˆ‚π½ 𝐻0 )βˆ’1 βˆ₯𝐢 𝑙 ≀ π‘π‘š πœ–βˆ’π›½(𝑙+1) βˆ₯𝐻0 βˆ₯𝑙+1
𝐢4 .
- The derivative of πœŒπ‘˜ (𝐽) can be estimated in the following way,
βˆ₯πœŒπ‘˜ (𝐽)βˆ₯𝐢 𝑙 ≀ π‘π‘š πœ–βˆ’π›½π‘™ βˆ₯𝐻0 βˆ₯𝑙𝐢 4 .
Here we are using the following estimates on the derivative of composition
of functions: For 𝑓 : β„π‘š βˆ’β†’ ℝ and 𝑔 : β„π‘š βˆ’β†’ β„π‘š we have βˆ₯𝑓 ∘ 𝑔βˆ₯𝐢 𝑙 ≀
π‘π‘š,𝑙 βˆ₯𝑓 βˆ₯𝐢 𝑙 βˆ₯𝑔βˆ₯𝑙𝐢 𝑙 .
- For each multi-index βˆ£π›Όβˆ£ ≀ 3, we have that
(
)
βˆ₯βˆ‚π½ 𝛼 (1 βˆ’ πœŒπ‘˜ (𝐽))β„Žπ‘˜ (𝐽)(π‘˜ β‹… βˆ‚π½ 𝐻0 )βˆ’1 βˆ₯𝐢 0
βˆ‘
≀
βˆ₯1 βˆ’ πœŒπ‘˜ (𝐽)βˆ₯𝐢 βˆ£π›Ό1 ∣ βˆ₯β„Žπ‘˜ βˆ₯𝐢 βˆ£π›Ό2 ∣ βˆ₯(π‘˜ β‹… βˆ‚π½ 𝐻0 )βˆ’1 βˆ₯𝐢 βˆ£π›Ό3 ∣
𝛼1 +𝛼2 +𝛼3 =𝛼
≀ π‘π‘š
βˆ‘
𝛼1 +𝛼2 +𝛼3 =𝛼
βˆ£π›Ό ∣+1
πœ–βˆ’π›½(βˆ£π›Ό1 ∣+1) βˆ₯𝐻0 βˆ₯𝐢 41
βˆ£π›Ό ∣
β‹… βˆ£π‘˜βˆ£βˆ’π‘Ÿ+βˆ£π›Ό2 ∣ βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ β‹… πœ–βˆ’π›½βˆ£π›Ό3 ∣ βˆ₯𝐻0 βˆ₯𝐢 43
βˆ£π›Όβˆ£+1
≀ π‘π‘š Ξ”βˆ£π›Όβˆ£+1 βˆ£π‘˜βˆ£βˆ’π‘Ÿ+βˆ£π›Όβˆ£ βˆ₯𝐻0 βˆ₯𝐢 4 βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ .
βˆ‘
Since 𝐺(πœ‘, 𝐽) = π‘˜βˆˆβ„€π‘š (1βˆ’πœŒπ‘˜ (𝐽))β„Žπ‘˜ (𝐽)(π‘˜β‹…βˆ‚π½ 𝐻0 )βˆ’1 𝑒2πœ‹π‘–(π‘˜β‹…πœ‘) , apply Lemma 3.1,
part 2, we have that
π‘Ÿ
βˆ₯𝐺βˆ₯𝐢 𝑙 ≀ π‘π‘š πœ–βˆ’π›½(𝑙+1) βˆ₯𝐻0 βˆ₯𝑙+1
𝐢 4 βˆ₯𝐻1 βˆ₯𝐢 .
βˆ‘
- Finally since 𝑅1 = βˆ£π‘˜βˆ£β‰€πΎ πœŒπ‘˜ (𝐽)𝑒2πœ‹π‘˜β‹…πœ‘ and βˆ₯πœŒπ‘˜ β„Žπ‘˜ βˆ₯𝐢 𝑙 ≀ π‘π‘š πœ–βˆ’π›½π‘™ βˆ£π‘˜βˆ£βˆ’π‘Ÿ+𝑙 βˆ₯𝐻0 βˆ₯𝑙𝐢 4 βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ ,
we have that βˆ₯𝑅1 βˆ₯𝐢 𝑙 ≀ π‘π‘š πœ–βˆ’π›½π‘™ βˆ₯𝐻0 βˆ₯𝑙𝐢 4 βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ , assuming that π‘Ÿ β‰₯ π‘š + 𝑙 + 1.
It follows that
βˆ₯𝐹𝑑 βˆ₯𝐢 𝑙 ≀ βˆ₯𝑅1 βˆ₯𝐢 𝑙 + βˆ₯𝐹𝑑′ βˆ₯𝐢 𝑙 ≀ π‘π‘š πœ–βˆ’π›½π‘™ βˆ₯𝐻0 βˆ₯𝑙𝐢 4 βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ .
Using the above estimates, we have
βˆ‘
βˆ₯{𝐹𝑑 , 𝐺}βˆ₯𝐢 2 ≀
βˆ₯𝐹𝑑 βˆ₯𝐢 βˆ£π›Ό1 ∣ βˆ₯𝐺βˆ₯𝐢 βˆ£π›Ό2 ∣ ≀ π‘π‘š πœ–βˆ’4𝛽 βˆ₯𝐻0 βˆ₯4𝐢 4 βˆ₯𝐻1 βˆ₯2𝐢 π‘Ÿ .
βˆ£π›Ό1 +𝛼2 βˆ£β‰€3, βˆ£π›Ό1 ∣,βˆ£π›Ό2 ∣β‰₯1
∫1
It remains to estimate 0 {𝐹, 𝐺} ∘ Φ𝑑 . The following is a paraphrased Lemma 3.15
from [DH]:
Assume that βˆ₯πœ–πΊβˆ₯𝐢 3 < 1 , then there exists constants 𝐷 and 𝐷′ such that
βˆ₯Φ𝑑 βˆ₯𝐢 2 ≀ 𝐷,
βˆ₯Φ𝑑 βˆ’ 𝑖𝑑βˆ₯𝐢 2 ≀ 𝐷′ πœ–βˆ₯𝐺βˆ₯𝐢 3 ,
0 ≀ 𝑑 ≀ 1.
In particular, we get that βˆ₯Ξ¦ βˆ’ 𝑖𝑑βˆ₯𝐢 2 ≀ 𝐷′ 𝜎. Using the above estimate, we have that
1
πœ–βˆ₯{𝐹𝑑 , 𝐺} ∘ Φ𝑑 βˆ₯𝐢 2 ≀ π‘π‘š πœ–βˆ₯{𝐹𝑑 , 𝐺}βˆ₯𝐢 2 βˆ₯Φ𝑑 βˆ₯2𝐢 2 ≀ π‘π‘š 𝐷2 πœ–πœ–βˆ’4𝛽 βˆ₯𝐻0 βˆ₯4𝐢 4 βˆ₯𝐻1 βˆ₯2𝐢 π‘Ÿ ≀ 𝛿,
2
Arnold diffusion along normally hyperbolic invariant cylinders
9
where π‘π‘š 𝐷2 in the last formula will be our final choice of π‘π‘š in Condition 2. It follows
that βˆ₯𝑅2 βˆ₯𝐢 2 ≀ βˆ₯𝑅+ βˆ₯𝐢 2 + πœ–βˆ₯{𝐹𝑑 , 𝐺} ∘ Φ𝑑 βˆ₯𝐢 2 ≀ 𝛿.
β–‘
3.2. Normal form away from punctures. We will choose 𝛽 = 16 in Theorem 3.3.
Given a small 𝛿 > 0, 𝐾 = 𝐾(𝛿, 𝑛, βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ ) be such that Theorem 3.3 applies. Let
(3)
Σ𝐾 = {𝑝 ∈ Ξ“ ∩ 𝐡;
βˆƒπ‘˜π‘› , 𝑙 ∈ β„€, βˆ£π‘˜π‘› ∣, βˆ£π‘™βˆ£ ≀ 𝐾, π‘˜π‘› β‹… βˆ‚π‘π‘“ 𝐻0 (𝑝) + 𝑙 = 0}.
for sufficiently small πœ–, the set Ξ“ ∩ 𝐡 βˆ– π‘ˆ3πœ– 61 (Σ𝐾 ), (where π‘ˆπ‘Ÿ (β‹…) stands for the π‘Ÿ neighborhood of a set,) is a collection of disjoint segments. Let Ξ“0 = {(𝑝𝑠 = π‘βˆ— (𝑝𝑓 )) :
𝑝𝑓 ∈ [π‘Žβˆ’ , π‘Ž+ ]} be one of those segments. We have the following normal form in a
neighborhood of Ξ“0 .
Corollary 3.2. Assume that π‘Ÿ β‰₯ 𝑛+5, we may choose the parameters in Theorem 3.3
in the following way:
βˆ’24
βˆ’12
6
(1) πœ– ≀ πœ–0 (𝛿, 𝑛, βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ ) := min{π‘βˆ’6
π‘š βˆ₯𝐻0 βˆ₯𝐢 4 βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ , (𝛿/2) }.
1
(2) 𝐾(𝛿, 𝑛, βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ ) = (π‘πœ…π‘›+1 βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ 𝛿 βˆ’1 )βˆ’ π‘Ÿβˆ’π‘›βˆ’4 .
We then have that there exists change of coordinates Ξ¦ defined on 𝕋𝑛 × π΅ × π•‹, such
that on the set 𝕋𝑛 × π‘ˆπœ– 61 (Ξ“0 ) × π•‹
where 𝑍(πœƒπ‘  , 𝑝) =
1
𝐷′ πœ– 6 .
βˆ‘
π‘πœ– := 𝐻 ∘ Ξ¦ = 𝐻0 + πœ–π‘(πœƒπ‘  , 𝑝) + πœ–π‘…(πœƒ, 𝑝, 𝑑)
π‘˜π‘› =𝑙=0
β„Žπ‘˜,0 (𝑝)𝑒2πœ‹π‘–(π‘˜β‹…πœƒ) and βˆ₯𝑅βˆ₯𝐢 2 ≀ 32 𝛿. Furthermore βˆ₯Ξ¦ βˆ’ 𝑖𝑑βˆ₯ ≀
Proof. It is clear that by our choice of parameters Theorem 3.3 applies with the
1
additional
estimate that 𝜎 ≀ πœ– 6 . To see the special normal form, we note that 𝑅1 =
βˆ‘
2πœ‹(π‘˜β‹…πœƒ+𝑙𝑑)
. Write (π‘˜, 𝑙) = (π‘˜1 , β‹… β‹… β‹… , π‘˜π‘›1 , π‘˜π‘› , 𝑙), we note that if π‘˜π‘› = 𝑙 = 0,
βˆ£π‘˜βˆ£β‰€πΎ πœŒπ‘˜,𝑙 (𝑝)𝑒
πœŒπ‘˜,𝑙 (𝑝) = 1 for all 𝑝 ∈ π‘ˆπœ– 16 (Ξ“). On the other hand, if (π‘˜, 𝑙) = (0, π‘˜π‘› , 𝑙), we have that
1
πœŒπ‘˜,𝑙 (𝑝) = 0 for all 𝑑(𝑝, Σ𝐾 ) β‰₯ 3πœ– 6 . It follows that
βˆ‘
π‘πœ– = 𝐻0 (𝑝) + πœ–
β„Žπ‘˜,0 (𝑝)𝑒2πœ‹π‘–(π‘˜β‹…πœƒ) + πœ–π‘…2 = 𝐻0 (𝑝) + πœ–π‘ + πœ–π‘…2 + Π𝐾 𝑍.
π‘˜π‘› =𝑙=0,βˆ£π‘˜βˆ£β‰€πΎ
Since βˆ₯Π𝐾 𝑍βˆ₯𝐢 2 ≀ 12 𝛿 from the proof of Theorem 3.2, the statement is proved.
β–‘
3.3. Smooth approximation. Finally we remove the restriction on π‘Ÿ by the following smooth approximation lemma:
Lemma 3.3. Let 𝑓 : ℝ𝑛 βˆ’β†’ ℝ𝑛 be a 𝐢 π‘Ÿ function. Then there for 𝜏 > 0 there exists
an analytic function π‘†πœ 𝑓 and 𝑐 = 𝑐(π‘Ÿ) such that
βˆ₯π‘†πœ 𝑓 βˆ’ 𝑓 βˆ₯𝐢 3 < 𝑐(𝑛, π‘Ÿ)βˆ₯𝑓 βˆ₯𝐢 3 𝜏 π‘Ÿβˆ’3 ,
10
P. Bernard, V. Kaloshin, K. Zhang
β€²
βˆ₯π‘†πœ βˆ₯𝐢 π‘Ÿβ€² < 𝑐(𝑛, π‘Ÿ)βˆ₯𝑓 βˆ₯𝐢 π‘Ÿ 𝜏 βˆ’(π‘Ÿ βˆ’π‘Ÿ) ,
where π‘Ÿβ€² > π‘Ÿ.
If π‘Ÿ < 𝑛 + 5, we will using Lemma 3.3 to approximate it by a smoother function.
1
Given 𝛿 > 0, let 𝜏 = (𝛿/𝑐(π‘Ÿ)) π‘Ÿβˆ’3 , we can find 𝐻1βˆ— such that βˆ₯𝐻1βˆ— βˆ’ 𝐻1 βˆ₯𝐢 3 < 𝛿 and
π‘Ÿβˆ’π‘Ÿ β€²
π‘Ÿ β€² βˆ’3
π‘Ÿβˆ’π‘Ÿ β€²
βˆ₯𝐻1βˆ— βˆ₯𝐢 π‘Ÿβ€² ≀ 𝑐(π‘Ÿ)(𝛿/𝑐(π‘Ÿ)) π‘Ÿβˆ’3 = 𝑐(π‘Ÿ) π‘Ÿβˆ’3 𝛿 π‘Ÿβˆ’3 , using βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ = 1. Applying Corollary 3.2
to 𝐻0 + πœ–π»1βˆ— and smoothness π‘Ÿβ€² we get for suitable parameters there exists Ξ¦ such
that (𝐻0 + πœ–π»1βˆ—βˆ«βˆ«
) ∘ Ξ¦ = 𝐻0 + πœ–π‘ βˆ— + πœ–π‘…βˆ— with βˆ₯π‘…βˆ— βˆ₯𝐢 2 ≀ 32 𝛿. On one hand, we have
βˆ₯𝑍 βˆ— βˆ’π‘βˆ₯𝐢 2 = βˆ₯ (𝐻1 βˆ’π»1βˆ— )π‘‘πœƒπ‘“ 𝑑𝑑βˆ₯𝐢 2 ≀ 𝛿, on the other hand we have (𝐻0 +πœ–π»1 )∘Φ =
𝐻0 + πœ–π‘ βˆ— + πœ–π‘…1βˆ— + πœ–(𝐻1 βˆ’ 𝐻1βˆ— ) ∘ Ξ¦. Since
βˆ₯(𝐻1βˆ— βˆ’ 𝐻1 ) ∘ Ξ¦βˆ₯𝐢 2 ≀ 𝑐βˆ₯𝐻1βˆ— βˆ’ 𝐻1 βˆ₯βˆ₯Ξ¦βˆ₯2𝐢 2 ≀ 𝑐𝛿.
We conclude that π»πœ– ∘ Ξ¦ = 𝐻0 + πœ–π‘ + πœ–π‘… with 𝑅 = (𝑍 βˆ’ 𝑍 βˆ— ) + (𝐻1βˆ— βˆ’ 𝐻1 ) ∘ Ξ¦ satisfying
βˆ₯𝑅βˆ₯𝐢 2 ≀ 𝑐𝛿.
Some discussion on the choice of parameters are in order. To apply Corollary 3.2,
we will take
π‘Ÿ β€² βˆ’3
π‘Ÿβˆ’π‘Ÿ β€²
1
1
π‘Ÿ β€² βˆ’3
𝐾(𝛿, 𝑛) = (π‘πœ…π‘›+1 𝑐(𝑛, π‘Ÿ) π‘Ÿβˆ’3 𝛿 π‘Ÿβˆ’3 𝛿 βˆ’1 )βˆ’ π‘Ÿβ€² βˆ’π‘›βˆ’4 = (π‘πœ…π‘›+1 )βˆ’ π‘Ÿβ€² βˆ’π‘›βˆ’4 (𝑐(π‘Ÿ)βˆ’1 𝛿) (π‘Ÿβˆ’3)(π‘Ÿβ€² βˆ’π‘›βˆ’4) .
It is convenient to simply take π‘Ÿβ€² = 2𝑛 + 5. It is easy to see that πœ…π‘›+1 ≀ 3𝑛+1 , we
1
conclude that (π‘πœ…π‘›+1 )βˆ’ π‘Ÿβ€² βˆ’π‘›βˆ’4 is bounded by an uniform constant. Let’s still call it
β€² βˆ’3
𝑐. On the other hand π‘Ÿβ€²π‘Ÿβˆ’π‘›βˆ’4
= 2, we have that for this choice of π‘Ÿβ€² we can choose
2
𝐾(𝛿, 𝑛) = 𝑐(𝑐(π‘Ÿ)βˆ’1 𝛿) π‘Ÿβˆ’3 . The following proposition implies Theorem 3.1.
Proposition 3.4. Assume that βˆ₯𝐻1 βˆ₯𝐢 π‘Ÿ = 1, then given 𝛿 > 0, choose parameters in
the following way:
2
(1) 𝐾(𝛿, 𝑛, π‘Ÿ) = 𝑐(𝑐(𝑛, π‘Ÿ)βˆ’1 𝛿)βˆ’ π‘Ÿβˆ’3 .
12(2𝑛+5βˆ’π‘Ÿ)
π‘Ÿβˆ’3
(2) πœ–0 (𝛿, 𝑛, π‘Ÿ) = min{𝑐(𝑛, π‘Ÿ)βˆ₯𝐻0 βˆ₯βˆ’24
, 𝑐(𝛿/2)6 }, where 𝑐(𝑛, π‘Ÿ) is some con𝐢4 𝛿
stant depending on 𝑛 and π‘Ÿ.
We have the normal form on π‘ˆπœ– 16 (Ξ“0 ) is
π‘πœ– = 𝐻0 + πœ–π‘(πœƒπ‘  , 𝑝) + πœ–π‘…(πœƒ, 𝑝, 𝑑)
with βˆ₯𝑅βˆ₯𝐢 2 ≀ 𝑐𝛿 for some constant 𝑐.
4. Normally hyperbolic cylinders
Recall that by the generic condition [𝐺0], for each 𝑝𝑓 ∈ [π‘Žπ‘— βˆ’ πœ†, π‘Žπ‘—+1 + πœ†] (regular
values between 2 bifurcation points) we have that 𝑍(πœƒπ‘  , 𝑝𝑠 , 𝑝𝑓 ) has a unique maximum
at πœƒπ‘—π‘  and that βˆ’βˆ‚πœƒ2𝑠 πœƒπ‘  𝑍 β‰₯ πœ†πΌ as a quadratic form. In this section we show that for a
Arnold diffusion along normally hyperbolic invariant cylinders
11
sufficiently small 𝛿 the system in normal form π‘πœ– = 𝐻0 + πœ–π‘ + πœ–π‘… admits a normally
hyperbolic cylinder for each interval [π‘Žπ‘— βˆ’ πœ†/2, π‘Žπ‘—+1 + πœ†/2].
Theorem 4.1. For the Hamiltonian π‘πœ– = 𝐻0 (𝑝) + πœ–π‘ + πœ–π‘… such that 𝑍 satisfy
conditions [G0]-[G2], there exists 𝛿0 = 𝛿0 (πœ†) and πœ–0 = πœ–0 (𝛿, πœ†) such that if 0 < 𝛿 < 𝛿0
and 0 < πœ– < πœ–0 , there exists 𝜌1 = 𝜌1 (πœ†) and a 𝐢 1 function
(Ξ˜π‘ π‘— , 𝑃𝑗𝑠 )(πœƒπ‘“ , 𝑝𝑓 , 𝑑) : 𝕋 × π½ × π•‹ βˆ’β†’ {βˆ₯(πœƒπ‘  , 𝑝𝑠 ) βˆ’ (πœƒπ‘—π‘  , π‘π‘ βˆ— )βˆ₯ ≀ 𝜌1 }
satisfying the following estimates
( 𝑠(
( βˆ‚Ξ˜π‘— (
√
βˆ’ 52
(
(
( βˆ‚π‘π‘“ ( = 𝑂(πœ† 𝛿/ πœ–),
The set
𝑋𝑗 = {(πœƒπ‘  , 𝑝𝑠 ) = (Ξ˜π‘ π‘— , 𝑃𝑗𝑠 )(πœƒπ‘“ , 𝑝𝑓 , 𝑑));
(
(
( βˆ‚Ξ˜π‘ π‘— (
βˆ’ 52
(
(
( βˆ‚(πœƒπ‘“ , 𝑑) ( = 𝑂(πœ† 𝛿).
𝑝𝑓 ∈ [π‘Žπ‘— βˆ’ πœ†/2, π‘Žπ‘—+1 + πœ†/2], (πœƒπ‘“ , 𝑑) ∈ 𝕋 × π•‹}
is weakly invariant with respect to the Hamiltonian flow of π‘πœ– in the sense that the
flow is tangent to 𝑋. Moreover, 𝑋𝑗 is maximally invariant on 𝑉𝑗 := {(πœƒ, 𝑝, 𝑑); 𝑝𝑓 ∈
[π‘Žπ‘— βˆ’ πœ†/2, π‘Žπ‘—+1 + πœ†/2], βˆ₯(πœƒπ‘  , 𝑝𝑠 ) βˆ’ (πœƒπ‘—π‘  , π‘π‘ βˆ— )βˆ₯ ≀ 𝜌1 }in the sense that any π‘πœ– βˆ’invariant
set contained in 𝑁 must also be contained in 𝑋𝑗 .
We will fix 0 ≀ 𝑗 ≀ 𝑠 βˆ’ 1 and prove Theorem 4.1 for this particular 𝑗. Let us write
𝐽 = [π‘Žπ‘— βˆ’ πœ†/2, π‘Žπ‘—+1 + πœ†/2] and π½πœ†/2 = [π‘Žπ‘— βˆ’ πœ†, π‘Žπ‘—+1 + πœ†] and write πœƒβˆ—π‘  instead of πœƒπ‘—π‘  with
for the rest of this section. We have that βˆ’βˆ‚πœƒ2𝑠 πœƒπ‘  𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) β‰₯ πœ†πΌ for all 𝑝𝑓 ∈ π½πœ†/2 .
It is known classically that normally hyperbolic cylinders persists under small perturbation. However, the perturbation πœ–π‘… to 𝐻0 + πœ–π‘ is a singular perturbation, in
that with πœ– βˆ’β†’ 0, both the perturbation and the hyperbolicity approaches 0. Thus,
we need to do some shifts and scaling before classical theory can be applied.
4.1. Hyperbolic coordinates for the system. The estimates in this section uses
the following statements: There exists 𝐴 > 1 and 0 < πœ† < 1 such that
2
π΄βˆ’1 𝐼 ≀ βˆ‚π‘π‘
𝐻0 ≀ 𝐴𝐼,
βˆ‚πœƒ2𝑠 πœƒπ‘  𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) β‰₯ πœ†πΌ 2
as quadratic forms; βˆ₯𝑍βˆ₯𝐢 2 ≀ 1 and βˆ₯𝑅βˆ₯𝐢 2 ≀ 𝑐𝛿. To simplify notations, we will be
using the 𝑂(β‹…) notation, where 𝑓 = 𝑂(𝑔) means βˆ£π‘“ ∣ ≀ 𝐢𝑔 for a constant 𝐢 independent
of πœ†, 𝛿, 𝑛 and π‘Ÿ. In particular, we will not be keeping track of the parameter 𝐴, which
is considered fixed throughout the paper.
12
P. Bernard, V. Kaloshin, K. Zhang
The Hamiltonian flow admits the following equation of motion (with time component included)
⎧ 𝑠
πœƒΛ™ = βˆ‚π‘π‘  𝐻0 + πœ–βˆ‚π‘π‘  𝑍 + πœ–βˆ‚π‘π‘  𝑅




𝑠

βŽ¨π‘Λ™ = βˆ’πœ–βˆ‚πœƒπ‘  𝑍 βˆ’ πœ–βˆ‚πœƒπ‘  𝑅
πœƒΛ™π‘“ = βˆ‚π‘π‘“ 𝐻0 + πœ–βˆ‚π‘π‘“ 𝑍 + πœ–βˆ‚π‘π‘“ 𝑅



𝑝˙𝑓 = βˆ’πœ–βˆ‚πœƒπ‘“ 𝑅


βŽ©Λ™
𝑑=1
(4)
.
To help demonstrate the hyperbolic structure for this system, we make a series of
coordinate changes. The final coordinate system will take the form of (π‘₯, 𝑦, 𝑧), where
π‘₯ is the stable direction, 𝑦 is the unstable direction and 𝑧 is the central direction. The
hyperbolicity will be evident
√ from examining the vector field in (π‘₯, 𝑦, 𝑧) coordinates,
with a rescaled time 𝜏 = πœ–π‘‘.
The first step of the coordinate changes involves scaling and shifting of the variables; the second change of coordinates is an auxiliary rescaling; the third change of
coordinates is a linear change of coordinates in a neighborhood. After the first change
of variables we write the equations using the new time variable 𝜏 while keeping 𝑑 as
part of the phase space. Here is a brief diagram:
⎑ π‘ βŽ€
⎑ π‘ βŽ€
⎑ π‘ βŽ€
πœƒ¯
πœƒ
πœƒ¯
⎑ ⎀
⎒ 𝐼¯π‘  βŽ₯
⎒ 𝑝𝑠 βŽ₯
⎒ 𝐼¯π‘  βŽ₯
π‘₯
⎒ 𝑓βŽ₯
⎒ 𝑓βŽ₯
⎒ 𝑓βŽ₯
βŽ’πœƒ βŽ₯ βˆ’β†’ βŽ’πœƒ βŽ₯ βˆ’β†’ βŽ’πœƒπ›Ύ βŽ₯ βˆ’β†’ βŽ£π‘¦ ⎦ .
⎒ 𝑓βŽ₯
⎒ 𝑓βŽ₯
⎒ 𝑓βŽ₯
⎣𝐼 ⎦
βŽ£π‘ ⎦
⎣𝐼 ⎦
𝑧
𝑑
𝑑
𝑑
The first change of coordinates takes the following form:
πœƒ¯π‘  = πœƒπ‘  βˆ’ πœƒβˆ—π‘  ,
πœƒπ‘“ = πœƒπ‘“ ,
√
𝐼¯π‘  = (𝑝𝑠 βˆ’ π‘π‘ βˆ— )/ πœ–,
√
𝐼 𝑓 = 𝑝𝑓 / πœ–.
√
The new time variable is given by 𝜏 = πœ–π‘‘ and we use β€² to denote the derivative in 𝜏 .
With this change of coordinates the critical points of βˆ‚π‘π‘  𝐻0 and βˆ‚πœƒπ‘  𝑍 is moved to the
origin πœƒ¯π‘  = 𝐼¯π‘  = 0. The second step is an additional rescaling by πœƒπ›Ύπ‘“ = π›Ύπœƒπ‘“ , where 𝛾 is
a positive parameter to be determined later. In these coordinates the new equation
Arnold diffusion along normally hyperbolic invariant cylinders
of motion is the following:
⎀
⎑
⎑ 𝑠 βŽ€β€² ⎑
⎀
√
πœƒ¯
βˆ‚ 𝑝 𝑠 𝐻0 / πœ–
βˆ‚π‘π‘  (𝑍 + 𝑅) + βˆ‚π‘π‘“ πœƒβˆ—π‘  βˆ‚πœƒπ‘“ 𝑅
βŽ’βˆ’βˆ‚πœƒπ‘  (𝑍 + 𝑅) βˆ’ βˆ‚π‘π‘“ 𝑝𝑠 βˆ‚πœƒπ‘“ 𝑅βŽ₯
βŽ₯
⎒
⎒ 𝐼¯π‘  βŽ₯
0
⎒
βŽ₯
⎒ 𝑓βŽ₯
βŽ₯ √ ⎒
√ βˆ—
βŽ₯
⎒ πœƒπ›Ύ βŽ₯ = ⎒
βŽ₯
⎒
π›Ύβˆ‚π‘π‘“ (𝑍 + 𝑅)
π›Ύβˆ‚π‘π‘“ 𝐻0 / πœ–
⎒
βŽ₯
⎒ 𝑓βŽ₯
βŽ₯ + πœ–βŽ’
⎣
⎦
⎣
⎣𝐼 ⎦
⎦
0
βˆ‚πœƒπ‘“βˆšπ‘…
0
1/ πœ–
𝑑
:= 𝐹 (𝑀) = 𝐹1 (𝑀) +
13
√
πœ–πΉ2 (𝑀),
where 𝑀 denotes a point in the domain and 𝐹 (𝑀) denotes the vector field. Note that
the extra terms are coming from the derivatives of πœƒβˆ—π‘  and π‘π‘ βˆ— as a result of the shifting.
1
1
βˆ₯Ξ©βˆ₯, βˆ₯Ξ©βˆ’1 βˆ₯ = 𝑂(π‘šπ‘2 + π‘šπ»2 ), while sup𝑝𝑓 ∈𝐽 βˆ₯βˆ‚π‘π‘“ Ξ©βˆ₯ = 𝑂(π‘š3𝑍 π‘š3𝐻 ).
Here is an estimate on those derivatives:
Lemma 4.1.
(1) βˆ₯π‘π‘ βˆ— βˆ₯𝐢 2 = 𝑂(1), βˆ₯πœƒβˆ—π‘  βˆ₯𝐢 1 = 𝑂(πœ†βˆ’1 ) and βˆ₯πœƒβˆ—π‘  βˆ₯𝐢 2 = 𝑂(πœ†βˆ’3 ).
(2) βˆ₯𝐹2 βˆ₯𝐢 0 = 𝑂(πœ†βˆ’1 ) and βˆ₯𝐹2 βˆ₯𝐢 1 = 𝑂(πœ†βˆ’3 ).
We now describe the final change of coordinates. Let us write
[
]
0
βˆ‚π‘2𝑠 𝑝𝑠 𝐻0 (π‘βˆ— (𝑝𝑓 ))
𝑓
𝐡0 (𝑝 ) =
.
βˆ’βˆ‚πœƒ2𝑠 πœƒπ‘  𝑍(πœƒβˆ—π‘  (𝑝𝑓 ), π‘βˆ— (𝑝𝑓 ))
0
We claim that there exists a family of invertible (2𝑛 βˆ’ 2) × (2𝑛 βˆ’ 2) matrices Ξ©(𝑝𝑓 )
such that Ξ©(𝑝𝑓 )𝐡0 (𝑝𝑓 )Ξ©(𝑝𝑓 )βˆ’1 = diag{βˆ’Ξ›(𝑝𝑓 ), Ξ›(𝑝𝑓 )}. Furthermore Ξ› is a symmetric
(π‘›βˆ’1)×(π‘›βˆ’1) matrix, and there exists πœ†βˆ— > 0 such that for each 𝑝𝑓 ∈ 𝐽, Ξ›(𝑝𝑓 ) β‰₯ πœ†βˆ— 𝐼
as a quadratic form.
√
Lemma 4.2.
(1) We have that πœ†βˆ— ≀ πœ†/𝐴.
1
(2) βˆ₯Ξ©βˆ₯, βˆ₯Ξ©βˆ’1 βˆ₯ = 𝑂(πœ†βˆ’ 2 ) and βˆ₯βˆ‚π‘π‘“ Ξ©βˆ₯, βˆ₯βˆ‚π‘π‘“ Ξ©βˆ’1 βˆ₯ = 𝑂(πœ†βˆ’3 ).
Proof. Let us write 𝐢 = βˆ’βˆ‚πœƒ2𝑠 πœƒπ‘  𝑍(πœƒβˆ—π‘  (𝑝𝑓 ), π‘βˆ— (𝑝𝑓 )) and 𝐷 = βˆ‚π‘2𝑠 𝑝𝑠 𝐻0 (π‘βˆ— (𝑝𝑓 )). Let πœ†βˆ— be
the smallest eigenvalue of 𝐡0 and the eigenvector is [𝑣1 , 𝑣2 ]𝑇 . We have that 𝐢𝑣
√1 = πœ†π‘£2
βˆ’1
and 𝐷𝑣2 = πœ†π‘£1 . Using 𝐢 β‰₯ πœ†πΌ and 𝐷 β‰₯ 𝐴 𝐼 we obtain the estimate πœ†βˆ— β‰₯ πœ†/𝐴.
For the second estimate, we have that the matrix Ξ© has an explicit formula (see
[Be3])
[
]
1 𝐿 𝐿
Ξ©=
2 𝐿 βˆ’πΏ
1
( 1 1
)2
1 1
1
where 𝐿 = 𝐢 βˆ’ 2 (𝐢 2 𝐷𝐢 2 ) 2 𝐢 βˆ’ 2 . Using βˆ₯𝐢βˆ₯, βˆ₯𝐷βˆ₯ = 𝑂(1), βˆ₯𝐢 βˆ’1 βˆ₯ ≀ πœ†βˆ’1 and
1
βˆ₯π·βˆ’1 βˆ₯ = 𝑂(1), a calculation shows that βˆ₯Ξ©βˆ₯, βˆ₯Ξ©βˆ’1 βˆ₯ = 𝑂(πœ†βˆ’ 2 ).
14
P. Bernard, V. Kaloshin, K. Zhang
1
To estimate the derivative of Ξ©, we note that the function 𝑓 (𝑀 ) = 𝑀 2 is a local
diffeomorphism in a neighborhood of a strictly positive definite 𝑀 . Taking derivative
1
1
for the inverse of 𝑓 , a calculation shows that βˆ₯βˆ‚(𝑀 2 )βˆ₯ = 𝑂(βˆ₯𝑀 βˆ’ 2 βˆ₯βˆ₯βˆ‚π‘€ βˆ₯). Using
the explicit formula we have that βˆ₯βˆ‚Ξ©βˆ₯, βˆ₯βˆ‚Ξ©βˆ’1 βˆ₯ = 𝑂(πœ†βˆ’3 ).
β–‘
On the set βˆ₯πœƒ¯π‘  βˆ₯ < 12 , we define the final change of coordinates by first renaming
(πœƒπ‘“ , 𝐼 𝑓 , 𝑑) to 𝑧, and then let
[ ]
[ 𝑠]
π‘₯
πœƒ¯
= Ξ© ¯π‘  .
𝑦
𝐼
Since the new change of coordinates applies only to the first two coordinates, it
suffices to rewrite the equation for (π‘₯, 𝑦) variables only. Let 𝐹˜ (𝑀) denote the vector field writen in the (π‘₯, 𝑦, 𝑧) coordinates, let Ξ 12 be the projection to the (πœƒ¯π‘  , 𝐼¯π‘  )
components and Ξ π‘₯𝑦 the projection to the (π‘₯, 𝑦) components. We have the following:
[ ]β€²
[ 𝑠 ]β€²
[ 𝑠]
[ ]
¯
√ πœƒ¯π‘ 
π‘₯
πœƒ¯
β€² πœƒ
βˆ’3
˜
(5)
Ξ π‘₯𝑦 𝐹 (𝑀) =
= Ξ© ¯π‘  + Ξ© ¯π‘  = ΩΠ12 𝐹 (𝑀) + 𝑂(πœ†
πœ–) ¯π‘  .
𝑦
𝐼
𝐼
𝐼
The second equality follows from the estimates Ξ©β€² = βˆ‚π‘π‘“ Ξ© β‹… (𝑝𝑓 )β€² , Lemma 4.2 and
√
(𝑝𝑓 )β€² = 𝑂( πœ–).
To study how the flow acts on the tangent space, we also need to examine the
variational equation. After the first and second coordinate changes, the variational
equation is given by 𝑣 β€² = 𝐷(πœƒ¯π‘  ,𝐼¯π‘  ,πœƒπ›Ύπ‘“ ,𝐼 𝑓 ,𝑑) 𝐹 (𝑀)𝑣. We will use a context based definition
for the operator 𝐷 when no subscript is present: The derivative is assumed to be
with respect to the coordinate variables of the corresponding vector field, that is, 𝐷𝐹
means 𝐷(πœƒ¯π‘  ,𝐼¯π‘  ,πœƒπ›Ύπ‘“ ,𝐼 𝑓 ,𝑑) 𝐹 and 𝐷𝐹˜ means 𝐷(π‘₯,𝑦,𝑧) 𝐹˜ .
√
Let 𝐼 𝑠 = 𝑝𝑠 / πœ–, we compute 𝐷𝐹 by writing
βˆ‚(πœƒπ‘  , 𝐼 𝑠 , πœƒπ›Ύπ‘“ , 𝐼 𝑓 , 𝑑)
𝐷(πœƒ¯π‘  ,𝐼¯π‘  ,πœƒπ›Ύπ‘“ ,𝐼 𝑓 ,𝑑) 𝐹 = 𝐷(πœƒπ‘  ,𝐼 𝑠 ,πœƒπ›Ύπ‘“ ,𝐼 𝑓 ,𝑑) 𝐹
.
βˆ‚(πœƒ¯π‘  , 𝐼¯π‘  , πœƒπ›Ύπ‘“ , 𝐼 𝑓 , 𝑑)
The variables (πœƒπ‘  , 𝐼 𝑠 , πœƒπ›Ύπ‘“ , 𝐼 𝑓 , 𝑑) includes only the rescaling but not the shifting. More√
over, since 𝐹 = 𝐹1 + πœ–πΉ2 we focus on computing the derivative of 𝐹1 . The matrix
𝐷(πœƒπ‘  ,𝐼 𝑠 ,πœƒπ›Ύπ‘“ ,𝐼 𝑓 ,𝑑) 𝐹1 is given by
⎑
⎀
0
βˆ‚π‘2𝑠 𝑝𝑠 𝐻0
0
βˆ‚π‘2𝑓 𝑝𝑠 𝐻0
0
βŽ’βˆ’βˆ‚ 2𝑠 𝑠 𝑍 + 𝑂(𝛿)
0
𝑂(𝛾 βˆ’1 𝛿)
0
𝑂(𝛿)βŽ₯
⎒ πœƒπœƒ
βŽ₯
2
2
βŽ₯,
⎒
0
π›Ύβˆ‚
𝐻
0
π›Ύβˆ‚
𝐻
0
𝑓
𝑠
𝑓
𝑓
0
0
𝑝 𝑝
𝑝 𝑝
⎒
βŽ₯
βˆ’1
⎣
𝑂(𝛿)
0
𝑂(𝛾 𝛿)
0
𝑂(𝛿)⎦
0
0
0
0
0
Arnold diffusion along normally hyperbolic invariant cylinders
15
where we have taken advantage of the facts that βˆ₯𝑅βˆ₯𝐢 2 = 𝑂(𝛿) and βˆ₯π‘π‘ βˆ— βˆ₯𝐢 2 = 𝑂(1).
Since
⎑
⎀
𝐼
⎒
βˆ‚π‘π‘“ π‘π‘ βˆ— βŽ₯
βŽ₯
√
βˆ‚(πœƒπ‘  , 𝐼 𝑠 , πœƒπ›Ύπ‘“ , 𝐼 𝑓 , 𝑑) ⎒ 𝐼
⎒
βŽ₯ + 𝑂(πœ†βˆ’3 πœ–),
1
=⎒
βŽ₯
𝑓
βˆ‚(πœƒ¯π‘  , 𝐼¯π‘  , πœƒπ›Ύ , 𝐼 𝑓 , 𝑑) ⎣
⎦
1
1
we have that 𝐷(πœƒ¯π‘  ,𝐼¯π‘  ,πœƒπ›Ύπ‘“ ,𝐼 𝑓 ,𝑑) 𝐹1 is given by
⎑
⎀
0
βˆ‚π‘2𝑠 𝑝𝑠 𝐻0
0
0
0
βŽ’βˆ’βˆ‚πœƒ2𝑠 πœƒπ‘  𝑍 + 𝑂(𝛿)
0
𝑂(𝛿)
0
𝑂(𝛿)βŽ₯
⎒
βŽ₯
√
2
2
⎒
βŽ₯ + 𝑂(πœ†βˆ’3 πœ–).
0
π›Ύβˆ‚
𝐻
0
π›Ύβˆ‚
𝐻
0
(6)
𝑓
𝑠
𝑓
𝑓
0
0
𝑝 𝑝
𝑝 𝑝
⎒
βŽ₯
⎣
𝑂(𝛿)
0
𝑂(𝛿)
0
𝑂(𝛿)⎦
0
0
0
0
0
The calculation includes a cancellation at the first row, fourth column of the matrix.
This is due to βˆ‚π‘2𝑠 𝑝𝑠 𝐻0 βˆ‚π‘π‘“ π‘π‘ βˆ— +βˆ‚π‘2𝑠 𝑝𝑓 𝐻0 = 0 at 𝑝𝑠 = π‘π‘ βˆ— (𝑝𝑓 ), obtained from differentiating
both sides of the equation βˆ‚π‘π‘  𝐻0 (π‘π‘ βˆ— (𝑝𝑓 ), 𝑝𝑓 ) = 0.
We write the matrix in (6) in block form [𝐡1 , 𝐡2 ; 𝐡3 , 𝐡4 ] where
[
]
0
βˆ‚π‘2𝑠 𝑝𝑠 𝐻0
𝐡1 (𝑀) =
βˆ’βˆ‚πœƒ2𝑠 πœƒπ‘  𝑍 + 𝑂(𝛿)
0
and so on. We have that βˆ₯𝐡2 βˆ₯ = 𝑂(𝛿𝛾 βˆ’1 ) while βˆ₯𝐡3 βˆ₯, βˆ₯𝐡4 βˆ₯ = 𝑂(max{𝛿, 𝛾}) . We
will choose 𝛾 ≫ 𝛿, it then follows that max{βˆ₯𝐡2 βˆ₯, βˆ₯𝐡3 βˆ₯, βˆ₯𝐡4 βˆ₯} = 𝑂(𝛾).
Finally, the variational equation under the variables (π‘₯, 𝑦, 𝑧) is 𝑣 β€² = 𝐷𝐹˜ 𝑣, where
[
]
√
Ω𝐡1 Ξ©βˆ’1 Ω𝐡2
˜
𝐷𝐹 =
+ 𝑂(πœ†βˆ’4 πœ–).
βˆ’1
𝐡3 Ω
𝐡4
the remainder estimate uses the fact that βˆ₯Ξ©βˆ₯ β‹… βˆ₯Ξ©βˆ’1 βˆ₯ = 𝑂(πœ†βˆ’1 ).
4.2. Sufficient conditions for normally hyperbolic cylinder. We verify two sets
of properties for the vector field 𝐹˜ in Proposition 4.2 below. The first set of properties
implies the existence of an β€œisolating block” in the sense of Conley; the second set
of properties tells us that on the tangent space, the flow expands the π‘₯ direction,
contracts 𝑦 direction and is nearly neutral 𝑧 direction. Theorem 4.1 then follows from
an abstract result described in detail in Appendix B.
Proposition 4.2. Let π‘ˆπœŒ = {βˆ₯π‘₯βˆ₯ ≀ 𝜌, βˆ₯𝑦βˆ₯ ≀ 𝜌}. There exists positive constants 𝑐1 ,
1
𝑐2 and 𝑐3 such that for 0 < πœ– ≀ 𝑐1 πœ†βˆ’9 , 0 < 𝜌 ≀ 𝑐2 πœ† and 0 < 𝛿 < 𝑐3 πœ† 2 𝜌, the following
hold:
16
P. Bernard, V. Kaloshin, K. Zhang
(1) We have that for 𝑝𝑓 ∈ [π‘Ž1 βˆ’ πœ†/2, π‘Ž2 + πœ†/2]
βˆ™ ⟨Ππ‘₯ 𝐹˜ (𝑀), π‘₯⟩∣∣π‘₯∣=𝜌,βˆ£π‘¦βˆ£β‰€πœŒ β©½ βˆ’πœ†βˆ— 𝜌2 /2;
βˆ™ βŸ¨Ξ π‘¦ 𝐹˜ (𝑀), π‘¦βŸ©βˆ£βˆ£π‘¦βˆ£=𝜌,∣π‘₯βˆ£β‰€πœŒ β©Ύ πœ†βˆ— 𝜌2 /2,
βˆ™ βˆ₯Π𝑧 𝐹˜ βˆ₯ = 𝑂(𝛿).
(2) We write 𝐷𝐹˜ in the following block form:
⎑
𝐿π‘₯π‘₯ 𝐿π‘₯𝑦
˜
⎣
𝐷𝐹 (𝑀) = 𝐿𝑦π‘₯ 𝐿𝑦𝑦
𝐿𝑧π‘₯ 𝐿𝑧𝑦
and πœ†βˆ— defined before Lemma 4.2,
⎀
𝐿π‘₯𝑧
𝐿𝑦𝑧 ⎦ .
𝐿𝑧𝑧
For all 𝑀 ∈ π‘ˆ2𝜌 the following holds:
βˆ™ ⟨𝐿π‘₯π‘₯ (𝑀)𝑣π‘₯ , 𝑣π‘₯ ⟩ β©½ βˆ’πœ†βˆ— βˆ₯𝑣π‘₯ βˆ₯2 /2,
βˆ™ βŸ¨πΏπ‘¦π‘¦ (𝑀)𝑣𝑦 , 𝑣𝑦 ⟩ β©Ύ πœ†βˆ— βˆ₯𝑣𝑦 βˆ₯2 /2,
1
βˆ™ βˆ₯𝐿π‘₯𝑦 βˆ₯, βˆ₯𝐿𝑦π‘₯ βˆ₯ = 𝑂(πœ†βˆ’1 𝛿), βˆ₯𝐿π‘₯𝑧 βˆ₯, βˆ₯𝐿𝑦𝑧 βˆ₯ = 𝑂(πœ†βˆ’ 2 𝛾 βˆ’1 𝛿) and βˆ₯𝐿𝑧π‘₯ βˆ₯, βˆ₯𝐿𝑧𝑦 βˆ₯,
1
βˆ₯𝐿𝑧𝑧 βˆ₯ = 𝑂(πœ†βˆ’ 2 𝛾).
Proof. Given 𝑀 = (π‘₯, 𝑦, 𝑧) in the phase space, we denote 𝑀0 = (0, 0, 𝑧). Since [π‘₯, 𝑦]𝑇 =
1
Ξ©[πœƒ¯π‘  , 𝐼¯π‘  ]𝑇 , we have that for βˆ₯π‘₯βˆ₯, βˆ₯𝑦βˆ₯ ≀ 𝜌, βˆ₯(πœƒ¯π‘  , 𝐼¯π‘  )βˆ₯ = 𝑂(βˆ₯Ξ©βˆ’1 βˆ₯𝜌) = 𝑂(πœ†βˆ’ 2 𝜌). By
(5), We have:
[ ]
√ 𝐼¯π‘ 
βˆ’3
˜
Ξ π‘₯𝑦 𝐹 = ΩΠ12 𝐹1 (𝑀) + βˆ₯Ξ©βˆ₯𝑂(πœ†
πœ–) ¯π‘ 
πœƒ
[ 𝑠]
√
𝐼¯
= ΩΠ12 𝐹1 (𝑀0 ) + ΩΠ12 𝐷𝐹 (𝑀0 ) ¯π‘  + 𝑂(𝜌2 ) + 𝑂(πœ†βˆ’4 𝜌 πœ–)
πœƒ
[ ]
√
π‘₯
= Ω𝐡1 Ξ©βˆ’1 (𝑀0 )
+ 𝑂(πœ†βˆ’1 π›ΏπœŒ) + 𝑂(𝜌2 ) + 𝑂(πœ†βˆ’4 𝜌 πœ–).
𝑦
In the last equality, we used the fact that Ξ 12 𝐹1 (𝑀0 ) = 𝑂(𝛿). Since 𝐡1 (𝑀0 ) = 𝐡0 (𝑝𝑓 )+
𝑂(𝛿), it follows that for βˆ£π‘¦βˆ£ = 𝜌, ∣π‘₯∣ ≀ 𝜌:
√
βŸ¨Ξ π‘¦ 𝐹˜ , π‘¦βŸ© = βŸ¨Ξ›π‘¦, π‘¦βŸ© + 𝑂(πœ†βˆ’1 π›ΏπœŒ2 ) + 𝑂(𝜌3 ) + 𝑂(πœ†βˆ’4 𝜌2 πœ–).
1
Since πœ†βˆ— β‰₯ π΄βˆ’1 πœ†βˆ’ 2 , for sufficiently small 𝑐1 , 𝑐2 and 𝑐3 , our assumptions imply that
all the 𝑂(β‹…) terms in the last displayed formula are bounded by πœ†βˆ— 𝜌2 /2. It follows
that βŸ¨Ξ π‘¦ 𝐹˜ , π‘¦βŸ© β‰₯ πœ†βˆ— 𝜌2 /2. The inequality for π‘₯ can be proved in the same way. The
third statement follows directly from the equation of motion in the new coordinates.
For the second set of properties, let us first prove the third statement. We have
that
[
]
√
Ω𝐡1 Ξ©βˆ’1 Ω𝐡2
˜
𝐷𝐹 =
+ 𝑂(πœ†βˆ’4 πœ–).
βˆ’1
𝐡3 Ω
𝐡4
Arnold diffusion along normally hyperbolic invariant cylinders
17
Using (6), we have that βˆ₯𝐡2 βˆ₯ = 𝑂(𝛿𝛾 βˆ’1 ) while βˆ₯𝐡3 βˆ₯, βˆ₯𝐡4 βˆ₯ = 𝑂(𝛾). It follows that
1
1
βˆ₯Ω𝐡2 βˆ₯ = 𝑂(πœ†βˆ’ 2 𝛿) while βˆ₯𝐡3 Ξ©βˆ’1 βˆ₯, βˆ₯𝐡4 βˆ₯ = 𝑂(πœ†βˆ’ 2 𝛾). The estimates for βˆ₯𝐿𝑧𝑦 βˆ₯, βˆ₯𝐿𝑦𝑧 βˆ₯,
βˆ₯𝐿𝑧π‘₯ βˆ₯, βˆ₯𝐿π‘₯𝑧 βˆ₯ and βˆ₯𝐿𝑧𝑧 βˆ₯ all follows. Furthermore, we have that
Ω𝐡1 Ξ©βˆ’1 (𝑀) = Ω𝐡1 Ξ©βˆ’1 (𝑀0 ) + 𝑂(πœ†βˆ’1 𝜌) = diag{βˆ’Ξ›, Ξ›} + 𝑂(πœ†βˆ’1 𝛿) + 𝑂(πœ†βˆ’1 𝜌).
√
Since 𝐿π‘₯𝑦 and 𝐿𝑦π‘₯ are the off-diagonal block of the matrix Ω𝐡1 Ξ©βˆ’1 (𝑀) + 𝑂(πœ†βˆ’4 πœ–),
we obtain βˆ₯𝐿π‘₯𝑦 βˆ₯, βˆ₯𝐿𝑦π‘₯ βˆ₯ = 𝑂(πœ†βˆ’1 𝛿). This implies the third statement. We now turn
to the first two statements of the list. We have that
(
√ )
πœ†βˆ—
βŸ¨πΏπ‘¦π‘¦ 𝑣𝑦 , 𝑣𝑦 ⟩ = βŸ¨Ξ›π‘£π‘¦ , 𝑣𝑦 ⟩ + 𝑂(πœ†βˆ’1 𝛿) + 𝑂(πœ†βˆ’1 𝜌) + 𝑂(πœ†βˆ’4 πœ–) βˆ₯𝑣𝑦 βˆ₯2 β‰₯ βˆ₯𝑣𝑦 βˆ₯2 .
2
The calculation for ⟨𝐿π‘₯π‘₯ 𝑣π‘₯ , 𝑣π‘₯ ⟩ is the same.
β–‘
Proposition 4.3. There exists positive constants 𝑐1 , 𝑐2 , 𝑐3 , 𝑐4 (may be different
constants from those of Proposition 4.2) such that for 0 < πœ– ≀ 𝑐1 πœ†9 , 0 < 𝛿 ≀ 𝑐3 πœ†2 ,
𝜌 = 𝑐2 πœ† and 𝛾 = 𝑐4 πœ† the following hold.
There exists a normally hyperbolic cylinder
√
(π‘₯, 𝑦) = (𝑋, π‘Œ )(πœƒπ›Ύπ‘“ , 𝐼 𝑓 , 𝑑), 𝐼 𝑓 ∈ 𝐽/ πœ–, πœƒ¯π‘“ ∈ 𝛾𝕋, 𝑑 ∈ 𝕋
contained in βˆ₯π‘₯βˆ₯, βˆ₯𝑦βˆ₯ ≀ 𝜌 with βˆ₯βˆ‚(πœƒπ›Ύπ‘“ ,𝐼 𝑓 ,𝑑) (𝑋, π‘Œ )βˆ₯ = 𝑂(𝛿 βˆ’2 𝛿).
Proof. We will show that Proposition B.3 applies. We note that in our coordinate
system, π‘₯ is the stable direction, 𝑦 is the unstable direction, while 𝑧 = (πœƒπ›Ύπ‘“ , 𝐼 𝑓 , 𝑑) is
the central direction. To apply Proposition B.3, we lift the (πœƒπ›Ύπ‘“ , 𝑑) directions to the
√
universal cover, hence the domain for the central variables becomes Ω𝑐 = ℝ×𝐽/ πœ–×ℝ.
We also need to extend the domain to an π‘Ÿ neighborhood of Ω𝑐 while keeping all
the estimates, this is√no restriction, as the isolation block conditions hold on 𝐼 𝑓 ∈
[π‘Ž1 βˆ’ πœ†/2, π‘Ž2 + πœ†/2]/ πœ–, we may simply choose π‘Ÿ = 1 in Proposition B.3.
1
By Proposition 4.2, we have that in the notations of Proposition B.3, π‘š = 𝑂(πœ†βˆ’ 2 𝛾 βˆ’1 𝛿),
1
𝑀 = 𝑂(πœ†βˆ’ 2 𝛾) and πœ†. Proposition B.3 applies if
πœ‡=
π‘š
1
<√ .
πœ†βˆ— /2 βˆ’ 2(π‘š + 𝑀 )
2
Using our assumptions, for sufficiently small 𝑐1 , 𝑐2 , 𝑐3 and 𝑐4 we can make sure
3
that 2(π‘š + 𝑀 ) < πœ†βˆ— /4 and π‘š = 𝑂(πœ†βˆ’ 2 𝛿). For sufficently small 𝑐3 we have that
3
βˆ’2
√1
πœ‡ = 𝑂(πœ†βˆ’ 2 π›Ώπœ†βˆ’1
β–‘
βˆ— ) = 𝑂(πœ† 𝛿) < 2 .
Let πœ–, 𝛿, πœ† be such that the assumptions of Proposition 4.3 applies and let (Ξ˜π‘  , 𝑃 𝑠 )
be the function (𝑋, π‘Œ ) written in the original variables. Assume in addition that
18
P. Bernard, V. Kaloshin, K. Zhang
πœ– ≀ 𝛿, we have that
(
( (
(
(
(
( βˆ‚(𝑋, π‘Œ ) (
( βˆ‚(Ξ˜π‘  , 𝐼 𝑠 ) ( ( 𝑑Ω (
√
βˆ’ 52
βˆ’ 25
( (
(
(
(
(
( βˆ‚πΌ 𝑓 ( ≀ ( 𝑑𝐼 𝑓 ( βˆ₯(𝑋, π‘Œ )βˆ₯ + βˆ₯Ξ©βˆ₯ ( βˆ‚πΌ 𝑠 ( = 𝑂( πœ–πœŒ) + 𝑂(πœ† 𝛿) = 𝑂(πœ† 𝛿)
and
(
(
(
(
(
(
( βˆ‚(Ξ˜π‘  , 𝐼 𝑠 ) (
( = βˆ₯Ξ©βˆ₯ ( βˆ‚(𝑋, π‘Œ ) ( = 𝑂(πœ†βˆ’ 52 𝛿).
(
( βˆ‚(πœƒπ‘“ , 𝑑) (
( βˆ‚(πœƒπ‘“ , 𝑑) (
√
Since 𝐼 𝑓 = 𝑝𝑓 / πœ–, we conclude that:
( 𝑠(
( π‘‘Ξ˜ (
√
(
( = 𝑂(πœ†βˆ’ 52 𝛿/ πœ–)
( 𝑑𝑝𝑓 (
This concludes the proof of Theorem 4.1.
(
(
( π‘‘Ξ˜π‘  (
βˆ’ 52
(
(
( 𝑑(πœƒπ‘“ , 𝑑) ( = 𝑂(πœ† 𝛿).
5. Localization and Mather’s projected graph theorem
We study the normal form system π‘πœ– = 𝐻0 + πœ–π‘ + πœ–π‘… on the neighborhood of
the set {𝑝 = π‘βˆ— (𝑝𝑓 ), 𝑝𝑓 ∈ [π‘Žβˆ’ , π‘Ž+ ] βŠ‚ [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ]}. We assume that 𝑍 satisfies the
generic conditions βˆͺ
[G0]-[G2] and that βˆ₯𝑅βˆ₯𝐢 2 ≀ 𝛿. Recall that there exists a partition
𝑓
of [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ] = π‘ βˆ’1
𝑗=1 [π‘Žπ‘— , π‘Žπ‘—+1 ], such that for 𝑝 ∈ [π‘Žπ‘— βˆ’ πœ†, π‘Žπ‘—+1 + πœ†] the function
𝑍(πœƒπ‘  , 𝑝𝑠 , 𝑝𝑓 ) as a nondegenerate local maximum at πœƒπ‘—π‘  . It is clear that we can restrict
βˆͺ
this partition to [π‘Žβˆ’ , π‘Ž+ ]. We abuse notation and still write [π‘Žβˆ’ , π‘Ž+ ] = π‘ βˆ’1
𝑗=1 [π‘Žπ‘— , π‘Žπ‘—+1 ].
We first point out the following consequences of the genericity conditions [G0]-[G2]:
there exists 0 < 𝑏 < πœ†/4 depending on 𝐻1 such that
[G1’]
𝑍(πœƒπ‘—π‘  (𝑝𝑓 ), π‘βˆ— (𝑝𝑓 )) βˆ’ 𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) β‰₯ 𝑏βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑝𝑓 )βˆ₯,
for each 𝑝𝑓 ∈ [π‘Žπ‘— + 𝑏, π‘Žπ‘—+1 βˆ’ 𝑏].
[G2’] For 𝑝𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏], 𝑗 = 0, β‹… β‹… β‹… , 𝑠 βˆ’ 2, we have
𝑠
max{𝑍(πœƒπ‘—π‘  , π‘βˆ— (𝑝𝑓 )), 𝑍(πœƒπ‘—+1
, π‘βˆ— (𝑝𝑓 ))} βˆ’ 𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 ))
𝑠
β‰₯ 𝑏 min{βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯, βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—+1
βˆ₯}2 .
In the first case, the function 𝑍 has a single non-degenerate maximum, which we
will call the β€œsingle peak” case, while the second case will be called the β€œdouble peak”
case. The shape of the function 𝑍 allows us to localize the Aubry set and ManΜƒe set
of the Hamiltonian π‘πœ– .
According to Theorem 4.1, for each [π‘Žπ‘— βˆ’ πœ†/2, π‘Žπ‘—+1 + πœ†/2] there exists
𝑋𝑗 = {(πœƒπ‘  , 𝑝𝑠 ) = (Ξ˜π‘ π‘— , 𝑃𝑗𝑠 )(πœƒπ‘“ , 𝑝𝑓 , 𝑑));
πœ†
πœ†
𝑝𝑓 ∈ [π‘Žπ‘— βˆ’ , π‘Žπ‘—+1 + ], (πœƒπ‘“ , 𝑑) ∈ 𝕋 × π•‹},
2
2
Arnold diffusion along normally hyperbolic invariant cylinders
19
which are maximally invariant set on 𝑁𝑗 := {(πœƒ, 𝑝, 𝑑); 𝑝𝑓 ∈ [π‘Žπ‘— βˆ’ πœ†2 , π‘Žπ‘—+1 + πœ†2 ], βˆ₯(πœƒπ‘  , 𝑝𝑠 )βˆ’
(πœƒπ‘—π‘  , π‘π‘ βˆ— )βˆ₯ ≀ 𝜌1 }.
These information allows us to study the Mather set, Aubry set and Mañe set of
the Hamiltonian π‘πœ– .
Theorem 5.1 (Localization). For π‘πœ– = 𝐻0 +πœ–π‘ +πœ–π‘… such that 𝑍 satisfies [G0]-[G2],
then there exists πœ–0 , 𝛿0 and 0 < 𝜌2 < 𝜌1 such that for 0 < πœ– < πœ–0 and 0 < 𝛿 < 𝛿0 the
following hold.
(1) For any 𝑐 = (π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ) such that 𝑐𝑓 ∈ [π‘Žπ‘— + 𝑏, π‘Žπ‘—+1 βˆ’ 𝑏], π’©Λœ (𝑐) is contained in
√
{(πœƒ, 𝑝, 𝑑), βˆ₯𝑝 βˆ’ 𝑐βˆ₯ ≀ 6𝐴 π‘›πœ–, βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑝𝑓 )βˆ₯ ≀ 𝜌2 }.
(2) For 𝑐 = (π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ) such that 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏], we have that π’œΛœπ‘πœ– (𝑐) is
contained in
√
𝑠
{(πœƒ, 𝑝, 𝑑), βˆ₯𝑝 βˆ’ 𝑐βˆ₯ ≀ 6𝐴 π‘›πœ–, min{βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑝𝑓 )βˆ₯, βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—+1
(𝑝𝑓 )βˆ₯} ≀ 𝜌2 }.
Apply the statements of the previous theorem with Theorem 4.1, we may further
localize these sets on the normally hyperbolic cylinders. Moreover, locally these sets
are graphs over the πœƒπ‘“ component, which is a version of Mather’s projected graph
theorem.
Theorem 5.2 (Mather’s projected graph theorem). For any π‘πœ– such that 𝑍 satisfies
[G0]-[G2], there exists 𝛿0 and πœ–0 depending on 𝑏, 𝑛 and π‘Ÿ such that for 𝛿 ≀ 𝛿0 and
πœ– < πœ–0 we have:
(1) There exists 0 < 𝜌2 < 𝜌1 such that for for 𝑐 = (π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ) with 𝑐𝑓 ∈ (π‘Žπ‘— +
𝑏, π‘Žπ‘—+1 βˆ’ 𝑏) the ManΜƒe set π’©Λœπ‘ is contained in the normally hyperbolic cylinder
𝑋𝑗 .
Moreover, let πœ‹πœƒπ‘“ be the projection to the πœƒπ‘“ component, we have that πœ‹πœƒπ‘“ βˆ£π’œΛœπ‘
is one-to-one and the inverse is Lipshitz.
(2) For 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏], we have that π’œπ‘ βŠ‚ 𝑋𝑗 βˆͺ 𝑋𝑗+1 .
πœ‹πœƒπ‘“ βˆ£π’œΛœπ‘ ∩ 𝑋𝑗 and πœ‹πœƒπ‘“ βˆ£π’œΛœπ‘ ∩ 𝑋𝑗+1 are both one-to-one and have Lipshitz inverses.
For the rest of this section, we will derive various estimates of quantities and set
arising from Mather theory. We deduce Theorem 5.1 and Theorem 5.2 from these
estimates.
5.1. Vertical estimates. We derive estimates on the Mather sets of a general Hamiltonian 𝐻(𝑑, πœƒ, 𝑝), depending on πœ–, under the assumptions that
𝐼/𝐴 β©½ βˆ‚π‘π‘ 𝐻 β©½ 𝐴𝐼
20
P. Bernard, V. Kaloshin, K. Zhang
in the sense of quadratic forms, and
βˆ₯βˆ‚πœƒ 𝐻βˆ₯𝐢 1 β©½ 2πœ–.
Note that both Hamiltonians π»πœ– and π‘πœ– satisfy these assumptions. The main result
in this section is:
Proposition 5.3. We assume that πœ– β©½ 1. For each cohomology 𝑐 ∈ ℝ𝑛 and each
√
Weak KAM solution 𝑒 of π»πœ– at cohomology 𝑐, the√set ℐ̃(𝑒, 𝑐) is contained in a 36𝐴 πœ–Lipshitz graph, and in the domain βˆ₯𝑝 βˆ’ 𝑐βˆ₯ β©½ 6𝐴 π‘›πœ–.
It is useful to use the Lagrangian 𝐿(𝑑, πœƒ, 𝑣) associated to 𝐻. Recalling the expressions
(
)βˆ’1
βˆ‚π‘£π‘£ 𝐿(𝑑, πœƒ, 𝑣) = βˆ‚π‘π‘ 𝐻(𝑑, πœƒ, βˆ‚π‘£ 𝐿(𝑑, πœƒ, 𝑣) ,
(
)
βˆ‚πœƒπ‘£ 𝐿(𝑑, πœƒ, 𝑣) = βˆ’βˆ‚πœƒπ‘ 𝐻 𝑑, πœƒ, βˆ‚π‘£ 𝐿(𝑑, πœƒ, 𝑣) βˆ‚π‘£π‘£ 𝐿(𝑑, πœƒ, 𝑣)
and
(
)
βˆ‚πœƒπœƒ 𝐿(𝑑, πœƒ, 𝑣) = βˆ’βˆ‚πœƒπœƒ 𝐻(𝑑, πœƒ, βˆ‚π‘£ 𝐿(𝑑, πœƒ, 𝑣)) βˆ’ βˆ‚πœƒπ‘ 𝐻 𝑑, πœƒ, βˆ‚π‘£ 𝐿(𝑑, πœƒ, 𝑣) βˆ‚πœƒπ‘£ 𝐿(𝑑, πœƒ, 𝑣),
we obtain the estimates
βˆ₯βˆ‚π‘£π‘£ 𝐿βˆ₯𝐢 0 β©½ 𝐴,
βˆ₯βˆ‚πœƒπ‘£ 𝐿βˆ₯𝐢 0 β©½ 2π΄πœ–,
βˆ₯βˆ‚πœƒπœƒ 𝐿βˆ₯𝐢 0 β©½ 3πœ–
when πœ– < πœ–0 (𝐴).
We recall the concept of semi-concave function on 𝕋𝑛 . A function 𝑒 : 𝕋𝑛 βˆ’β†’ ℝ is
called 𝐾-semi-concave if the function
π‘₯ ?βˆ’β†’ 𝑒(π‘₯) βˆ’ 𝐾βˆ₯π‘₯βˆ₯2 /2
is concave on ℝ𝑛 , where 𝑒 is seen as a periodic function on ℝ𝑛 . It is equivalent
to require that, for each πœƒ ∈ 𝕋𝑛 , there exists a linear form 𝑙 on ℝ𝑛 such that the
inequality
𝑒(πœƒ + 𝑦) β©½ 𝑒(πœƒ) + 𝑙 β‹… 𝑦 + 𝐾βˆ₯𝑦βˆ₯2 /2
holds for each 𝑦 ∈ ℝ𝑛 . The following Lemma is a simple case of Lemma A.10 in [Be1]:
√
Lemma 5.1. If 𝑒 : 𝕋𝑛 βˆ’β†’ ℝ is 𝐾-semi-concave, then it is (𝐾 𝑛)-Lipshitz.
Proof. For each π‘₯ ∈ 𝕋𝑛 , there exists 𝑙π‘₯ ∈ ℝ𝑛 such that
𝑒(π‘₯ + 𝑦) β©½ 𝑒(π‘₯) + 𝑙π‘₯ β‹… 𝑦 + 𝐾βˆ₯𝑦βˆ₯2
for all 𝑦 ∈ ℝ𝑛 . By applying this inequality with 𝑦 = (±1, 0, 0, β‹… β‹… β‹… , 0), we conclude
that the first component (𝑙π‘₯ )1 of 𝑙π‘₯ satisfies ∣(𝑙π‘₯ )1 ∣ β©½ 𝐾. Similar√estimates hold for
the other components
of 𝑙π‘₯ , and we conclude that that βˆ₯𝑙π‘₯ βˆ₯ β©½ 𝐾 𝑛 for each π‘₯, and
√
thus that 𝑒 is 𝐾 𝑛-Lipshitz.
β–‘
We will need the following regularity result of Fathi:
Arnold diffusion along normally hyperbolic invariant cylinders
21
Lemma 5.2. Let 𝑒 and 𝑣 be 𝐾-semiconcave functions, and let ℐ βŠ‚ 𝕋𝑛 be the set of
points where the sum 𝑒 + 𝑣 is minimal. Then the functions 𝑒 and 𝑣 are differentiable
at each point of ℐ, and the differential π‘₯ ?βˆ’β†’ 𝑑𝑒(π‘₯) is 6𝐾-Lipshitz on ℐ.
Let us recall that the Weak KAM solutions of cohomology 𝑐 are defined as fixed
points of the operator 𝒯𝑐 : 𝐢(𝕋𝑛 ) βˆ’β†’ 𝐢(𝕋𝑛 ) defined by
∫ 1
𝒯𝑐 (𝑒)(πœƒ) := min 𝑒(𝛾(0)) +
𝐿(𝑑, 𝛾(𝑑), 𝛾(𝑑))
Λ™
+ 𝑐 β‹… 𝛾(𝑑)𝑑𝑑,
Λ™
𝛾
0
where the minimum is taken on the set of 𝐢 1 curves 𝛾 : [0, 1] βˆ’β†’ 𝕋𝑛 satisfying the
final condition 𝛾(𝑇 ) = πœƒ.
Proposition
5.4. For each√ 𝑐 ∈ ℝ𝑛 , each Weak KAM solution 𝑒 of 𝐿 + 𝑐 β‹… 𝑣 is
√
6𝐴 πœ–-semi-concave and 6𝐴 π‘›πœ–-Lipshitz.
Proof. For each 𝑇 ∈ β„• and πœƒ ∈ 𝕋𝑛 , we have
∫ 𝑇
𝑒(πœƒ) = min 𝑒(𝛾(0)) +
𝐿(𝑑, 𝛾(𝑑), 𝛾(𝑑))
Λ™
+ 𝑐 β‹… 𝛾(𝑑)𝑑𝑑,
Λ™
𝛾
0
where the minimum is taken on the set of 𝐢 1 curves 𝛾 : [0, 𝑇 ] βˆ’β†’ 𝕋𝑛 satisfying the
final condition 𝛾(𝑇 ) = πœƒ. Let Θ(𝑑) be an optimal curve in that expression, meaning
that Θ(𝑑) = πœƒ and that
∫ 𝑇
𝑒(πœƒ) = 𝑒(Θ(0)) +
𝐿(𝑑, Θ(𝑑), Ξ˜Μ‡(𝑑))𝑑𝑑.
0
We lift Θ (and the point πœƒ = Θ(𝑇 )) to a curve in ℝ𝑛 without changing its name, and
consider, for each π‘₯ ∈ ℝ𝑛 , the curve
Θπ‘₯ (𝑑) := Θ(𝑑) + 𝑑π‘₯/𝑇,
so that Θπ‘₯ (𝑇 ) = πœƒ + π‘₯. We have the inequality
∫ 𝑇
𝑒(πœƒ + π‘₯) βˆ’ 𝑒(πœƒ) β©½
𝐿(𝑑, Θπ‘₯ (𝑑), Ξ˜Μ‡π‘₯ (𝑑)) βˆ’ 𝐿(𝑑, Θ(𝑑), Ξ˜Μ‡(𝑑)) + 𝑐 β‹… π‘₯/𝑇 𝑑𝑑.
0
The integrand can be estimated as follows:
𝐿(𝑑, Θπ‘₯ (𝑑), Ξ˜Μ‡π‘₯ (𝑑)) β©½ 𝐿(𝑑, Θ(𝑑), Ξ˜Μ‡(𝑑))
(7)
+ βˆ‚πœƒ 𝐿(𝑑, Θ(𝑑), Ξ˜Μ‡(𝑑)) β‹… 𝑑π‘₯/𝑇 + βˆ‚π‘£ 𝐿(𝑑, Θ(𝑑), Ξ˜Μ‡(𝑑)) β‹… π‘₯/𝑇
+ 3πœ–βˆ£π‘‘π‘₯/𝑇 ∣2 + 2π΄πœ–π‘‘βˆ£π‘₯/𝑇 ∣2 + 𝐴∣π‘₯/𝑇 ∣2 /2
Integrating, and using the Euler-Lagrange equation, we conclude that
𝑒(πœƒ + π‘₯) βˆ’ 𝑒(πœƒ) β©½ (𝑐 + βˆ‚π‘£ 𝐿(𝑇, Θ(𝑇 ), Ξ˜Μ‡(𝑇 )) β‹… π‘₯ + (πœ–π‘‡ + πœ– + 1/2𝑇 )𝐴∣π‘₯∣2
22
P. Bernard, V. Kaloshin, K. Zhang
√
√
for each 𝑇 ∈ β„•. Taking 𝑇 ∈ [1/2 πœ–, 1/ πœ–] (this interval contains an integer since
πœ– β©½ 1), we obtain
√
𝑒(πœƒ + π‘₯) βˆ’ 𝑒(πœƒ) β©½ (𝑐 + βˆ‚π‘£ 𝐿(𝑇, Θ(𝑇 ), Ξ˜Μ‡(𝑇 )) β‹… π‘₯ + 3𝐴 πœ–βˆ£π‘₯∣2 .
This ends the proof of the semi-concavity. The Lipshitz constant can then be obtained
from Lemma 5.1.
β–‘
Let 𝑒 be a weak KAM solution, and let 𝑒ˇ be the conjugated dual weak KAM
solution. Then the set ℐ̃(𝑒, 𝑐) can be characterized as follows: Its projection ℐ(𝑒, 𝑐)
on 𝕋𝑛 is the set where 𝑒 = 𝑒ˇ, and
ℐ̃(𝑒, 𝑐) = {(π‘₯, 𝑐 + 𝑑𝑒(π‘₯)), π‘₯ ∈ ℐ(𝑒, 𝑐)}.
Since βˆ’Λ‡
𝑒 is semi-concave, it is a consequence of Lemma 5.2 that the differential 𝑑𝑒(π‘₯)
exists√for π‘₯ ∈ ℐ(𝑒, 𝑐). Moreover, we can prove exactly as in Proposition 5.4 that √
βˆ’Λ˜
𝑒
is 6𝐴 πœ–-semi-concave. Lemma 5.2 then implies that the map π‘₯ ?βˆ’β†’ 𝑑𝑒(π‘₯) is 36𝐴√ πœ–Lipschitz on ℐ(𝑒, 𝑐). Moreover, 𝑑𝑒(π‘₯) is bounded by the Lipschitz constant 6𝐴 π‘›πœ–
of 𝑒. This ends the proof of Proposition 5.3
β–‘
5.2. Horizontal localization. For πœƒπ‘  ∈ π•‹π‘›βˆ’1 and π‘Ÿ > 0, let 𝐷(πœƒ, π‘Ÿ) denote the
closed Euclidean ball centered at πœƒπ‘  with radius π‘Ÿ.
Proposition 5.5. Let π‘πœ– = 𝐻0 + πœ–π‘ + πœ–π‘… with 𝑍 satisfying [𝐺0] βˆ’ [𝐺2], then there
exists πœ… > 0 depending only on 𝐴, 𝑏 and 𝑛, πœ–0 > 0 depending only on 𝐴 and 𝛿 such
that for each πœ– ∈]0, πœ–0 [ and 𝑐 ∈ Ξ“(πœ–) we have the following results on the projected
Mañe set and the Aubry set.
(1) If 𝑐 = (π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘— + 𝑏, π‘Žπ‘—+1 βˆ’ 𝑏], then for each weak KAM solution
𝑒 of π‘πœ– at cohomology 𝑐 we have that
(
)
1
𝑠 𝑓
4
ℐ(𝑒, 𝑐) βŠ‚ 𝐷 πœƒπ‘— (𝑐 ), πœ…π›Ώ × π•‹,
as a consequence, we have
(
)
1
π’©π‘πœ– (𝑐) βŠ‚ 𝐷 πœƒπ‘—π‘  (𝑐𝑓 ), πœ…π›Ώ 4 × π•‹.
(2) If 𝑐 = (π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏], then
( (
)
) ( (
)
)
1
1
𝑠
π’œπ‘πœ– (𝑐) βŠ‚ 𝐷 πœƒπ‘—π‘  (𝑐𝑓 ), πœ…π›Ώ 4 × π•‹ βˆͺ 𝐷 πœƒπ‘—+1
(𝑐𝑓 ), πœ…π›Ώ 4 × π•‹ .
The Lagrangian 𝑁 βˆ— (𝑑, πœƒ, 𝑣) associated to π‘πœ– will play a central role in the proof.
We write it
𝑁 βˆ— (𝑑, πœƒ, 𝑣) = 𝐿0 (𝑣) + πœ–π‘(πœƒπ‘  , βˆ‚π‘£ 𝐿0 (𝑣)) + πœ–πΏ2 (𝑑, πœƒ, 𝑣, πœ–),
where 𝐿0 is the Legendre dual of 𝐻0 . We have
2𝐼/𝐴 β©½ βˆ‚π‘£π‘£ 𝐿0 β©½ 𝐴𝐼/2
Arnold diffusion along normally hyperbolic invariant cylinders
23
in the sense of quadratic forms.
Lemma 5.3. We have the estimate
inf 𝐻2 β©½ 𝐿2 (𝑑, πœƒ, 𝑣) β©½ π΄πœ– + sup 𝐻2 .
Proof. Let us first consider the truncated Hamiltonian
˜ πœƒ, 𝑝) = 𝐻0 (𝑝) + πœ–π‘(πœƒπ‘  , 𝑝)
𝐻(𝑑,
˜ 𝑠 , 𝑣). We claim that
and the associated Lagrangian 𝐿(πœƒ
˜ 𝑠 , 𝑣) β©½ 𝐿0 (𝑣) βˆ’ πœ–π‘(πœƒπ‘  , βˆ‚πΏ0 (𝑣)) + πœ– .
𝐿0 (𝑣) βˆ’ πœ–π‘(πœƒπ‘  , βˆ‚πΏ0 (𝑣)) β©½ 𝐿(πœƒ
8πœ…
In order to prove the left inequality, we write
˜ 𝑠 , 𝑣) = sup[𝑝 β‹… 𝑣 βˆ’ 𝐻0 (𝑝) βˆ’ πœ–π‘(πœƒπ‘  , 𝑝)]
𝐿(πœƒ
(8)
𝑝
β©Ύ βˆ‚πΏ0 (𝑣) β‹… 𝑣 βˆ’ 𝐻0 (βˆ‚πΏ0 (𝑣)) βˆ’ πœ–π‘(πœƒπ‘  , βˆ‚πΏ0 (𝑣))
β©Ύ 𝐿0 (𝑣) βˆ’ πœ–π‘(πœƒπ‘  , βˆ‚πΏ0 (𝑣)).
The right inequality follows from the following computation:
˜ 𝑠 , 𝑣) = sup[𝑝 β‹… 𝑣 βˆ’ 𝐻0 (𝑝) βˆ’ πœ–π‘(πœƒπ‘  , 𝑝)]
𝐿(πœƒ
𝑝
[
β©½ sup 𝑝 β‹… 𝑣 βˆ’ 𝐻0 (βˆ‚πΏ0 (𝑣)) βˆ’ 𝑣 β‹… (𝑝 βˆ’ βˆ‚πΏ0 (𝑣)) βˆ’ βˆ₯𝑝 βˆ’ βˆ‚πΏ0 (𝑣)βˆ₯2 /𝐴
𝑝
]
βˆ’ πœ–π‘(πœƒπ‘  , βˆ‚πΏ0 (𝑣)) + πœ–βˆ₯𝑝 βˆ’ βˆ‚πΏ0 (𝑣)βˆ₯
[
β©½ sup 𝑣 β‹… βˆ‚πΏ0 (𝑣) βˆ’ 𝐻0 (βˆ‚πΏ0 (𝑣)) βˆ’ πœ–π‘(πœƒπ‘  , βˆ‚πΏ0 (𝑣))
𝑝
]
+ πœ–βˆ₯𝑝 βˆ’ βˆ‚πΏ0 (𝑣)βˆ₯ βˆ’ βˆ₯𝑝 βˆ’ βˆ‚πΏ0 (𝑣)βˆ₯2 /𝐴
β©½ 𝐿0 (𝑣) βˆ’ πœ–π‘(πœƒπ‘  , βˆ‚πΏ0 (𝑣)) + sup[πœ–π‘¦ βˆ’ 𝑦 2 /𝐴)]
𝑦⩾0
β©½ 𝐿0 (𝑣) βˆ’ πœ–π‘(πœƒ , βˆ‚πΏ0 (𝑣)) + π΄πœ–2 .
𝑠
˜ we observe that
Now we have estimated 𝐿,
˜ πœƒ, 𝑝) βˆ’ πœ– sup 𝐻2 β©½ π‘πœ– (𝑑, πœƒ, 𝑝) β©½ 𝐻(𝑑,
˜ πœƒ, 𝑝) βˆ’ πœ– inf 𝐻2
𝐻(𝑑,
from which follows that
˜ πœƒ, 𝑣) + πœ– inf 𝐻2 β©½ 𝐿(𝑑, πœƒ, 𝑣) β©½ 𝐿(𝑑,
˜ πœƒ, 𝑣) + πœ– sup 𝐻2 ,
𝐿(𝑑,
which implies the desired estimates in view of (8).
Let us now estimate the 𝛼 function of π‘πœ– :
β–‘
24
P. Bernard, V. Kaloshin, K. Zhang
Proposition 5.6. The 𝛼 function of Mather is estimated at the points 𝑐 ∈ Ξ“ in the
following way:
𝐻0 (𝑐) + πœ–π‘(πœƒπ‘  (𝑐), 𝑐) βˆ’ πœ– max𝑛+1 𝐿2 (𝑑, πœƒ, βˆ‚π»0 (𝑐)) β©½ 𝛼(𝑐) β©½
(𝑑,πœƒ)βˆˆπ•‹
β©½ 𝐻0 (𝑐) + πœ–π‘(πœƒπ‘  (𝑐), 𝑐) βˆ’ πœ–
min
(𝑑,πœƒ)βˆˆπ•‹π‘›+1
𝐻2 (𝑑, πœƒ, 𝑐)
thus
𝐻0 (𝑐) + πœ–π‘(πœƒπ‘  (𝑐), 𝑐) βˆ’ πœ–βˆ₯𝐻2 βˆ₯𝐢 0 βˆ’ π΄πœ–2 β©½ 𝛼(𝑐) β©½ 𝐻0 (𝑐) + πœ–π‘(πœƒπ‘  (𝑐), 𝑐) + πœ–βˆ₯𝐻2 βˆ₯𝐢 0
Proof. We have
𝛼(𝑐) β©½ max 𝐻(𝑑, πœƒ, 𝑐) β©½ 𝐻0 (𝑐) + πœ– max
𝑍(πœƒπ‘  , 𝑐) βˆ’ πœ–
𝑠
(𝑑,πœƒ)
πœƒ
min
(𝑑,πœƒ)βˆˆπ•‹π‘›+1
𝐻2 (𝑑, πœƒ, 𝑐)
which is the desired right hand side. On the other hand, let us set πœ” = βˆ‚π»0 (𝑐) ∈ ℝ𝑛
and observe that 𝑐 = βˆ‚πΏ0 (πœ”). We can consider the Haar measure πœ‡ of the torus
𝕋 × π•‹ × {Ξ˜π‘“ (𝑐)} × {πœ”}, this measure is not necessarily invariant but it is closed. We
thus have
∫
∫
βˆ—
𝑓
𝛼(𝑐) β©Ύ 𝑐 β‹… πœ” βˆ’ 𝑁 π‘‘πœ‡ = 𝑐 β‹… πœ” βˆ’ 𝐿0 (πœ”) + πœ–π‘(Θ (𝑐), 𝑐) βˆ’ πœ– 𝐿2 π‘‘πœ‡
β©Ύ 𝐻0 (𝑐) + πœ–π‘(Ξ˜π‘“ (𝑐), 𝑐) βˆ’ πœ– max𝑛+1 𝐿2 (𝑑, πœƒ, πœ”)
(𝑑,πœƒ)βˆˆπ•‹
β–‘
Lemma 5.4. For each 𝑐 ∈ Ξ“, have the estimates
(9)
(10)
𝑁 βˆ— (𝑑, πœƒ, 𝑣) βˆ’ 𝑐 β‹… 𝑣 + 𝛼(𝑐) β©Ύ βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯2 /(2𝐴) βˆ’ πœ–π‘Λ†π‘ (πœƒπ‘  ) βˆ’ πœ–πœ‚
𝑁 βˆ— (𝑑, πœƒ, 𝑣) βˆ’ 𝑐 β‹… 𝑣 + 𝛼(𝑐) β©½ 𝐴βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯2 /2 βˆ’ πœ–π‘Λ†π‘ (πœƒπ‘  ) + πœ–πœ‚
where 𝑍ˆ𝑐 (πœƒπ‘  ) = 𝑍(πœƒπ‘  , 𝑐) βˆ’ maxπœƒπ‘  𝑍(πœƒπ‘  , 𝑐) and
πœ‚ = 2βˆ₯𝐻2 βˆ₯𝐢 0 + (2𝐴 + 𝐴3 )πœ–.
Arnold diffusion along normally hyperbolic invariant cylinders
25
Proof. It is a direct computation:
𝑁 βˆ— (𝑑, πœƒ, 𝑣)βˆ’π‘ β‹… 𝑣 + 𝛼(𝑐) β©½
β©½ 𝐿0 (𝑣) βˆ’ 𝑐 β‹… 𝑣 + 𝐻0 (𝑐) βˆ’ πœ–π‘(πœƒπ‘  , βˆ‚π‘£ 𝐿0 (𝑣))
+ πœ– max
𝑍(πœƒπ‘  , 𝑐) + π΄πœ–2 + πœ– sup 𝐻2 βˆ’ πœ– min 𝐻2 (𝑑, πœƒ, 𝑐)
𝑠
πœƒ
β©½ 𝐴βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯2 /4 βˆ’ πœ–π‘Λ†π‘ (πœƒπ‘  ) + πœ–βˆ₯βˆ‚πΏ0 (𝑣) βˆ’ 𝑐βˆ₯ + π΄πœ–2 + 2πœ–βˆ₯𝐻2 βˆ₯𝐢 0
β©½ 𝐴βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯2 /4 βˆ’ πœ–π‘Λ†π‘ (πœƒπ‘  ) + π΄πœ–βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯ + π΄πœ–2 + 2πœ–βˆ₯𝐻2 βˆ₯𝐢 0
β©½ 𝐴βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯2 /2 βˆ’ πœ–π‘Λ†π‘ (πœƒπ‘  ) + 2π΄πœ–2 + 2πœ–βˆ₯𝐻2 βˆ₯𝐢 0
𝑁 βˆ— (𝑑, πœƒ, 𝑣)βˆ’π‘ β‹… 𝑣 + 𝛼(𝑐) β©Ύ 𝐿0 (𝑣) βˆ’ 𝑐 β‹… 𝑣 + 𝐻0 (𝑐) βˆ’ πœ–π‘(πœƒπ‘  , βˆ‚π‘£ 𝐿0 (𝑣))
+ max
𝑍(πœƒπ‘  , 𝑐) βˆ’ 2πœ–βˆ₯𝐻2 βˆ₯𝐢 0 βˆ’ π΄πœ–2
𝑠
πœƒ
β©Ύ βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯2 /𝐴 βˆ’ πœ–π‘Λ†π‘ (πœƒπ‘  ) βˆ’ πœ–βˆ₯βˆ‚πΏ0 (𝑣) βˆ’ 𝑐βˆ₯ βˆ’ 2πœ–βˆ₯𝐻2 βˆ₯𝐢 0 βˆ’ π΄πœ–2
β©Ύ βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯2 /𝐴 βˆ’ πœ–π‘Λ†π‘ (πœƒπ‘  ) βˆ’ π΄πœ–βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯ βˆ’ 2πœ–βˆ₯𝐻2 βˆ₯𝐢 0 βˆ’ π΄πœ–2
β©Ύ βˆ₯𝑣 βˆ’ βˆ‚π»0 (𝑐)βˆ₯2 /(2𝐴) βˆ’ πœ–π‘Λ†π‘ (πœƒπ‘  ) βˆ’ π΄πœ–2 βˆ’ 𝐴3 πœ–2 βˆ’ 2πœ–βˆ₯𝐻2 βˆ₯𝐢 0
𝑠
We can now estimate the oscillation of a weak KAM solution near πœƒπ‘—π‘  and πœƒπ‘—+1
.
β–‘
Lemma 5.5. Let 𝑒(𝑑, πœƒ) be a weak KAM solution at cohomology 𝑐.
(1) If 𝑐 = (π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘— + 𝑏, π‘Žπ‘—+1 βˆ’ 𝑏], then for any (𝑑1 , πœƒ1 ), (𝑑2 , πœƒ2 ) ∈
𝕋 × π·(πœƒπ‘—π‘  (𝑐𝑓 )) × π•‹
√
𝑒(𝑑2 , πœƒ2 ) βˆ’ 𝑒(𝑑1 , πœƒ1 ) ≀ 4π‘Ÿ1 π‘›π΄πœ–
√
where π‘Ÿ1 = 4πœ‚/𝑏.
(2) If 𝑐 = (π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’π‘, π‘Žπ‘—+1 +𝑏], then for either (𝑑1 , πœƒ1 ), (𝑑2 , πœƒ2 ) ∈
𝑠
𝕋 × π·(πœƒπ‘—π‘  (𝑐𝑓 )) × π•‹ or (𝑑1 , πœƒ1 ), (𝑑2 , πœƒ2 ) ∈ 𝕋 × π·(πœƒπ‘—+1
(𝑐𝑓 )) × π•‹,
√
𝑒(𝑑2 , πœƒ2 ) βˆ’ 𝑒(𝑑1 , πœƒ1 ) ≀ 4π‘Ÿ1 π‘›π΄πœ–.
Proof. Using βˆ₯𝑍βˆ₯𝐢 2 ≀ 1, we have that
1
𝑍ˆ𝑐 (πœƒπ‘  ) β©Ύ βˆ’ βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑐𝑓 )βˆ₯2 .
2
We take two points (𝑑𝑖 , πœƒπ‘– ), 𝑖 = 1 or 2 in this domain, and consider the curve
πœƒ(𝑑) = πœƒ1 + (𝑑 βˆ’ π‘‘Λœ1 )
πœƒΛœ2 βˆ’ πœƒΛœ1 + [(𝑇 + π‘‘Λœ2 βˆ’ π‘‘Λœ1 )βˆ‚π»0 (𝑐)]
π‘‘Λœ2 βˆ’ π‘‘Λœ1 + 𝑇
26
P. Bernard, V. Kaloshin, K. Zhang
where 𝑇 ∈ β„• is a parameter to be fixed later, and where π‘‘Λœπ‘– ∈ [0, 1[ and πœƒΛœπ‘– ∈ [0, 1[𝑛
are representatives of the angular variables 𝑑𝑖 , πœƒπ‘– , and [πœ”] ∈ ℀𝑛 is the component-wise
integral part of πœ”. Note that πœƒ(π‘‘Λœ1 ) = πœƒ1 and πœƒ(π‘‘Λœ2 + 𝑇 ) = πœƒ2 , hence
∫ π‘‘Λœ2 +𝑇
Λ™
Λ™ + 𝛼(𝑐)𝑑𝑑
𝑒(𝑑2 , πœƒ2 ) βˆ’ 𝑒(𝑑1 , πœƒ1 ) β©½
𝐿(𝑑, πœƒ(𝑑), πœƒ(𝑑))
βˆ’ 𝑐 β‹… πœƒ(𝑑)
β©½
β©½
∫
∫
∫
π‘‘Λœ1
π‘‘Λœ2 +𝑇
π‘‘Λœ1
π‘‘Λœ2 +𝑇
π‘‘Λœ1
π‘‘Λœ2 +𝑇
𝐴βˆ₯πœƒΛ™ βˆ’ βˆ‚π»0 (𝑐)βˆ₯2 /2 + πœ–π‘Λ†π‘ (πœƒπ‘  (𝑑)) + πœ–πœ‚π‘‘π‘‘
2𝐴𝑛
+ πœ–π‘Ÿ12 /2 + πœ–πœ‚π‘‘π‘‘
2
˜
˜
(𝑇 + 𝑑2 βˆ’ 𝑑1 )
2𝐴𝑛
+ πœ–π‘Ÿ12 𝑑𝑑
2
˜
˜
(𝑇 + 𝑑2 βˆ’ 𝑑1 )
π‘‘Λœ1
2𝐴𝑛
β©½
+ (𝑇 + π‘‘Λœ2 βˆ’ π‘‘Λœ1 )πœ–π‘Ÿ12 .
˜
˜
(𝑇 + 𝑑2 βˆ’ 𝑑1 )
β©½
This inequality holds for all 𝑇 ∈ β„•, in particular, we can choose 𝑇 ∈ β„• so that
√
√
𝑛𝐴
𝑛𝐴
β©½ 𝑇 + π‘‘Λœ2 βˆ’ π‘‘Λœ1 β©½ 2
2
πœ–π‘Ÿ1
πœ–π‘Ÿ12
and obtain
√
𝑒(𝑑2 , πœƒ2 ) βˆ’ 𝑒(𝑑1 , πœƒ1 ) β©½ 4π‘Ÿ1 π‘›π΄πœ–.
β–‘
Up to now, we used that βˆ₯𝑍βˆ₯𝐢 2 β©½ 1, but we used no information on the shape of
𝑍. Now we use properties [G1’] and [G2’] to prove Proposition 5.5.
5.2.1. The single peak case. This concerns the first statement of Proposition 5.5,
where
𝑐 = π‘βˆ— (𝑐𝑓 ), 𝑐𝑓 ∈ [π‘Žπ‘— + 𝑏, π‘Žπ‘—+1 βˆ’ 𝑏].
By [G1’] the function 𝑍(πœƒπ‘  , 𝑐) as a single peak at πœƒπ‘—π‘  , as a consequence
𝑍ˆ𝑐 (πœƒπ‘  ) ≀ βˆ’π‘βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑐𝑓 )βˆ₯2 .
Let πœƒ(𝑑) : ℝ βˆ’β†’ π•‹π‘š be a curve calibrated by 𝑒. Then the function
Λ™
Λ™ + 𝛼(𝑐)
𝑑 ?βˆ’β†’ 𝐿(𝑑, πœƒ(𝑑), πœƒ(𝑑))
βˆ’ 𝑐 β‹… πœƒ(𝑑)
is integrable. Since
𝐿(𝑑, πœƒ, 𝑣) β©Ύ βˆ’πœ–π‘Λ†π‘ (πœƒπ‘  ) βˆ’ πœ–πœ‚ β©Ύ πœ–π‘π‘Ÿ12 βˆ’ πœ–πœ‚ β©Ύ πœ–π‘π‘Ÿ12 /4
Arnold diffusion along normally hyperbolic invariant cylinders
27
if πœƒπ‘  does not belong to 𝐷(πœƒπ‘—π‘  , π‘Ÿ1 ), we conclude that the set of times 𝑑 for which πœƒπ‘  (𝑑)
does not belong to 𝐷𝑐 (π‘Ÿ1 ) has finite measure, and is an open set. Let ]𝑑1 , 𝑑2 [ be a
connected component of this open set of times. Then πœƒπ‘  (𝑑1 ) and πœƒπ‘  (𝑑2 ) belong to
𝐷(πœƒπ‘—π‘  , π‘Ÿ1 ) hence
∫ 𝑑2
√
Λ™
Λ™ + 𝛼(𝑐)𝑑𝑑 = 𝑒(𝑑2 , πœƒ(𝑑2 )) βˆ’ 𝑒(𝑑1 , πœƒ(𝑑1 )) β©½ 4π‘Ÿ1 π‘›π΄πœ–.
𝐿(𝑑, πœƒ(𝑑), πœƒ(𝑑))
βˆ’ 𝑐 β‹… πœƒ(𝑑)
𝑑1
Now let π‘Ÿ0 be the maximum of the distance βˆ₯πœƒπ‘  (𝑑) βˆ’ Ξ˜π‘  (𝑐)βˆ₯, assume that π‘Ÿ0 β©Ύ 2π‘Ÿ1 .
Let 𝑑4 be the smallest solution of the equation βˆ₯πœƒπ‘  (𝑑) βˆ’ Ξ˜π‘  (𝑐)βˆ₯ = π‘Ÿ0 in ]𝑑1 , 𝑑2 [, and let
𝑑3 < 𝑑1 be the greatest solution of the equation βˆ₯πœƒπ‘  (𝑑) βˆ’ Ξ˜π‘  (𝑐)βˆ₯ = π‘Ÿ0 /2 in [𝑑1 , 𝑑4 ]. Note
that
∫ 𝑑4
√
Λ™
Λ™ + 𝛼(𝑐)𝑑𝑑 β©½ 4π‘Ÿ1 π‘›π΄πœ–
𝐿(𝑑, πœƒ(𝑑), πœƒ(𝑑))
βˆ’ 𝑐 β‹… πœƒ(𝑑)
𝑑3
because the integrand is positive on ]𝑑1 , 𝑑2 [. We conclude that
∫ 𝑑4
√
βˆ₯πœƒΛ™π‘  (𝑑)βˆ₯2 /(2𝐴) + πœ–π‘π‘Ÿ02 βˆ’ πœ–πœ‚π‘‘π‘‘ β©½ 4π‘Ÿ1 π‘›π΄πœ–,
𝑑3
and, using the Cauchy-Schwartz inequality, that
(11)
(∫ 𝑑 4
)2
∫ 𝑑4
1
πœ–π‘π‘Ÿ02
𝑠
2
2
𝑠
βˆ₯πœƒΛ™ (𝑑)βˆ₯ /(2𝐴) + πœ–π‘π‘Ÿ0 βˆ’ πœ–πœ‚π‘‘π‘‘ β©Ύ
βˆ₯πœƒΛ™ (𝑑)βˆ₯𝑑𝑑 +
(𝑑4 βˆ’ 𝑑3 )
2𝐴(𝑑4 βˆ’ 𝑑3 )
2
𝑑3
𝑑3
√
π‘Ÿ02
πœ–π‘π‘Ÿ02
π‘Ÿ02 π‘πœ–
β©Ύ
+
(𝑑4 βˆ’ 𝑑3 ) β©Ύ √ .
2𝐴(𝑑4 βˆ’ 𝑑3 )
2
2 𝐴
Finally, we obtain
√
√
π‘Ÿ02 π‘πœ–
√ β©½ 4π‘Ÿ1 π‘›π΄πœ–.
2 𝐴
or equivalently
√
√
8𝐴 2𝑛 √
2
π‘Ÿ0 β©½ π‘Ÿ1 8𝐴 𝑛/𝑏 =
πœ‚.
𝑏
5.2.2. Double peak case. We now turn to the case of
𝑐 = π‘βˆ— (𝑐𝑓 ),
𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏],
where the function 𝑍(πœƒπ‘  , 𝑐) has two potential maxima. It follows from [G2’] that
(
)2
𝑠
𝑍ˆ𝑐 (πœƒπ‘  ) ≀ βˆ’π‘ min{βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯, βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—+1
βˆ₯} .
𝑠
Let πœƒ0 = (πœƒ0𝑠 , πœƒ0𝑓 ) ∈ π’œπ‘πœ– (𝑐) be where the function (of πœƒ) min{βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯, βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—+1
βˆ₯}
achieves its maximum. This is possible since π’œπ‘πœ– (𝑐) is a compact set. Since β„Ž(πœƒ0 , πœƒ0 ) =
28
P. Bernard, V. Kaloshin, K. Zhang
0, there exists an increasing sequence of integers π‘›π‘˜ and absolutely continuous curves
πœƒπ‘˜ : ℝ βˆ’β†’ 𝕋𝑛 satisfying πœƒπ‘˜ (0) = πœƒ0 and πœƒπ‘˜ (𝑑 + π‘›π‘˜ ) = π›Ύπ‘˜ (𝑑), and
∫ π‘›π‘˜
lim
𝐿(𝑑, πœƒπ‘˜ (𝑑), πœƒΛ™π‘˜ (𝑑)) βˆ’ 𝑐 β‹… πœƒπ‘˜ (𝑑) + 𝛼(𝑐)𝑑𝑑 = 0.
π‘˜βˆ’β†’βˆž
0
𝑠
/ 𝐷(πœƒπ‘—π‘  , π‘Ÿ1 )βˆͺ𝐷(πœƒπ‘—+1
, π‘Ÿ1 ), we conclude
Similar to the first case, 𝐿(𝑑, πœƒ, 𝑣) β©Ύ πœ–π‘π‘Ÿ12 /4 for πœƒπ‘  ∈
𝑠
𝑠
that for sufficiently large π‘˜, πœƒπ‘˜ (ℝ) must intersect 𝐷(πœƒπ‘— , π‘Ÿ1 ) βˆͺ 𝐷(πœƒπ‘—+1 , π‘Ÿ1 ). Without loss
of generality, we may assume that it intersect 𝐷(πœƒπ‘—π‘  , π‘Ÿ1 ).
Let 𝑑1 = min{𝑑1 < 0, πœƒπ‘˜ (𝑑1 ) ∈ 𝐷(πœƒπ‘—π‘  , π‘Ÿ1 )} and 𝑑2 = min{0 < 𝑑2 , πœƒπ‘˜ (𝑑2 ) ∈ 𝐷(πœƒπ‘—π‘  , π‘Ÿ1 )}.
We first study the action of πœƒπ‘˜ on the interval [0, 𝑑2 ]. If πœƒπ‘˜ ([0, 𝑑2 ]) does not intersect
𝑠
𝐷(πœƒπ‘—+1
, π‘Ÿ1 ), write 𝑑3 = 𝑑4 = 𝑑2 , otherwise, Write 𝑑3 = min{0 < 𝑑3 ≀ 𝑑2 , 𝛾(𝑑3 ) ∈
𝑠
𝑠
𝐷(πœƒπ‘—+1
, π‘Ÿ1 )} and 𝑑4 = max{𝑑3 ≀ 𝑑4 ≀ 𝑑2 , 𝛾(𝑑4 ) ∈ 𝐷(πœƒπ‘—+1
, π‘Ÿ1 )}.
𝑠
We still use π‘Ÿ0 to denote the maximal distance min{βˆ₯πœƒ0𝑠 βˆ’ πœƒπ‘—π‘  βˆ₯, βˆ₯πœƒ0𝑠 βˆ’ πœƒπ‘—+1
βˆ₯}, assume
that π‘Ÿ0 β‰₯ 2𝑏1 . Let 𝑑5 ∈ [0, 𝑑3 ] be the smallest solution in [0, 𝑑3 ] such that 𝑑(πœƒπ‘  (𝑑5 )) =
π‘Ÿ0 /2, then by the same calculation as in (11),
√
∫ 𝑑5
2
π‘πœ–
π‘Ÿ
0
𝐿(𝑑, πœƒπ‘˜ (𝑑), πœƒΛ™π‘˜ (𝑑)) βˆ’ 𝑐 β‹… πœƒΛ™π‘˜ (𝑑) + 𝛼(𝑐)𝑑𝑑 β©Ύ √ .
2 𝐴
0
Furthermore for any weak KAM solution 𝑒(πœƒ, 𝑑)
∫ 𝑑4
√
𝐿 βˆ’ 𝑐 β‹… πœƒΛ™π‘˜ (𝑑) + 𝛼(𝑐)𝑑𝑑 β©Ύ 𝑒(𝑑4 , πœƒπ‘˜ (𝑑4 )) βˆ’ 𝑒(𝑑3 , πœƒπ‘˜ (𝑑3 )) β‰₯ βˆ’4π‘Ÿ1 π‘›π΄πœ–,
𝑑3
while the integrand is nonnegative on both [𝑑5 , 𝑑3 ] and [𝑑4 , 𝑑2 ]. We conclude that
√
∫ 𝑑2
2
√
π‘Ÿ
πœ–
0
𝐿 βˆ’ 𝑐 β‹… πœƒΛ™π‘˜ (𝑑) + 𝛼(𝑐)𝑑𝑑 β©Ύ √ βˆ’ 4π‘Ÿ1 π‘›π΄πœ–.
2 𝐴
0
The same estimate can be made for the action on the interval [𝑑1 , 0]. In addition
∫ π‘›π‘˜ +𝑑1
√
𝐿 βˆ’ 𝑐 β‹… πœƒΛ™π‘˜ (𝑑) + 𝛼(𝑐)𝑑𝑑 β©Ύ 𝑒(π‘›π‘˜ + 𝑑1 , πœƒπ‘˜ (π‘›π‘˜ + 𝑑1 )) βˆ’ 𝑒(𝑑2 , πœƒπ‘˜ (𝑑2 )) β‰₯ βˆ’4π‘Ÿ1 π‘›π΄πœ–,
𝑑2
note that 𝑑2 < π‘›π‘˜ + 𝑑1 and that πœƒπ‘˜ is π‘›π‘˜ periodic.
Finally we conclude that
√
∫ π‘›π‘˜ +𝑑1
2
√
π‘Ÿ
π‘πœ–
𝐿 βˆ’ 𝑐 β‹… πœƒΛ™π‘˜ + 𝛼(𝑐)𝑑𝑑 β©Ύ 0√ βˆ’ 12𝑏1 π‘›π΄πœ–.
2 𝐴
𝑑1
Let π‘˜ βˆ’β†’ ∞, the integral on the left hand side approaches 0. We obtain
√
√
π‘Ÿ02 π‘πœ–
√ β©½ 12𝑏1 π‘›π΄πœ–
2 𝐴
Arnold diffusion along normally hyperbolic invariant cylinders
and
π‘Ÿ02
√
24𝐴 𝑛 √
πœ‚.
≀
𝑏
29
√
√
We choose πœ–0 sufficiently small such that πœ‚ ≀ 2βˆ₯𝐻0 βˆ₯𝐢0 , choose πœ… = 48π΄πœ† 2𝑛 and
verify that we have proved the statements of Proposition 5.5 in both cases.
β–‘
Before moving on we point out that the estimates in the double peak case indeed
implies that the curves πœƒπ‘˜ , which are not calibrated, can be localized in the limit of
π‘˜ βˆ’β†’ ∞. We state it in the following lemma for future use.
Lemma 5.6. For the double peak case, i.e. 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏],
consider any πœƒ0 ∈ π’œπ‘πœ– (𝑐), let π‘›π‘˜ be an increasing sequence of integers, πœƒπ‘˜ = (πœƒπ‘˜π‘  , πœƒπ‘˜π‘“ ) :
ℝ βˆ’β†’ 𝑀 be a sequence of π‘›π‘˜ βˆ’periodic absolute continuous curves such that 𝛾(0) = πœƒ0
and
∫ π‘›π‘˜
lim
𝐿(𝑑, πœƒπ‘˜ , πœƒΛ™π‘˜ ) βˆ’ 𝑐 β‹… πœƒΛ™π‘˜ + 𝛼(𝑐)𝑑𝑑 = 0,
π‘˜βˆ’β†’βˆž
0
then there exists 𝐾 ∈ β„• such that for all π‘˜ > 𝐾
1
𝑠
max min{βˆ₯πœƒπ‘˜π‘  (𝑑) βˆ’ πœƒπ‘—π‘  βˆ₯, βˆ₯πœƒπ‘˜π‘  (𝑑) βˆ’ πœƒπ‘—+1
βˆ₯} < 2πœ…π›Ώ 4 .
π‘‘βˆˆβ„
𝑠
Proof. Fix a curve πœƒπ‘˜ , write 𝑑(πœƒπ‘˜ (𝑑)) = min{βˆ₯πœƒπ‘˜π‘  (𝑑) βˆ’ πœƒπ‘—π‘  βˆ₯, βˆ₯πœƒπ‘˜π‘  (𝑑) βˆ’ πœƒπ‘—+1
βˆ₯}. Let 𝜏 be
where the maximum of 𝑑(πœƒπ‘˜ (𝑑)) is reached. Consider the shifted curve πœƒπ‘˜β€² (𝑑) = πœƒπ‘˜ (π‘‘βˆ’πœ ),
the arguments in section 5.2.2 go through with πœƒπ‘˜ replaced with πœƒπ‘˜β€² and π‘Ÿ0 replaced
by max 𝑑(πœƒπ‘˜ (𝑑)). We have that
1
lim max 𝑑(πœƒπ‘˜ (𝑑)) ≀ πœ…π›Ώ 4
π‘˜βˆ’β†’βˆž π‘‘βˆˆβ„
and the lemma follows.
β–‘
5.3. Proof of Theorem 5.1. Proposition 5.3 provides the vertical part of the lo1
calization, while Proposition 5.5 provides the horizontal localization, with 𝜌2 = πœ…π›Ώ 4 .
Clearly we can choose 𝛿0 small enough such that 𝜌2 < 𝜌1 .
β–‘
5.4. Proof of Theorem 5.2. For the first case, where 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘— +
𝑏, π‘Žπ‘—+1 βˆ’π‘]. For a sufficiently small choice of πœ–0 , Theorem 5.1 implies that π’©π‘πœ– (𝑐) βŠ‚ 𝑉𝑗 ,
where 𝑉𝑗 = {(πœƒ, 𝑝, 𝑑); 𝑝𝑓 ∈ [π‘Žπ‘— βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏], βˆ₯(πœƒπ‘  , 𝑝𝑠 ) βˆ’ (πœƒπ‘—π‘  , π‘π‘ βˆ— )βˆ₯ ≀ 𝜌1 } was defined in
Theorem 4.1. Since 𝑉𝑗 is maximally invariant and that π’©π‘πœ– (𝑐) is an invariant set, we
conclude that π’©π‘πœ– (𝑐) βŠ‚ 𝑋𝑗 .
For the second case, where 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏], we can similarly
claim that π’œπ‘πœ– (𝑐) βŠ‚ 𝑉𝑗 βˆͺ 𝑉𝑗+1 , moreover π’œπ‘πœ– (𝑐) ∩ 𝑉𝑗 and π’œπ‘πœ– (𝑐) ∩ 𝑉𝑗+1 must both be
invariant, and hence π’œπ‘πœ– (𝑐) ∩ 𝑉𝑗 βŠ‚ 𝑋𝑗 and π’œπ‘πœ– (𝑐) ∩ 𝑉𝑗+1 βŠ‚ 𝑋𝑗+1 .
30
P. Bernard, V. Kaloshin, K. Zhang
In order to prove the projection part of Theorem 5.2, let us consider a Weak KAM
solution 𝑒 of π‘πœ– at cohomology 𝑐. Let (𝑑𝑖 , πœƒπ‘– , 𝑝𝑖 ), 𝑖 = 1, 2 be two points in ℐ̃(𝑒, 𝑐). We
shall denote by the same symbol πœ… various different constants which are independent
of 𝛿 and πœ–. By Proposition 5.3, we have
√
√
βˆ₯𝑝2 βˆ’ 𝑝1 βˆ₯ β©½ 36𝐴 πœ–βˆ₯πœƒ2 βˆ’ πœƒ1 βˆ₯ β©½ 36𝐴 πœ–(βˆ₯πœƒ2𝑓 βˆ’ πœƒ1𝑓 βˆ₯ + βˆ₯πœƒ2𝑠 βˆ’ πœƒ1𝑠 βˆ₯).
Assume that these two points belong to one of the NHICs 𝑋𝑗 , we also have
√
βˆ₯πœƒ2𝑠 βˆ’ πœƒ1𝑠 βˆ₯ β©½ (πœ…π›Ώ/ πœ–)(βˆ₯πœƒ2𝑓 βˆ’ πœƒ1𝑓 βˆ₯ + βˆ₯𝑝2 βˆ’ 𝑝1 βˆ₯).
We get
√
βˆ₯𝑝2 βˆ’ 𝑝1 βˆ₯ β©½ πœ… πœ–βˆ₯πœƒ2𝑓 βˆ’ πœƒ1𝑓 βˆ₯ + πœ…π›Ώβˆ₯𝑝2 βˆ’ 𝑝1 βˆ₯
thus, if 𝛿 is small enough,
√
βˆ₯𝑝2 βˆ’ 𝑝1 βˆ₯ β©½ πœ… πœ–βˆ₯πœƒ2𝑓 βˆ’ πœƒ1𝑓 βˆ₯
and then
√
βˆ₯πœƒ2𝑠 βˆ’ πœƒ1𝑠 βˆ₯ β©½ (πœ…π›Ώ/ πœ–)βˆ₯πœƒ2𝑓 βˆ’ πœƒ1𝑓 βˆ₯.
We have proved that the restriction to ℐ̃(𝑒, 𝑐) of the coordinate map πœƒπ‘“ has a Lipschitz
inverse.
Note that the ManΜƒe set π’©Λœπ‘πœ– (𝑐), as well as the components of the Aubry set π’œΛœπ‘πœ– (𝑐)∩
˜ 𝑐), since we have just proved that
𝑉𝑗 and π’œΛœπ‘πœ– (𝑐)βˆ©π‘‰π‘—+1 are both contained in some 𝐼(𝑒,
𝑓
they belong to NHIC, their projection to the πœƒ component has a Lipshitz inverse. β–‘
6. Variational Construction
More detailed information on these sets can be obtained, if we are allowed to make
an additional perturbation to avoid degenerate situations.
Theorem 6.1. Let π‘πœ– = 𝐻0 +πœ–π‘ +πœ–π‘… be such that 𝑍 satisfy the genericity conditions
[G0]-[G2] and that the parameters πœ– and 𝛿 is such that Theorem ?? applies. Then
there exists arbitrarily small 𝐢 π‘Ÿ perturbation πœ–π‘…β€² of πœ–π‘…, such that the following hold
for π‘πœ–β€² = 𝐻0 + πœ–π‘ + πœ–π‘…β€² :
βˆͺ
(1) There exists a partition of [π‘Žβˆ’ , π‘Ž+ ] into π‘™βˆ’1
π‘Žπ‘— , π‘Ž
¯π‘—+1 ], which is a refinement
𝑗=0 [¯
of the partition {[π‘Žπ‘– , π‘Žπ‘–+1 ]}. Each [¯
π‘Žπ‘— , π‘Ž
¯π‘—+1 ] still corresponds to an invariant
cylinder 𝑋𝑗 . We have that for 𝑐𝑓 ∈ (¯
π‘Žπ‘— , π‘Ž
¯π‘—+1 ), the Aubry set π’œΛœπ‘πœ–β€² (𝑐) is con𝑓
˜
tained in 𝑋𝑗 ; for 𝑐 = π‘Ž
¯π‘—+1 , π’œπ‘πœ–β€² (𝑐) has nonempty component in both 𝑋𝑗 and
𝑋𝑗+1 , if 𝑋𝑗 βˆ•= 𝑋𝑗+1 .
(2) The sets π’œΛœπ‘πœ–β€² (𝑐) ∩ 𝑋𝑗 , when nonempty, contains a unique minimal invariant
probability measure. In particular, this implies that π’œΛœπ‘πœ–β€² (𝑐) = π’©Λœπ‘πœ–β€² (𝑐) for 𝑐𝑓 βˆ•=
π‘Ž
¯π‘— for any 𝑗.
Arnold diffusion along normally hyperbolic invariant cylinders
31
(3) An immediate consequence of part (2) is the following dichotomy, for 𝑐𝑓 βˆ•= π‘Ž
¯π‘— ,
𝑗 = 1, β‹… β‹… β‹… , 𝑙, one of the two holds.
(a) π’œπ‘ = 𝒩𝑐 and πœ‹πœƒπ‘“ π’œπ‘ = 𝕋. In this case, π’œπ‘ is an invariant circle.
(b) πœ‹πœƒπ‘“ 𝒩𝑐 ⊊ 𝕋.
Using the information obtained from the normal form system π‘πœ– , we now return to
the original Hamiltonian π»πœ– . Using the symplectic invariance of the Mather, Aubry
and Mañe set developed in [Be2], we have that the same conclusion as in Theorem 5.2
and Theorem 6.1 can be drawn about π»πœ– .
Theorem 6.2. Let π»πœ– = 𝐻0 + πœ–π»1 such that the resonant component of 𝐻1 satisfy
conditions [G0]-[G2]. There exists πœ–0 > 0 and an interval [π‘Žβˆ’ , π‘Ž+ ] βŠ‚ [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ]
depending only on 𝐻0 and 𝐻1 , and for each 0 < πœ– < πœ–0 there exists arbitrarily small
𝐢 π‘Ÿ perturbation π»πœ–β€² of π»πœ– , such that the conclusions of Theorem 5.2 and Theorem 6.1
holds for the Hamiltonian π»πœ–β€² at cohomologies 𝑐 = π‘βˆ— (𝑐𝑓 ), where 𝑐𝑓 ∈ [π‘Žβˆ’ , π‘Ž+ ].
These information on the ManΜƒé set allow to use the variational mechanism of [Be1].
Let us denote by Ξ“(πœ–) the set of cohomology classes 𝑐 ∈ Ξ“ such that 𝑐𝑓 ∈ [π‘Žβˆ’ , π‘Ž+ ]. We
would like to prove that each cohomology 𝑐 ∈ Ξ“(πœ–) is in the interior of its forcing class
in the terminology of [Be1], which implies that all the cohomology classes in Ξ“(πœ–) are
contained in a single forcing class. By proposition 5.3 in [Be1], we could conclude
the existence of an orbit (πœƒ(𝑑), 𝑝(𝑑)) of π»πœ– such that 𝑝(0) = 𝑐 and 𝑝(𝑇 ) = 𝑐′ for some
𝑇 ∈ β„•. Note that this implies the existence of various more complicated orbits, see
[Be1].
In order to carry out this program, we denote by Ξ“0 (πœ–) the set of cohomology classes
𝑐 ∈ Ξ“(πœ–) such that the set πœƒπ‘“ (ℐ̃(𝑐, 𝑒)) is properly contained in 𝕋 for each weak KAM
solution 𝑒 at level 𝑐. By Theorem 0.11 in [Be1], each cohomology 𝑐 ∈ Ξ“0 (πœ–) is in the
interior of its forcing class.
Let Ξ“2 (πœ–) denote that set of 𝑐 ∈ Ξ“(πœ–) such that the Aubry set π’œ(𝑐) has exactly two
static classes. In this case the ManΜƒe set 𝒩 (𝑐) βŠ‹ π’œ(𝑐). To ensure that 𝑐 ∈ Ξ“2 (πœ–) is
in the interior of its forcing class, some further degeneracy conditions are needed. To
be more specific, let Ξ“βˆ—2 (𝑐) denote the set of 𝑐 ∈ Ξ“2 (πœ–) such that the set
𝒩 (𝑐) βˆ’ π’œ(𝑐)
is totally disconnected. This can also be stated in terms of barrier function. Let πœƒ0
and πœƒ1 be contained in each of the two static classes of π’œ(𝑐), we define
𝑏+
𝑐 (πœƒ) = β„Žπ‘ (πœƒ0 , πœƒ) + β„Žπ‘ (πœƒ, πœƒ1 )
and
˜
π‘βˆ’
𝑐 (πœƒ) = β„Žπ‘ (πœƒ1 , πœƒ) + β„Žπ‘ (πœƒ, πœƒ0 ),
32
P. Bernard, V. Kaloshin, K. Zhang
where β„Žπ‘ is the Peierls barrier for cohomology class 𝑐. Then Ξ“βˆ—2 (πœ–) is the set of 𝑐 ∈ Ξ“2 (πœ–)
such that the minima of each 𝑏+ and π‘βˆ’ outside of π’œ(𝑐) are totally isolated.
We call Ξ“1 (πœ–) the set of cohomology classes 𝑐 ∈ Ξ“ such that there exists only one
weak KAM solution 𝑒 at level 𝑐, and πœƒπ‘“ (ℐ̃(𝑐, 𝑒)) = 𝕋. Note then that
˜ = ℐ̃(𝑐, 𝑒)
π’©Λœ (𝑐) = π’œ(𝑐)
is an invariant circle. We have Ξ“0 (πœ–) ∩ Ξ“1 (πœ–) = βˆ… for each πœ– ∈]0, πœ–0 [, by definition. We
first consider the covering
πœ‰ : 𝕋𝑛 βˆ’β†’ 𝕋𝑛
𝑠
𝑠
πœƒ = (πœƒπ‘“ , πœƒ1𝑠 , πœƒ2𝑠 , β‹… β‹… β‹… , πœƒπ‘›βˆ’1
) ?βˆ’β†’ πœ‰(πœƒ) = (πœƒπ‘“ , 2πœƒ1𝑠 , πœƒ2𝑠 , β‹… β‹… β‹… , πœƒπ‘›βˆ’1
).
This covering lifts to a a symplectic covering
Ξ : 𝑇 βˆ— 𝕋𝑛 βˆ’β†’ 𝑇 βˆ— 𝕋𝑛
(πœƒ, 𝑝) = (πœƒ, 𝑝𝑓 , 𝑝𝑠1 , 𝑝𝑠2 , . . . , π‘π‘ π‘›βˆ’1 ) ?βˆ’β†’ Ξ(πœƒ, 𝑝) = (πœ‰(πœƒ), 𝑝𝑓 , 𝑝𝑠1 /2, 𝑝𝑠2 , . . . , π‘π‘ π‘›βˆ’1 ),
˜ = 𝐻 ∘ Ξ. It is known that
and we define the Lifted Hamiltonian 𝐻
(
)
π’œΛœπ»Λœ (˜
𝑐) = Ξžβˆ’1 π’œΛœπ»Λœ (𝑐)
where π‘Λœ = πœ‰ βˆ— 𝑐 = (𝑐𝑓 , 𝑐𝑠1 /2, 𝑐𝑠2 , . . . , π‘π‘ π‘›βˆ’1 ). On the other hand, the inclusion
)
(
)
(
π’©Λœπ»Λœ (˜
𝑐) βŠƒ Ξžβˆ’1 π’©Λœπ»Λœ (𝑐) = Ξžβˆ’1 π’œΛœπ»Λœ (𝑐)
is not an equality for 𝑐 ∈ Ξ“1 (πœ–). More precisely, for 𝑐 ∈ Ξ“1 (πœ–), the set π’œΛœπ»Λœ (˜
𝑐) is
the union of two circles, while π’©Λœπ»Λœ (˜
𝑐) contains heteroclinic connections between these
circles. Similarly to the case of Ξ“2 (πœ–), we call Ξ“βˆ—1 (πœ–) the set of cohomologies 𝑐 ∈ Ξ“1 (πœ–)
such that the set
π’©π»Λœ (˜
𝑐) βˆ’ π’œπ»Λœ (˜
𝑐)
is totally disconnected. Alternatively, we can chose a point πœƒ0 in the projected Aubry
set π’œ(𝑒, 𝑐) of 𝐻, and consider its two preimages πœƒΛœ0 and πœƒΛœ1 under πœ‰. We define
Λœπ‘+ (πœƒ) = β„ŽΜƒ(πœƒΛœ0 , πœƒ) + β„ŽΜƒ(πœƒ, πœƒΛœ1 )
𝑐
and
Λœπ‘βˆ’ (πœƒ) = β„ŽΜƒ(πœƒΛœ1 , πœƒ) + β„ŽΜƒ(πœƒ, πœƒΛœ0 )
𝑐
˜ Ξ“βˆ— (πœ–) is then the set of cohomologies
where β„ŽΜƒ is the Peierl’s barrier associated to 𝐻.
1
𝑐 ∈ Ξ“1 (πœ–) such that the minima of each of the functions 𝑏±
𝑐 located outside of the
Aubry set π’œπ»Λœ (˜
𝑐) are isolated.
The following theorem is proved in [Be1].
Arnold diffusion along normally hyperbolic invariant cylinders
33
Theorem 6.3. If 𝑐 and 𝑐′ belong to the same connected component of Ξ“0 (πœ–) βˆͺ Ξ“βˆ—1 (πœ–) βˆͺ
Ξ“βˆ—2 (πœ–), then there exists an orbit (πœƒ(𝑑), 𝑝(𝑑)) and of π»πœ– a time 𝑇 ∈ β„• such that 𝑝(0) = 𝑐
and 𝑝(𝑇 ) = 𝑐′ .
We have proved the main result provided Ξ“(πœ–) = Ξ“0 (πœ–) βˆͺ Ξ“βˆ—1 (πœ–) βˆͺ Ξ“βˆ— (πœ–).
Theorem 6.4. Let π»πœ– be a Hamiltonian such that Theorem 6.2 holds, then there
exists an arbitrarily small 𝐢 π‘Ÿ perturbation π»πœ–β€²β€² to π»πœ–β€² , such that for the Hamiltonian
π»πœ–β€²β€² we have that Ξ“(πœ–) = Ξ“0 (πœ–) βˆͺ Ξ“βˆ—1 (πœ–) βˆͺ Ξ“βˆ—2 (πœ–).
We note that the conclusions of Theorem 6.1 already implies that {𝑐 ∈ Ξ“(πœ–), 𝑐𝑓 βˆ•=
π‘Ž
¯π‘— , 𝑗 = 2, β‹… β‹… β‹… 𝑙 βˆ’ 1} βŠ‚ Ξ“0 (πœ–) βˆͺ Ξ“1 (πœ–), while {𝑐 ∈ Ξ“(πœ–), 𝑐𝑓 = π‘Ž
¯π‘— , 𝑗 = 2, β‹… β‹… β‹… 𝑙 βˆ’ 1} βŠ‚ Ξ“2 (πœ–).
In other words, Ξ“(πœ–) = Ξ“0 (πœ–) βˆͺ Ξ“1 (πœ–) βˆͺ Ξ“2 (πœ–). It suffices to prove that Ξ“1 (πœ–) = Ξ“βˆ—1 (πœ–)
and Ξ“2 (πœ–) = Ξ“βˆ—2 (πœ–).
For the rest of this section, we prove Theorem 6.1 and Theorem 6.4.
6.1. Local extension of 𝛼(𝑐) and π’œπ‘πœ– (𝑐). Consider the normal form system π‘πœ–
and pick 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žβˆ’ , π‘Ž+ ]. For such a 𝑐 the function 𝑍(πœƒπ‘  , 𝑐) has a single
peak. It follows from Theorem 5.2 that the Aubry set π’œΛœπ‘πœ– (𝑐) (which is a subset of
π’©Λœπ‘πœ– (𝑐)) is contained in a single NHIC 𝑋𝑗 and the projected graph theorem holds.
For the rest of the cohomology classes, the double peak case, the picture is less clear
as π’œΛœπ‘πœ– (𝑐) are contained in the union of two NHICs. To get a more precise picture,
we will locally extend the set function (of 𝑐𝑓 )
π’œΛœπ‘πœ– ((π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ))∣[π‘Ž +𝑏,π‘Ž βˆ’π‘]
𝑗
𝑗+1
from [π‘Žπ‘— + 𝑏, π‘Žπ‘—+1 βˆ’ 𝑏] to [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏]. The extended local Aubry set will still
be contained in 𝑋𝑗 . These definitions are inspired by Mather’s definitions of relative
π›Όβˆ’function and Aubry set.
Let
𝑠
𝜌0 =
min
βˆ₯πœƒπ‘—π‘  (𝑝𝑓 ) βˆ’ πœƒπ‘—+1
(𝑝𝑓 )βˆ₯/3.
𝑝𝑓 ∈[π‘Žπ‘—+1 βˆ’2𝑏,π‘Žπ‘—+1 +2𝑏]
It follows from properties [G1’] and [G2’] for 𝑝𝑓 ∈ [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏],
𝑍(πœƒπ‘—π‘  , π‘π‘ βˆ— , 𝑝𝑓 ) βˆ’ 𝑍(πœƒπ‘  , π‘π‘ βˆ— , 𝑝𝑓 ) β‰₯ 𝑏βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯2
for βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯ ≀ 𝜌0 . By choosing a smaller 𝛿 if necessary, we may make sure 𝜌0 > 𝜌1 ,
where 𝜌1 was defined in Theorem 4.1. We write π‘ˆπ‘— (𝑝) = {βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑝)βˆ₯ ≀ 𝜌0 }, our
choice of 𝜌0 guarantees that π‘ˆπ‘— (𝑝) ∩ π‘ˆπ‘—+1 (𝑝) = βˆ… for 𝑝𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏]. To
define the extension, we introduce the following modification of the Hamiltonian π‘πœ– .
Let 𝑍𝑗 (πœƒπ‘  , 𝑝) be a function π•‹π‘›βˆ’1 × β„π‘› βˆ’β†’ ℝ satisfying the following properties:
βˆ™ There exists 𝐢 depending only on πœ†, βˆ₯𝑍βˆ₯𝐢 2 and 𝑛 such that βˆ₯𝑍𝑗 βˆ₯𝐢 2 ≀ 𝐢.
βˆ™ 𝑍𝑗 (πœƒπ‘  , 𝑝) = 𝑍(πœƒπ‘  , 𝑝) whenever βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑝)βˆ₯ ≀ 𝜌0 .
34
P. Bernard, V. Kaloshin, K. Zhang
βˆ™ 𝑍𝑗 (πœƒπ‘  , 𝑝) ≀ 𝑍(πœƒπ‘  , 𝑝) for all πœƒπ‘  and 𝑝.
βˆ™ For 𝑝𝑓 ∈ [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏], we have that 𝑍𝑗 (πœƒπ‘—π‘  , π‘π‘ βˆ— , 𝑝𝑓 ) βˆ’ 𝑍𝑗 (πœƒπ‘  , π‘π‘ βˆ— , 𝑝𝑓 ) β‰₯
𝑏
βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯2 hold for all πœƒπ‘  ∈ π•‹π‘›βˆ’1 .
2
To see that such a modification exists, let 𝜌¯ > 𝜌0 be such that 𝑍𝑗 (πœƒπ‘—π‘  , π‘π‘ βˆ— , 𝑝𝑓 ) βˆ’
𝑍𝑗 (πœƒπ‘  , π‘π‘ βˆ— , 𝑝𝑓 ) β‰₯ 2𝑏 βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯2 on βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯ ≀ 𝜌. How large 𝜌¯ βˆ’ 𝜌0 is depends only
on πœ† and βˆ₯𝑍βˆ₯𝐢 2 . Let 𝑄 : π•‹π‘›βˆ’1 × β„π‘› βˆ’β†’ ℝ be a smooth function such that
𝑍(πœƒπ‘—π‘  , π‘π‘ βˆ— , 𝑝𝑓 ) βˆ’ 𝑄 = 2𝑏 βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯2 for βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯ ≀ 𝜌¯ and 𝑍(πœƒπ‘—π‘  , π‘π‘ βˆ— , 𝑝𝑓 ) βˆ’ 𝑄 β‰₯ 2𝑏 βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯2
for all 𝑝𝑓 and πœƒπ‘  . The norm of 𝑄 only depends on πœ† and 𝑛. Let πœ‘πœŒ0 ,¯πœŒ : 𝕋𝑛 × β„π‘› βˆ’β†’ ℝ
be a smooth function such that πœ‘πœŒ0 ,¯πœŒ = 1 on {πœƒπ‘  , βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯ ≀ 𝜌0 } and πœ‘πœŒ0 ,¯πœŒ = 0 on
{πœƒπ‘  , βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯ > 𝜌¯}. The norm of πœ‘πœŒ0 ,¯πœŒ depends only on 𝑛, 𝜌0 and 𝜌¯. Then we can
choose
𝑍𝑗 = (1 βˆ’ πœ‘πœŒ0 ,¯πœŒ )𝑍 + πœ‘πœŒ0 ,¯πœŒ 𝑄.
We write π‘πœ–,𝑗 = 𝐻0 + πœ–π‘π‘— + πœ–π‘….
For each 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏] we define
𝛼𝑗 (𝑐) = π›Όπ‘πœ–,𝑗 (𝑐),
π’œπ‘πœ– ,𝑗 (𝑐) = π΄Λœπ‘πœ–,𝑗 (𝑐).
It is not clear that these definitions are independent of the choice of the modification
𝑍𝑗 or the decomposition π‘πœ– = 𝐻0 + πœ–π‘ + πœ–π‘…. We resolve these questions, and provide
some more properties of these definition in the following proposition.
Proposition 6.5. Let π‘πœ– = 𝐻0 + πœ–π‘ + πœ–π‘… be a Hamiltonian satisfying the genericity
conditions [G0]-[G2] and that βˆ₯𝑅βˆ₯𝐢 2 ≀ 𝛿. There exists πœ–0 , 𝛿0 > 0 such that for
0 < πœ– < πœ–0 and 0 < 𝛿 < 𝛿0 the following hold.
(1) The definitions of 𝛼𝑗 and π’œΛœπ‘πœ– ,𝑗 (𝑐) are independent of the decomposition π‘πœ– =
𝐻0 + πœ–π‘ + πœ–π‘… as long as 𝑍 satisfies [G0]-[G2] and βˆ₯𝑅βˆ₯𝐢 2 ≀ 𝛿; the definitions
are also independent of the modification 𝑍𝑗 , as long as it satisfies the same 4
bullet point properties.
(2) For each 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏], we have the local Aubry set
π’œΛœπ‘πœ– ,𝑗 (𝑐) is contained in the set {βˆ₯πœƒπ‘  βˆ’πœƒπ‘—π‘  βˆ₯ ≀ 𝜌2 } where 𝜌2 is as in Theorem 5.1.
It follows that π’œΛœπ‘πœ– ,𝑗 (𝑐) βŠ‚ 𝑋𝑗 and πœ‹πœƒπ‘“ βˆ£π’œΛœπ‘πœ– ,𝑗 (𝑐) is one-to-one with Lipshitz
inverse.
(3) For 𝑐 = π‘βˆ— (𝑐𝑓 ), 𝛼(𝑐) = 𝛼𝑗 (𝑐) if 𝑐𝑓 ∈ [π‘Žπ‘— +𝑏, π‘Žπ‘—+1 βˆ’π‘]; 𝛼(𝑐) = max{𝛼𝑗 (𝑐), 𝛼𝑗+1 (𝑐)}
if 𝑐𝑓 ∈ (π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏). In particular, 𝛼𝑗 (𝑐) > 𝛼𝑗+1 (𝑐) for 𝑐𝑓 = π‘Žπ‘—+1 βˆ’ 𝑏
and 𝛼𝑗+1 (𝑐) > 𝛼𝑗 (𝑐) for 𝑐𝑓 = π‘Žπ‘—+1 + 𝑏.
(4) For any 𝑐𝑓 ∈ [𝛼𝑗+1 βˆ’ 𝑏, 𝛼𝑗+1 + 𝑏], if 𝛼(𝑐) = 𝛼𝑗 and 𝛼(𝑐) βˆ•= 𝛼𝑗+1 (𝑐), then
π’œΛœπ‘πœ– (𝑐) = π’œΛœπ‘πœ– ,𝑗 (𝑐). Similar statement hold with 𝑗 and 𝑗 + 1 exchanged.
Arnold diffusion along normally hyperbolic invariant cylinders
35
Proof. We will prove the second statement first. The modified Hamiltonian π‘πœ–,𝑗 is
such that the single peak case of Theorem 5.1 applies, with 𝑏 replaced by 𝑏/2. By
choosing a smaller 𝛿 if necessary, we can guarantee that 𝜌2 can be chosen the same as
in Theorem 5.1. Theorem 5.2 also applies, where we obtain the projection property.
We will now show that the set π’œΛœπ‘πœ– ,𝑗 (𝑐) depends only on the value of π‘πœ– on the
set {(πœƒ, 𝑝), βˆ₯πœƒπ‘  βˆ’ πœƒπ‘  (𝑝)βˆ₯ ≀ 𝜌0 }, which will imply that the definition of π’œΛœπ‘πœ– ,𝑗 (𝑐) is
independent of decomposition or choice of the modification, since for all different
decompositions and modifications, the Hamiltonian agree on this neighborhood. As
βˆ—
before, we denote by π‘πœ–βˆ— (πœƒ, 𝑣, 𝑑) the Lagrangian corresponding to π‘πœ– and π‘πœ–,𝑗
the
βˆ—
Lagrangian corresponding to π‘πœ–,𝑗 . The projected Aubry set π’œπ‘πœ– ,𝑗 (𝑐) is defined by
βˆ— ,𝑐 (πœƒ, πœƒ) = 0, where the subscript is added to stress
the set of πœƒ ∈ 𝕋𝑛 such that β„Žπ‘πœ–,𝑗
the Lagrangian and cohomology class in the definition. It follows from the second
βˆ— ,𝑐 (πœƒ, πœƒ) = 0 must be contained
statement of the proposition that any πœƒ such that β„Žπ‘πœ–,𝑗
𝑠
𝑠
in {βˆ₯πœƒ βˆ’ πœƒ (𝑐)βˆ₯ ≀ 𝜌2 }. The following lemma implies independence of the local Aubry
set on the docomposition or the choice of the modification.
¯πœ–,𝑗 = 𝐻0 + πœ–π‘¯π‘— + πœ–π‘…
¯ be such that
Lemma 6.1. Let π‘πœ–,𝑗 = 𝐻0 + πœ–π‘π‘— + πœ–π‘… and 𝑁
¯πœ–,𝑗 for βˆ₯πœƒπ‘  βˆ’ πœƒπ‘  (𝑝)βˆ₯ ≀ 𝜌0 .
βˆ™ π‘πœ–,𝑗 = 𝑁
βˆ™ For 𝑝𝑓 ∈ [π‘Žπ‘— βˆ’2𝑏, π‘Žπ‘—+1 +2𝑏], we have that 𝑍𝑗 (πœƒπ‘—π‘  , π‘π‘ βˆ— , 𝑝𝑓 )βˆ’π‘π‘— (πœƒπ‘  , π‘π‘ βˆ— , 𝑝𝑓 ) β‰₯ 2𝑏 βˆ₯πœƒπ‘  βˆ’
πœƒπ‘—π‘  βˆ₯2 and that 𝑍¯π‘— (πœƒπ‘—π‘  , π‘π‘ βˆ— , 𝑝𝑓 ) βˆ’ 𝑍¯π‘— (πœƒπ‘  , π‘π‘ βˆ— , 𝑝𝑓 ) β‰₯ 2𝑏 βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  βˆ₯2 for all πœƒπ‘  ∈ π•‹π‘›βˆ’1 .
¯ 𝐢 2 ≀ 𝛿.
βˆ™ βˆ₯𝑅βˆ₯𝐢 2 , βˆ₯𝑅βˆ₯
Then for sufficiently small πœ–, 𝛿, and for 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏]
βˆ— ,𝑐 (πœƒ, πœƒ) = 0 ⇐⇒ β„Ž ¯ βˆ—
β„Žπ‘πœ–,𝑗
π‘πœ–,𝑗 ,𝑐 (πœƒ, πœƒ) = 0.
Proof of Lemma 6.1. Let πœƒ0 ∈ π’œπ‘πœ– ,𝑗 (𝑐), we refer to Lemma 5.6 before and note that
there exists an increasing sequence of integers π‘›π‘˜ , πœƒπ‘˜ = (πœƒπ‘˜π‘  , πœƒπ‘˜π‘“ ) : ℝ βˆ’β†’ 𝑀 a sequence
of π‘›π‘˜ βˆ’periodic absolutely continuous curves such that πœƒπ‘˜ (0) = πœƒ0 and
∫ π‘›π‘˜
βˆ—
lim
π‘πœ–,𝑗
(𝑑, πœƒπ‘˜ , πœƒΛ™π‘˜ ) βˆ’ 𝑐 β‹… πœƒΛ™π‘˜ + 𝛼𝑗 (𝑐)𝑑𝑑 = 0.
π‘˜βˆ’β†’βˆž
0
Moreover, the curves πœƒπ‘˜ can be chosen to be minimizing, i.e. they minimizes the
integral in the above displayed formula among the π‘›π‘˜ βˆ’periodic absolutely continuous
curves such that πœƒπ‘˜ (0) = πœƒ0 . In particular, πœƒπ‘˜ ∣[0, π‘›π‘˜ ] must be trajectories of the EulerLagrange flow. Lemma 5.6 states that for sufficiently large π‘˜ we may assume that the
whole curve πœƒπ‘˜ ’s are contained in βˆ₯πœƒπ‘  βˆ’ πœƒπ‘  (𝑐)βˆ₯ ≀ 𝜌0 (choose a smaller 𝛿 if necessary).
Let (πœƒπ‘˜ , π‘π‘˜ ) be √
the corresponding Hamiltonian
trajectory to (πœƒπ‘˜ , πœƒΛ™π‘˜ ), we will show
√
that for π‘›π‘˜ > 1/ πœ–, βˆ₯π‘π‘˜ (𝑑) βˆ’ 𝑐βˆ₯ ≀ 𝐢 πœ–, where 𝐢 is a constant depending only on
𝐴 and 𝑛. Let 𝜏 ∈ [0, π‘›π‘˜ ] be where βˆ₯π‘π‘˜ (𝑑)βˆ₯ takes its maximum. Consider a shift
36
P. Bernard, V. Kaloshin, K. Zhang
√
πœƒπ‘˜β€² (𝑑) = πœƒπ‘˜ (𝑑 + 𝜏 βˆ’ 1/ πœ–) of πœƒπ‘˜ , and
let π‘β€²π‘˜ be the corresponding
action variable, then
√
√
β€²
βˆ₯π‘π‘˜ βˆ₯ reaches maximum at 𝑑 = 1/ πœ–. We will write 𝑇 = 1/ πœ– in the rest of the proof.
Similar to the proof of Proposition 5.4, we lift πœƒπ‘˜β€² to a curve in ℝ𝑛 without changing
its name, and define
β€²
πœƒπ‘˜,π‘₯
(𝑑) = πœƒπ‘˜ (π‘₯) + 𝑑π‘₯/𝜏.
We have the following
∫ 𝑇
∫ 𝑇
βˆ—
β€²
β€²
βˆ—
π‘πœ–,𝑗 (𝑑, πœƒπ‘˜,π‘₯ , πœƒΛ™π‘˜,π‘₯ ) βˆ’ 𝑐 β‹… πœƒΛ™π‘˜ + 𝛼𝑗 (𝑐)𝑑𝑑 βˆ’
π‘πœ–,𝑗
(𝑑, πœƒπ‘˜β€² , πœƒΛ™π‘˜β€² ) βˆ’ 𝑐 β‹… πœƒΛ™π‘˜β€² + 𝛼𝑗 (𝑐)𝑑𝑑
0
0
√
√
βˆ—
β©½ (βˆ’π‘ + βˆ‚π‘£ π‘πœ–,𝑗 (𝜏, πœƒπ‘˜ (𝜏 ), π›Ώπœƒπ‘˜ (𝜏 ))) β‹… π‘₯ + 3𝐴 πœ–βˆ£π‘₯∣2 = (βˆ’π‘ + π‘β€²π‘˜ (𝑇 )) β‹… π‘₯ + 3𝐴 πœ–βˆ£π‘₯∣2 ,
the computation is identical to (7) and the two formulas that follows it. Assume
βˆ₯π‘β€²π‘˜ (𝑇 ) βˆ’ 𝑐βˆ₯ > 0 (otherwise there is nothing to prove), and we choose π‘₯ to be a unit
integer vector that minimizes π‘₯ β‹… (βˆ’π‘ + π‘β€²π‘˜ (𝑇 )) among unit integer vectors. We have
that there exists 𝐢 β€² > 0 depending on 𝑛 that (βˆ’π‘ + π‘β€²π‘˜ (𝑇 )) β‹… π‘₯ β©½ βˆ’πΆ β€² βˆ₯π‘β€²π‘˜ (𝑇 ) βˆ’ 𝑐βˆ₯.
Since πœƒπ‘˜β€² (𝑇 ) and πœƒπ‘˜ (𝑇 ) projects to the same point on the torus, by minimality of πœƒπ‘˜
we have that
√
√
0 β©½ (βˆ’π‘ + π‘π‘˜ (𝑇 )) β‹… π‘₯ + 3𝐴 πœ–βˆ£π‘₯∣2 β©½ βˆ’πΆ β€² βˆ₯π‘β€²π‘˜ (𝑇 ) βˆ’ 𝑐βˆ₯ + 3𝐴 πœ–,
√
it follows that βˆ₯π‘β€²π‘˜ (𝑇 ) βˆ’ 𝑐βˆ₯ ≀ 3𝐴/𝐢 β€² πœ–. Choose 𝐢 = 3𝐴/𝐢 β€² and we have proved our
claim.
To summarize, we have proved that forβˆšπ‘›π‘˜ sufficiently large, the curves (πœƒπ‘˜ , π‘π‘˜ )
satisfy βˆ₯πœƒπ‘˜π‘  βˆ’ πœƒπ‘—π‘  (𝑐)βˆ₯ ≀ 𝜌2 and βˆ₯π‘π‘˜ βˆ’ 𝑐βˆ₯ ≀ 𝐢 πœ–. By choosing a sufficiently small πœ–, we
can guarantee that βˆ₯πœƒπ‘˜π‘  βˆ’ πœƒπ‘—π‘  (π‘π‘˜ )βˆ₯ < 𝜌0 . This implies that the Hamiltonians π‘πœ–,π‘˜ and
¯πœ–,π‘˜ take the same values on the curves (πœƒπ‘˜ , π‘π‘˜ ), by taking the Legendre transform,
𝑁
βˆ—
¯ βˆ— must take the same values as well.
we can conclude that the Lagrangian π‘πœ–,π‘˜
and 𝑁
πœ–,π‘˜
It follows that
∫ π‘›π‘˜
βˆ—
0 = β„Žπ‘πœ–,𝑗 ,𝑐 (πœƒ0 , πœƒ0 ) = lim inf
π‘πœ–,𝑗
(𝑑, πœƒπ‘˜ , πœƒΛ™π‘˜β€² ) βˆ’ 𝑐 β‹… πœƒΛ™π‘˜ + 𝛼𝑗 (𝑐)𝑑𝑑 β©Ύ β„Žπ‘¯πœ–,𝑗 ,𝑐 (πœƒ0 , πœƒ0 ) β©Ύ 0.
π‘˜βˆ’β†’βˆž
0
Hence β„Žπ‘πœ–,𝑗 ,𝑐 (πœƒ0 , πœƒ0 ) = 0 =β‡’ β„Žπ‘¯πœ–,𝑗 ,𝑐 (πœƒ0 , πœƒ0 ) = 0. The other direction also holds since
the argument is completely symmetric. This concludes the proof of the lemma. β–‘
Λ™
The alpha function of a Lagrangian 𝐿 can be defined by 𝛼(𝑐) = βˆ’ inf πœ‡ (𝐿 βˆ’ 𝑐 β‹… πœƒ)π‘‘πœ‡,
where πœ‡ is taken over all invariant probability measures supported on the Aubry set
˜
¯πœ–,𝑗 as before, since the Aubry sets are
π’œ(𝑐).
Consider two Hamiltonians π‘πœ–,𝑗 and 𝑁
identical for these Hamiltonians, and the Hamiltonians coincide on a neighborhood
of the Aubry sets, the alpha function 𝛼𝑗 (𝑐) defined for these Hamiltonians must also
be the same. This conclude the proof of the first statement of our proposition.
Arnold diffusion along normally hyperbolic invariant cylinders
37
We now prove statements 3 and 4. Consider the cohomology classes 𝑐 = π‘βˆ— (𝑐𝑓 ) with
𝑐𝑓 ∈ [π‘Žπ‘— + 𝑏, π‘Žπ‘—+1 βˆ’ 𝑏], we note that the function 𝑍 already satisfies the conditions
that we require of the modification, and since the local Aubry set is independent of
specific modifications, we conclude that π’œΛœπ‘πœ– (𝑐) = π’œΛœπ‘πœ– ,𝑗 (𝑐) and 𝛼𝑗 (𝑐) = 𝛼(𝑐).
We now focus on the cohomology classes 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏].
Using Theorem 5.1, for these cohomology classes
the Aubry set π’œΛœπ‘πœ– (𝑐) is contained in
√
the vertical neighborhood {βˆ₯𝑝 βˆ’ 𝑐βˆ₯ ≀ 36𝐴 πœ–}, and horizontally in the neighborhood
𝑠
{βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑐)βˆ₯ ≀ 𝜌2 } βˆͺ {βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—+1
(𝑐)βˆ₯ ≀ 𝜌2 }. Take a point πœƒ0 ∈ π’œπ‘πœ– (𝑐) ∩ {βˆ₯πœƒπ‘  βˆ’
πœƒπ‘—π‘  (𝑐)βˆ₯ ≀ 𝜌2 }, by going through the same argument as in the proof of Lemma 6.1,
we can conclude that β„Žπ‘πœ– ,𝑐 (πœƒ0 , πœƒ0 ) = 0 implies that β„Žπ‘πœ–,𝑗 ,𝑐 (πœƒ0 , πœƒ0 ) = 0. It follows that
π’œΛœπ‘πœ– (𝑐) ∩ π‘ˆπ‘— (𝑐) βŠ‚ π’œΛœπ‘πœ– ,𝑗 (𝑐); the same holds for 𝑗 + 1. We have that
βˆ—
Λ™
Λ™
𝛼(𝑐) = βˆ’ min{inf (π‘πœ–βˆ— βˆ’ 𝑐 β‹… πœƒ)π‘‘πœ‡
1 , inf (π‘πœ– βˆ’ 𝑐 β‹… πœƒ)π‘‘πœ‡2 } β©½ max{𝛼𝑗 (𝑐), 𝛼𝑗+1 (𝑐)}
πœ‡1
πœ‡2
where πœ‡1 is supported on π’œΛœπ‘πœ– (𝑐)βˆ©π‘ˆπ‘— (𝑐) while πœ‡2 is supported on π’œΛœπ‘πœ– (𝑐)βˆ©π‘ˆπ‘—+1 (𝑐). On
Λ™
the other hand, since 𝛼(𝑐) = βˆ’ inf πœ‡ (π‘πœ–βˆ— βˆ’ 𝑐 β‹… πœƒ)π‘‘πœ‡
with πœ‡ taken over all probability invariant measures, 𝛼(𝑐) β©Ύ 𝛼𝑗 (𝑐), 𝛼𝑗+1 (𝑐). We conclude that 𝛼(𝑐) = max{𝛼𝑗 (𝑐), 𝛼𝑗+1 (𝑐)}.
We have proved statement 3.
Moreover, assume that π’œπ‘πœ– (𝑐) ∩ π‘ˆπ‘— (𝑐) βˆ•= βˆ…, then there exists πœƒ0 in this set such
that β„Žπ‘πœ– ,𝑐 (πœƒ0 , πœƒ0 ) = 0, as well as a sequence of localized periodic curves πœƒπ‘˜ converging
to it. By taking any weak-*-limit of probability measures supported on these curves,
we∫ obtain at least one measure 𝜈 supported on π’œπ‘πœ– (𝑐) ∩ π‘ˆπ‘— (𝑐) such that 𝛼(𝑐) =
Λ™
βˆ’ (π‘πœ–βˆ— βˆ’π‘β‹… πœƒ)π‘‘πœˆ.
This implies that 𝛼(𝑐) ≀ 𝛼𝑗 (𝑐), hence 𝛼(𝑐) = 𝛼𝑗 (𝑐). As a conclusion,
if 𝛼(𝑐) βˆ•= 𝛼𝑗 (𝑐) then π’œπ‘πœ– (𝑐) ∩ π‘ˆπ‘— (𝑐) = βˆ…. This proves statement 4 and concludes the
proof of Proposition 6.5.
β–‘
6.2. Generic property of π’œΛœπ‘πœ– (𝑐). In this section we discuss the property of the
sets π’œΛœπ‘πœ– (𝑐) for 𝑐 = (π‘π‘ βˆ— (𝑐𝑓 )) with 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏] and their properties when
we allowed to subject the Hamiltonian to an additional perturbation. It is convenient
for us to fix a modified Hamiltonian π‘πœ–,𝑗 and base all discussions on this system.
From Proposition 6.5, we have that the sets π’œΛœπ‘πœ– ,𝑗 (𝑐) (we will write π’œΛœπ‘— (𝑐) for short
in this section) are contained in the NHIC 𝑋𝑗 , and πœ‹πœƒπ‘“ βˆ£π’œΛœπ‘— (𝑐) is one-to-one. We will
study finer structures of the Aubry sets, by relating to the Aubry-Mather theory of
two dimensional area preserving twist maps. We will prove the following statement.
Proposition 6.6. There exists πœ–0 , 𝛿0 > 0 such that for 0 < πœ– < πœ–0 and 0 < 𝛿 < 𝛿0 ,
there exists arbitrarily small 𝐢 π‘Ÿ perturbation π‘πœ–β€² of π‘πœ– , such that for each 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’
2𝑏, π‘Žπ‘—+1 + 2𝑏], π’œΛœπ‘πœ–β€² (π‘βˆ— (𝑐𝑓 )) supports a unique π‘βˆ’minimal measure.
38
P. Bernard, V. Kaloshin, K. Zhang
We note that the time-one-map of the Hamiltonian flow is a twist map defined on
𝕋 × β„π‘› . The generating function of this twist map is 𝐺𝑗 (π‘₯, π‘₯β€² ) : ℝ𝑛 × β„π‘› βˆ’β†’ ℝ ,
∫ 1
β€²
βˆ—
𝐺𝑗 (π‘₯, π‘₯ ) =
inf
π‘πœ–,𝑗
(𝑑, 𝛾, 𝛾)𝑑𝑑.
Λ™
β€²
𝑛
𝛾(0)=π‘₯,𝛾(1)=π‘₯
0
Consider an orbit {(πœƒ(𝑑), 𝑝(𝑑))} of the Hamiltonian flow, its trajectory in the configuration space can be lifted to a curve π‘₯(𝑑) ∈ ℝ𝑛 , which is unique modulo integer
translation. The sequence π‘₯π‘˜ = π‘₯(π‘˜), π‘˜ ∈ β„€ will be called a configuration. A configuration’s rotation number is defined by limπ‘˜βˆ’β†’βˆž (π‘₯π‘Ž+π‘˜ βˆ’ π‘₯π‘Ž )/π‘˜, if such a limit exists.
Let {π‘₯π‘˜ } = {(π‘₯π‘ π‘˜ , π‘₯π‘“π‘˜ )} be a configuration corresponding to an orbit in π’œΛœπ‘— (𝑐), we will
say that this configuration belong to the Aubry set for short. Since π’œΛœπ‘— (𝑐) βŠ‚ 𝑋𝑗 , we
have that the slow component π‘₯𝑠 stays bounded all the time. Take two configurations
{π‘₯π‘˜ } and {π‘¦π‘˜ }, we say that they intersect in the fast direction (in short, intersect,
as this is the only type of intersection we will consider) if there exists an integer π‘š
and indices π‘˜1 , π‘˜2 such that π‘₯π‘“π‘˜1 > π‘¦π‘˜π‘“1 + π‘š and π‘₯π‘“π‘˜2 < π‘¦π‘˜π‘“2 + π‘š. We have the following
statements, analogous to the twist map case.
Lemma 6.2.
(1) Any two distinct configurations {π‘₯π‘˜ } and {π‘¦π‘˜ } in π’œΛœπ‘— (𝑐) does
not intersect.
(2) Any configuration {π‘₯π‘˜ } in π’œΛœπ‘— (𝑐) has a uniquely defined rotation number 𝜌 =
(0, πœŒπ‘“ ).
Proof. For the first statement, we prove by contradiction. Assume that π‘₯(𝑑) and 𝑦(𝑑)
are the lifts of two distinct trajectories such that {π‘₯(π‘˜)} and {𝑦(π‘˜)} intersect. It
follows that there exists π‘š and π‘˜1 . π‘˜2 such that π‘₯𝑓 (π‘˜1 ) > 𝑦 𝑓 (π‘˜1 ) + π‘š and π‘₯𝑓 (π‘˜2 ) <
𝑦 𝑓 (π‘˜2 ) + π‘š. It follows that there exists 𝜏 ∈ ℝ such that π‘₯𝑓 (𝜏 ) = 𝑦 𝑓 (𝜏 ) + π‘š. Let
πœƒ1 (𝑑) and πœƒ2 (𝑑) be the projections of π‘₯(𝑑) and 𝑦(𝑑) to 𝕋𝑛 , we have that πœƒ1𝑓 (𝜏 ) = πœƒ2𝑓 (𝜏 ).
Assume that 𝑝𝑖 (𝑑), 𝑖 = 1, 2 are the corresponding action variables for trajectories πœƒπ‘– .
Let π‘˜ ≀ 𝜏 < π‘˜ + 1, we have that (πœƒπ‘– (π‘˜), 𝑝𝑖 (π‘˜)) ∈ π’œΛœπ‘— (𝑐). From the graph theorem,
we have that (πœƒπ‘– (π‘˜), 𝑝𝑖 (π‘˜)) is a function of πœƒπ‘–π‘“ (π‘˜). Applying the flow, we have that
(πœƒπ‘– (𝑑), 𝑝𝑖 (𝑑)) is a function of (πœƒπ‘–π‘“ (𝑑), 𝑑). It follows that (πœƒ1 (𝜏 ), 𝑝1 (𝜏 )) = (πœƒ2 (𝜏 ), 𝑝2 (𝜏 )),
hence (πœƒ1 (𝑑), 𝑝1 (𝑑)) = (πœƒ2 (𝑑), 𝑝2 (𝑑)) for all 𝑑, a contradiction.
For the second statement, since any trajectory from π’œΛœπ‘— (𝑐) must contained in 𝑋𝑗 ,
we have that any lift π‘₯(𝑑) of such a trajectory must have its slow component uniformly
bounded. Hence limπ‘˜βˆ’β†’βˆž π‘₯𝑠 (π‘˜)/π‘˜ = 0. It suffices to consider only {π‘₯π‘“π‘˜ }. Since π‘₯𝑓
is one-dimensional, most argument from the standard Aubry-Mather theory applies,
once we establish the non-intersecting property. We refer to [MF], section 11, where
existence of rotation number was proved under a weaker assumption (the Aubry
crossing lemma).
β–‘
Arnold diffusion along normally hyperbolic invariant cylinders
39
Let πœ‡ be a π‘βˆ’minimal measure for π‘πœ–,𝑗 , we know that it is necessarily supported
on π΄Λœπ‘— (𝑐). The rotation number of πœ‡ is 𝜌(πœ‡) ∈ 𝐻1 (𝕋𝑛 , ℝ) ≃ ℝ𝑛 , defined by
∫
βŸ¨π‘, π‘£βŸ©π‘‘πœ‡(πœƒ, 𝑣) = βŸ¨π‘, 𝜌(πœ‡)⟩.
𝕋𝑛 ×ℝ𝑛
Using the no-intersection property (Lemma 6.2, 1), most of the statements we will be
need follows from standard Aubry-Mather theory. Most of the arguments presented
here are variations of those found in see [MF].
Proposition 6.7. For any 𝑐 = π‘βˆ— (𝑐𝑓 ), 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏], the following hold.
(1) All π‘βˆ’minimal measures supported on π’œΛœπ‘— (𝑐) have a common rotation number
𝜌(𝑐) = (0, πœŒπ‘“ (𝑐)). Moreover, the function 𝛼𝑗 π‘βˆ— (𝑐𝑓 ) as a function of 𝑐𝑓 is 𝐢 1 .
(2) If πœŒπ‘“ (𝑐) = 𝑝/π‘ž ∈ β„š, written in lowest terms, then all minimal measures are
supported on π‘žβˆ’periodic orbits. These orbits corresponds to (𝑝, π‘ž)βˆ’periodic
configurations {π‘₯π‘˜ } in the sense that (π‘₯π‘ π‘˜+π‘ž , π‘₯π‘“π‘˜+π‘ž ) = (π‘₯π‘ π‘˜ , π‘₯π‘“π‘˜ ) + (0, 𝑝). Furthermore, they are the minima of the functional
π‘žβˆ’1
βˆ‘
𝐺𝑗 (π‘₯π‘˜ , π‘₯π‘˜+1 )
π‘˜=0
over the set of configurations that are (𝑝, π‘ž)βˆ’periodic.
(3) If πœŒπ‘“ (𝑐) ∈
/ β„š, then there is one unique π‘βˆ’minimal measure.
Proof. First we show that all the configurations on π’œΛœπ‘— (𝑐) has the same rotation number. To see this, consider any two configurations with different rotation numbers,
since they must intersect, Lemma 6.2 implies that they cannot both be contained in
π’œΛœπ‘— (𝑐).
We now look at the function 𝛼𝑗 π‘βˆ— (𝑐𝑓 ). It is known (add reference) that 𝛼𝑗 (𝑐) is a
convex function and any rotation number 𝜌 of a π‘βˆ’minimal measure is a subderivative
of 𝛼𝑗 at 𝑐. If for some 𝑐 the subderivative is unique, then 𝛼 is differentiable at 𝑐. It
follows 𝛼𝑗 (π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ) is differentiable for each 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏]. The fact that
it is 𝐢 1 follows from the following statement: let 𝑓 (π‘₯) be convex, π‘₯𝑛 is a sequence
that converges to π‘₯βˆ— , 𝑝𝑛 is a subderivative of 𝑓 (π‘₯) at π‘₯𝑛 and 𝑝𝑛 converges to π‘βˆ— , then
π‘βˆ— is a subderivative of 𝑓 (π‘₯) at π‘₯βˆ— . This concludes the proof of the first statement.
We now prove the second statement. Consider any configuration {π‘₯π‘˜ } with rotation
number 𝑝/π‘ž, we have that π‘₯π‘“π‘˜+π‘ž βˆ’ π‘₯π‘“π‘˜ βˆ’ 𝑝 does not change sign for this configuration.
Assume that it does, say π‘₯π‘“π‘˜1 +π‘ž βˆ’ π‘₯π‘“π‘˜1 βˆ’ 𝑝 > 0 and π‘₯π‘˜2 +π‘ž βˆ’ π‘₯π‘˜2 βˆ’ 𝑝 < 0, then the
configurations {π‘₯π‘˜ } and π‘₯π‘˜+π‘˜2 βˆ’π‘˜1 intersects, contradiction. On the other hand, since
the rotation number is 𝑝/π‘ž, we have that limπ‘˜βˆ’β†’βˆž π‘₯π‘“π‘˜+π‘ž βˆ’ π‘₯π‘“π‘˜ βˆ’ 𝑝 = 0. It follows that
40
P. Bernard, V. Kaloshin, K. Zhang
any π‘₯π‘˜ such that π‘₯π‘“π‘˜+π‘ž βˆ’ π‘₯π‘“π‘˜ βˆ’ 𝑝 βˆ•= 0 does not project to a point on the support of an
invariant measure, since this point is not recurrent. By the same argument, we can
show that π‘₯π‘ π‘˜+π‘ž βˆ’ π‘₯π‘ π‘˜ = 0 for any point that projects to the support of an invariant
measure.
We have proved that any point on the support of an invariant measure lifts to a
configuration with π‘₯π‘˜+π‘ž βˆ’ π‘₯π‘˜ = (0, 𝑝). Let πœ‡ be a π‘βˆ’minimal measure supported on
(πœƒ(π‘˜), 𝑝(π‘˜)), π‘˜ = 0, β‹… β‹… β‹… π‘ž βˆ’ 1, and let π‘₯π‘˜ be the corresponding configuration. Since
∫
βˆ—
(π‘πœ–,𝑗
∫
Λ™
βˆ’ 𝑐 β‹… πœƒ)π‘‘πœ‡
=
∫
βˆ—
π‘πœ–,𝑗
π‘‘πœ‡
+π‘β‹…πœŒ=
π‘žβˆ’1
βˆ‘
π‘˜=0
𝐺𝑗 (π‘₯π‘˜ , π‘₯π‘˜+1 ) + 𝑐 β‹… 𝜌,
βˆ‘π‘žβˆ’1
βˆ—
Λ™
πœ‡ minimizes (π‘πœ–,𝑗
βˆ’ 𝑐 β‹… πœƒ)π‘‘πœ‡
implies that {π‘₯π‘˜ } minimizes π‘˜=0
𝐺𝑗 (π‘₯π‘˜ , π‘₯π‘˜+1 ).
For the irrational rotation number case, we refer to [MF], section 12. Consider
˜
π’œπ‘— (𝑐) as a subset of 𝕋 and the dynamics on this subset. It is proved that the system
is semi-conjugate to a rigid rotation of irrational rotation number, and the semiconjugacy is not one-to-one on at most countably many points. It follows that the
dynamics on π’œΛœπ‘— (𝑐) has one unique invariant measure, since irrational rotation is
uniquely ergodic.
β–‘
For irrational rotation numbers, we have that the corresponding minimal measure
is unique. For rational rotation numbers, it is well known that for the twist map,
generically there exists only one minimal periodic orbit of rotation number 𝑝/π‘ž. We
have the same conclusions here. The following statement and Lemma 6.2 imply
Proposition 6.6.
Proposition 6.8.
(1) By subjecting the generating function 𝐺𝑗 (π‘₯, π‘₯β€² ) to an arbitrarily small 𝐢 π‘Ÿ perturbation, we have that for any rational rotation number
𝑝/π‘ž, there are exactly π‘ž periodic configurations of type (𝑝, π‘ž). (In this case
there exists a unique minimal periodic orbit with rotation number 𝑝/π‘ž.)
(2) The perturbation to 𝐺𝑗 in part 1 can be realized by an arbitrarily small 𝐢 π‘Ÿ
perturbation to the Hamiltonian π‘πœ–,𝑗 , localized in the set {(πœƒ, 𝑝) : βˆ₯πœƒπ‘  βˆ’πœƒπ‘—π‘  (𝑝)βˆ₯ <
𝜌0 }. As a result, this perturbation can be realized by a small perturbation to
the original Hamiltonian π‘πœ– .
Proof. Let {π‘₯π‘˜ } be a minimizing configuration of type (𝑝, π‘ž), let π‘ˆ be an open set that
contains π‘₯0 but none of the π‘₯1 , β‹… β‹… β‹… , π‘₯π‘žβˆ’1 . Let π‘”π‘ˆ (π‘₯) be nonnegative periodic function
that is supported on π‘ˆ , π‘”π‘ˆ (π‘₯0 ) = 0 is the unique minimum and βˆ‚ 2 𝑔 is positive definite.
If we consider the new generating function
𝐺𝑗 (π‘₯, π‘₯β€² ) + π‘”π‘ˆ (π‘₯),
Arnold diffusion along normally hyperbolic invariant cylinders
41
βˆ‘
the action π‘žβˆ’1
π‘˜=0 𝐺𝑗 (π‘₯π‘˜ , π‘₯π‘˜+1 ) is unaffected, while the action increases for other configurations. It follows that {π‘₯π‘˜ } and its translations are the unique minimal configurations. However, this perturbation cannot be realized by a localized perturbation to
the Hamiltonian (to be more precise, it is localized horizontally, but not vertically).
We consider the following modification of the above construction.
Let Ξ¦ denote a lift of the time-one-map of the Hamiltonian flow. The generating
function uniquely determines the map Ξ¦ in the sense that given π‘₯, π‘₯β€² ∈ ℝ𝑛 , write
𝑝 = βˆ’βˆ‚1 𝐺𝑗 and 𝑝2 = βˆ‚2 𝐺𝑗 then Ξ¦(π‘₯, 𝑝) = (π‘₯β€² , 𝑝′ ). On the other hand, Theorem 5.1
√
implies that any orbit in the Aubry set π’œΛœπ‘— (𝑐) is localized
{βˆ₯π‘βˆ’π‘βˆ₯ ≀ 6𝑛𝐴 πœ–},
√ in the set
β€²
𝑛
β€²
which leads
𝑗 (π‘₯, π‘₯ ) βˆ’
√ us to the following definition. Let 𝑉π‘₯ (6𝐴 π‘›πœ–) = {π‘₯ ∈ ℝ , βˆ₯βˆ‚1 𝐺√
𝑐βˆ₯ ≀ 6𝐴 π‘›πœ–}, and let 𝜌π‘₯√be a smooth function that takes value 1 on 𝑉π‘₯ (6𝐴 π‘›πœ–) and
takes value 0 on 𝑉π‘₯ (12𝐴 π‘›πœ–). We have that the generating function
𝐺𝑗 (π‘₯, π‘₯β€² ) + π‘”π‘ˆ (π‘₯)𝜌π‘₯ (π‘₯β€² )
will make {π‘₯π‘˜ } and its translation the unique minimizing configurations of type (𝑝, π‘ž).
The norm of the perturbation can be arbitrarily small since the norm of π‘”π‘ˆ can be
arbitrarily small.
To treat all rational rotation numbers, we consider a sequence of such perturbations π‘”π‘ˆπ‘– (π‘₯)𝜌π‘₯ (π‘₯β€² ), each subsequent perturbation can be chosen to be small enough,
such that the result of earlier perturbations are not destroyed. The final perturbed
generating function is
βˆ‘
𝐺′𝑗 (π‘₯, π‘₯β€² ) = 𝐺𝑗 (π‘₯, π‘₯β€² ) +
π‘”π‘ˆπ‘– (π‘₯)𝜌π‘₯ (π‘₯β€² ).
𝑖β‰₯1
We now show that the perturbation
βˆ‘ can be realized by a localized perturbation of
the Hamiltonian. Write 𝑔(π‘₯, π‘₯β€² ) = 𝑖β‰₯1 π‘”π‘ˆπ‘– (π‘₯)𝜌π‘₯ (π‘₯β€² ) and let Ξ¦β€² denote βˆͺ
the perturbed
time-one-map
of the Hamiltonian flow. Since βˆ‚1 𝑔 = 0 for all π‘₯ ∈
/ 𝑖 π‘ˆπ‘– or π‘₯β€² ∈
/
√
β€²
𝑉π‘₯ (12𝐴 βˆͺ
π‘›πœ–), the perturbed time-one-map
Ξ¦
is
identical
to
the
original
Ξ¦
for
any
βˆͺ
√
(π‘₯, 𝑝) ∈
/ 𝑖 π‘ˆπ‘– × {βˆ₯𝑝 βˆ’ 𝑐βˆ₯ ≀ 12𝐴 π‘›πœ–}. Since we can choose π‘ˆπ‘– such that 𝑖 π‘ˆπ‘– βŠ‚
{βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑐)βˆ₯ < 𝑑 < 𝜌0 }, for sufficiently small πœ– we can guarantee
βˆͺ
√
π‘ˆπ‘– × {βˆ₯𝑝 βˆ’ 𝑐βˆ₯ ≀ 12𝐴 π‘›πœ–} βŠ‚ {βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑝)βˆ₯ < 𝜌0 }.
𝑖
It follows that Ξ¦ = Ξ¦β€² for any (πœƒ, 𝑝) ∈
/ {βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑝)βˆ₯ < 𝜌0 }. This perturbation of the
time-one-map can be realized by a perturbation to the Hamiltonian localized in the
same neighborhood.
β–‘
6.3. Generic property of 𝛼(𝑐) and proof of Theorem 6.1. After obtaining the
desired properties for the local Aubry set, we now return to the Hamiltonian π‘πœ– . If
𝑐𝑓 ∈ [π‘Žπ‘— + 𝑏, π‘Žπ‘—+1 βˆ’ 𝑏], we have that π’œΛœπ‘πœ– (𝑐) = π’œΛœπ‘πœ– ,𝑗 (𝑐). For 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏],
42
P. Bernard, V. Kaloshin, K. Zhang
Proposition 6.5, statement 3 and 4 shows that it suffices to identify whether 𝛼(𝑐) is
equal to 𝛼𝑗 (𝑐) or 𝛼𝑗+1 (𝑐).
Proposition 6.9. Assume that π‘πœ– = 𝐻0 + πœ–π‘ + πœ–π‘… is such that 𝑍 satisfy [G0][G2] and that βˆ₯𝑅βˆ₯𝐢 2 ≀ 𝛿. Then there exists πœ–0 , 𝛿0 > 0 such that for 0 < πœ– < πœ–0
and 0 < 𝛿 < 𝛿0 , there exists an arbitrarily small perturbation π‘πœ–β€² of π‘πœ– , with the
following properties. For the Hamiltonian π‘πœ–β€² Proposition 6.5 and Proposition 6.6
still hold, in addition, there exists only finitely many 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏] such that
𝛼𝑗 (π‘π‘ βˆ— (𝑐𝑓 ), 𝑐𝑓 ) = 𝛼𝑗+1 π‘βˆ— (𝑐𝑓 ).
Proof. By taking a small perturbation if necessary, let us assume that we start with a
Hamiltonian π‘πœ– such that Proposition 6.5 and Proposition 6.6 already hold. Consider
the interval 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏] first. Let π‘ƒπ‘—πœ‚ (πœƒ, 𝑝, 𝑑) : 𝕋𝑛 × β„π‘›βˆ’1 × [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 +
2𝑏] βˆ’β†’ ℝ be a family of smooth functions such that
⎧
𝑠
𝑠 𝑓
𝑓

βŽ¨πœ‚, βˆ₯πœƒ βˆ’ πœƒπ‘— (𝑝 )βˆ₯ β©½ 𝜌0 and 𝑝 ∈ [π‘Žπ‘— βˆ’ 3π‘Ÿ/2, π‘Žπ‘—+1 + 3π‘Ÿ/2]
π‘ƒπ‘—πœ‚ (πœƒ, 𝑝, 𝑑) = 0, βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑝𝑓 )βˆ₯ β©Ύ 4𝜌0 /3
.

⎩0, 𝑝𝑓 ∈ {π‘Ž βˆ’ 2𝑏, π‘Ž + 2𝑏}
𝑗
𝑗+1
Clearly βˆ₯π‘ƒπ‘—πœ‚ βˆ₯𝐢 π‘Ÿ can be arbitrarily close to 0 by choosing πœ‚ close to 0.
Let 𝑁 πœ‚ = π‘πœ– + π‘ƒπ‘—πœ‚ . The new perturbation can be considered part of 𝑅 and if πœ‚ is
sufficiently close to 0, Proposition 6.5 still hold. This implies that the local Aubry sets
still depends only on the value of the Hamiltonian on the set βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑝𝑓 )βˆ₯ β©½ 𝜌0 , on
which the perturbation is simply a constant (for 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’3π‘Ÿ/2, π‘Žπ‘—+1 +3π‘Ÿ/2]). We have
that 𝛼𝑁 πœ‚ ,𝑗 (𝑐) = π›Όπ‘πœ– ,𝑗 +πœ‚ and that π’œΛœπ‘ πœ‚ ,𝑗 (𝑐) = π’œΛœπ‘πœ– ,𝑗 (𝑐) for 𝑐𝑓 ∈ [π‘Žπ‘— βˆ’3π‘Ÿ/2, π‘Žπ‘—+1 +3π‘Ÿ/2].
It follows that all properties of the local Aubry set π’œΛœπ‘πœ– ,𝑗 (𝑐) is intact, while 𝛼𝑗 (𝑐)
undergoes a shift.
On the other hand, Consider the functions 𝛼𝑗 π‘βˆ— (𝑐𝑓 ) and 𝛼𝑗+1 π‘βˆ— (𝑐𝑓 ) as functions
on [π‘Žπ‘—+1 βˆ’ 3π‘Ÿ/2, π‘Žπ‘—+1 + 3π‘Ÿ/2]. Since they are both 𝐢 1 , by Sard’s lemma, the critical
values of 𝛼𝑗 βˆ’ 𝛼𝑗+1 has zero measure. It follows that there exists a full measure set
β€²
of πœ‚ ∈ ℝ such that 𝛼𝑗′ βˆ’ 𝛼𝑗+1
= 0 implies 𝛼𝑗 βˆ’ 𝛼𝑗+1 + πœ‚ βˆ•= 0. In other words, the two
functions 𝛼𝑗 + πœ‚ and 𝛼𝑗+1 intersect transversally, which implies that there are only
finitely many values where 𝛼𝑗 βˆ’ 𝛼𝑗+1 + πœ‚ = 0.
We can perform this modification for each [π‘Žπ‘— βˆ’ 2𝑏, π‘Žπ‘—+1 + 2𝑏], and πœ‚ can be chosen
to be arbitrarily close to 0.
β–‘
Proof of Theorem 6.1. Since there are only finitely many 𝑐𝑓 ∈ [π‘Žπ‘—+1 βˆ’ 𝑏, π‘Žπ‘—+1 + 𝑏] on
which 𝛼𝑗 = 𝛼𝑗+1 , we add these points to the set {π‘Ž0 , β‹… β‹… β‹… , π‘Žπ‘  } to form a new partition
{[¯
π‘Žπ‘— , π‘Ž
¯π‘—+1 ]}. On each open interval (¯
π‘Žπ‘— , π‘Ž
¯π‘—+1 ) 𝛼(𝑐) is only equal to one of the 𝛼𝑗 and
𝛼𝑗+1 . Use Proposition 6.5 and the first statement follows.
The second statement follows from Proposition 6.6.
β–‘
Arnold diffusion along normally hyperbolic invariant cylinders
43
6.4. nondegeneracy of the barrier functions. In this section we prove Theorem 6.4. We have concluded that in order to prove Theorem 6.4, it suffices to show
that Ξ“1 (πœ–) = Ξ“βˆ—1 (πœ–) and Ξ“2 (πœ–) = Ξ“βˆ—2 (πœ–). We show that this is the case by proving the
following equivalent statement.
Proposition 6.10. Let π»πœ–β€² be a perturbation of π»πœ– such that the conclusions of Theorem 6.2 holds, then there exists an arbitrarily small 𝐢 π‘Ÿ perturbation π»πœ–β€²β€² to π»πœ–β€² , such
that for the Hamiltonian π»πœ–β€²β€² Theorem 6.2 still hold, in addition:
(1) Consider 𝑐𝑓 ∈ (¯
π‘Žπ‘— , π‘Ž
¯π‘—+1 ) such that π’œπ‘ = 𝒩𝑐 and πœ‹πœƒπ‘“ π’œπ‘ = 𝕋. Take 𝜁 ∈ ℳ𝑐 ,
and let 𝜁1 and 𝜁2 be its lifts to the double cover. We have that the functions
β„ŽΜƒπ‘ (𝜁1 , πœƒ) + β„ŽΜƒπ‘ (πœƒ, 𝜁2 ) and β„ŽΜƒπ‘ (𝜁2 , πœƒ) + β„ŽΜƒπ‘ (πœƒ, 𝜁1 ) have isolated minima outside of the
lifts of π’œπ‘ .
(2) For 𝑐 = π‘Ž
¯π‘—+1 , take 𝜁 ∈ π’œπ‘ ∩ 𝑋𝑗 and πœ‚ ∈ π’œπ‘ ∩ 𝑋𝑗+1 . We have that both
β„Žπ‘ (𝜁, πœƒ) + β„Žπ‘ (πœƒ, πœ‚) and β„Žπ‘ (πœ‚, πœƒ) + β„Žπ‘ (πœƒ, 𝜁) has isolated minima outside of π’œπ‘ .
This proposition is essentially proved by Cheng and Yan in [CY2], here we briefly
describe their approach.
Consider the Hamiltonian π»πœ–β€² such that conclusions of Theorem 6.2 holds. In the
rest of the section, let’s refer to π»πœ–β€² simply as 𝐻. For now, let us also fix an interval
(¯
π‘Žπ‘— , π‘Ž
¯π‘—+1 ) and consider only cohomology classes with 𝑐𝑓 in that interval. Let Γ𝑗1 =
Ξ“1 (πœ–) ∩ {𝑐, 𝑐𝑓 ∈ (¯
π‘Žπ‘— , π‘Ž
¯π‘—+1 )}, we would like to show by perturbing the Hamiltonian, we
can make the functions β„ŽΜƒπ‘ (πœ‰1 , πœƒ) + β„ŽΜƒπ‘ (πœƒ, πœ‰2 ) and β„ŽΜƒπ‘ (πœ‰2 , πœƒ) + β„ŽΜƒπ‘ (πœƒ, πœ‰1 ) nondegenerate.
Recall that β„ŽΜƒπ‘ is the barrier function defined on the covering space (2𝕋)𝑛 × β„π‘› , and
˜ is the Hamiltonian lifted to the
πœ‰ : (2𝕋)𝑛 × β„π‘› βˆ’β†’ 𝕋𝑛 × β„π‘› is the covering map. 𝐻
covering space.
Define the generating function 𝐺(π‘₯, π‘₯β€² ) : ℝ𝑛 × β„π‘› βˆ’β†’ ℝ by
∫ 1
β€²
𝐺(π‘₯, π‘₯ ) =
inf
𝐿(𝑑, 𝛾, 𝛾),
Λ™
β€²
𝛾(0)=π‘₯,𝛾(1)=π‘₯
0
where 𝐿 is the Lagrangian corresponding to 𝐻. A convenient way of introducing
perturbations to the functions β„ŽΜƒπ‘ is by perturbing the generating functions. Denote
by πœ‹ : ℝ𝑛 βˆ’β†’ 𝕋𝑛 the standard projection.
We consider the following perturbation
𝐺′ (π‘₯, π‘₯β€² ) = 𝐺(π‘₯, π‘₯β€² ) + 𝐺1 (π‘₯β€² )
and denote by β„ŽΜƒβ€²π‘ the corresponding perturbed barrier function. We have the following
statement.
Lemma 6.3. ([CY2], Lemma 7.1) For 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 ∈ (¯
π‘Žπ‘— , π‘Ž
¯π‘—+1 ), the following
hold.
44
P. Bernard, V. Kaloshin, K. Zhang
(1) There exists a family of open sets 𝑂𝑐 βŠ‚ (2𝕋)𝑛 such that the full orbit of any
˜ π‘Λœ) ∈ π’©Λœ ˜ (𝑐) βˆ– π’œΛœ ˜ (𝑐) must intersect 𝑂𝑐 in the πœƒΛœ component.
(πœƒ,
𝐻
𝐻
(2) There exists 𝜌 > 0 such that if we perturb 𝐺(π‘₯, π‘₯β€² ) by function 𝐺1 (π‘₯β€² ) with
supp 𝐺1 βŠ‚ 𝐡𝜌 (𝑒), where 𝐡𝜌 (𝑒) is the ball of radius 𝜌 centered at 𝑒, then for
each 𝑐 such that 𝐡𝜌 (𝑒) βŠ‚ πœ‹ βˆ’1 𝑂𝑐 the corresponding barrier function
β„ŽΜƒβ€²π‘ (πœ‰1 , πœƒ) + β„ŽΜƒβ€²π‘ (πœƒ, πœ‰2 ) = β„ŽΜƒπ‘ (πœ‰1 , πœƒ) + β„ŽΜƒπ‘ (πœƒ, πœ‰2 ) + 𝐺1 (πœƒ)
for each πœƒ ∈ 𝑂𝑐 .
(3) πœ‰π‘‚π‘ ∩ {πœƒ : βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑐)βˆ₯ ≀ 𝜌2 } = βˆ…, in particular, πœ‰π‘‚π‘ ∩ 𝒩𝐻 (𝑐) = βˆ…. Moreover
βˆͺ
π‘ˆΛœ = 𝑐𝑓 ∈(¯π‘Žπ‘— ,¯π‘Žπ‘—+1 ) 𝑂𝑐 is an open set.
Λœβˆ’
As before, let us write Λœπ‘+
𝑐 (πœƒ) = β„ŽΜƒπ‘ (πœ‰1 , πœƒ) + β„ŽΜƒπ‘ (πœƒ, πœ‰2 ) and 𝑏𝑐 (πœƒ) = β„ŽΜƒπ‘ (πœ‰2 , πœƒ) + β„ŽΜƒπ‘ (πœƒ, πœ‰1 ).
Elements of π’©π»Λœ (𝑐) βˆ– π’œπ»Λœ (𝑐) coincide with the minimal set of the functions Λœπ‘±
𝑐 . To
prove that this set is isolated, it suffices to prove its intersection with 𝑂𝑐 is isolated,
as any accumulation point of π’©π»Λœ (𝑐) βˆ– π’œπ»Λœ (𝑐) has a diffeomorphic image in 𝑂𝑐 . We say
that the function Λœπ‘±
𝑐 (πœƒ) is degenerate if its minimal set has at least one accumulation
point. Cheng and Yan proved that it is possible to introduce a perturbation to make
Λœπ‘± nondegenerate for all 𝑐 ∈ Γ𝑗 simultaneously.
1
𝑐
This is not possible in general, if the functions Λœπ‘±
𝑐 behave badly as 𝑐 varies. Since
regularity of Λœπ‘±
in
𝑐
is
hard
to
prove,
Cheng
and
Yan
resolves this problem nicely by
𝑐
introducing an additional parameter. Recall that for each 𝑐 ∈ Γ𝑗1 , the Aubry set π’œΛœ
is an invariant curve on the time-zero section of the invariant cylinder 𝑋𝑗 , call it 𝛾𝑐 .
Fix an arbitrary curve 𝛾0 = {𝑝𝑓 = 𝑝𝑓0 } ∩ {𝑑 = 0} ∩ 𝑋𝑗 , we introduce a parameter 𝜎
which is the area between 𝛾𝑐 and 𝛾0 on the cylinder 𝑋𝑗 ∩ {𝑑 = 0}. 𝜎 is monotone in
𝑐𝑓 and is only defined for 𝑐 ∈ Γ𝑗1 . Cheng and Yan proved that
Lemma 6.4. ([CY2], Lemma 6.4) There exists constant 𝐢 > 0 such that, for 𝜎 and
𝜎 β€² such that 𝑐(𝜎), 𝑐(𝜎 β€² ) ∈ Γ𝑗1 , 𝜁 ∈ π’œπ» (𝑐) and π‘š ∈
/ {βˆ₯πœƒπ‘  βˆ’ πœƒπ‘—π‘  (𝑐(𝜎))βˆ₯ ≀ 𝜌2 } βˆͺ {βˆ₯πœƒπ‘  βˆ’
πœƒπ‘—π‘  (𝑐(𝜎 β€² ))βˆ₯ ≀ 𝜌2 },
√
βˆ£β„Žπ‘(𝜎) (𝜁, π‘š) βˆ’ β„Žπ‘(πœŽβ€² ) (𝜁, π‘š)∣ ≀ 𝐢( ∣𝜎 βˆ’ 𝜎 β€² ∣ + βˆ£π‘(𝜎) βˆ’ 𝑐(𝜎 β€² )∣),
βˆ£β„Žπ‘(𝜎) (π‘š, 𝜁) βˆ’ β„Žπ‘(πœŽβ€² ) (π‘š, 𝜁)∣ ≀ 𝐢(
√
∣𝜎 βˆ’ 𝜎 β€² ∣ + βˆ£π‘(𝜎) βˆ’ 𝑐(𝜎 β€² )∣).
It follows that the function β„Žπ‘(𝜎) can be extended to β„Žπ‘,𝜎 that is 21 βˆ’Hölder in 𝑐
and 𝜎, this regularity turns out to be enough. To see how this is carried out, let us
consider a subset 𝐡𝑑′ (π‘π‘“βˆ— )×𝑅𝑑 (𝑒), where 𝐡𝑑′ (π‘π‘“βˆ— ) = {𝑐 : βˆ£π‘π‘“ βˆ’π‘π‘“βˆ— ∣ < 𝑑′ } and 𝑅𝑑 (𝑒) βŠ‚ 𝕋𝑛
is an open cube centered at 𝑒 with edge 𝑑.
Arnold diffusion along normally hyperbolic invariant cylinders
45
Lemma 6.5. ([CY2], Lemma 7.2) There is a residue set of functions 𝐺1 ∈ 𝐢0π‘Ÿ (𝑅𝑑 (𝑒), ℝ)
such that
Λœπ‘± (πœƒ) + 𝐺1 (πœƒ)
𝑐
has isolated minima in 𝑅𝑑 (𝑒) for each 𝑐 ∈ Γ𝑗1 ∩ 𝐡𝑑′ (𝑐). (𝐢0π‘Ÿ stands for 𝐢 π‘Ÿ functions
with compact support).
Remark 6.1. The nontrivial part of this statement is that the nondegeneracy of Λœπ‘±
𝑐
can be achieved for all 𝑐 ∈ Γ𝑗1 ∩ 𝐡𝑑′ (𝑐) simultaneously. The regularity acquired in
Lemma 6.4 is crucial to the proof. We refer to [CY2] for details.
To construct the desired perturbation to the barrier function, let us state another
lemma, which is a consequence of the upper semi-continuity of the Mañe set on the
Lagrangian.
𝑓
Lemma 6.6. The property that the functions Λœπ‘±
𝑐 are non-degenerate on the set 𝐡𝑑′ (π‘βˆ— )×
𝑅𝑑 (𝑒) survives under sufficiently small perturbation.
We proceed to prove Proposition 6.10. Let 𝐡𝑑′𝑖 (𝑐𝑓𝑖 ) × π‘…π‘‘π‘– (𝑒𝑖 ) βŠ‚ π‘ˆΛœ , be a seβˆͺ
quence of sets such that π‘ˆΛœ = 𝑖 𝐡𝑑′𝑖 (𝑐𝑓𝑖 ) × π‘…π‘‘π‘– (𝑒𝑖 ). We may choose a sequence of
βˆ‘
perturbations 𝐺𝑖 : 𝑅𝑑𝑖 (𝑒𝑖 ) βˆ’β†’ ℝ, and let πΊβ€²π‘˜ (π‘₯, π‘₯β€² ) = 𝐺(π‘₯, π‘₯β€² ) + π‘˜π‘–=1 𝐺𝑖 (π‘₯β€² ) and
Λœπ‘± be the corresponding barrier functions corresponding to the generating function
𝑐,π‘˜
πΊβ€²π‘˜ . We can choose the sequence 𝐺𝑖 inductively such that Λœπ‘±
𝑐 is non-degenerate on
βˆͺπ‘˜
𝑓
𝑗
(𝑐, πœƒ) ∈ 𝑖=1 (𝐡𝑑′𝑖 (𝑐𝑖 ) ∩ Ξ“1 ) × π‘…π‘‘π‘– (𝑒𝑖 ), because new perturbations can be added that
does not disrupt the nondegeneracy already established in the previous steps. By
repeat this process for each interval (¯
π‘Žπ‘— , π‘Ž
¯π‘—+1 ), we have constructed a perturbation to
the generating function 𝐺, such that the first statement of Proposition 6.10 holds.
For the second statement, using the same arguments for Lemma 6.3, one can show
that the same type of conclusions apply to 𝑏±
𝑐 as well.
Lemma 6.7. For each 𝑐 = π‘βˆ— (𝑐𝑓 ) with 𝑐𝑓 = π‘Ž
¯π‘— , 𝑗 = 2, β‹… β‹… β‹… , 𝑙 βˆ’ 1 the following hold.
(1) There exists a family of open sets 𝑂𝑐 βŠ‚ (2𝕋)𝑛 such that the full orbit of any
˜ π‘Λœ) ∈ π’©Λœπ» (𝑐) βˆ– π’œΛœπ» (𝑐) must intersect 𝑂𝑐 in the πœƒΛœ component.
(πœƒ,
(2) There exists 𝑏 > 0 such that if we perturb 𝐺(π‘₯, π‘₯β€² ) by function 𝐺1 (π‘₯β€² ) with
supp 𝐺1 βŠ‚ 𝐡𝑏 (𝑒), where 𝐡𝑏 (𝑒) is the ball of radius 𝑏 centered at 𝑒, then for
each 𝑐 such that 𝐡𝑏 (𝑒) βŠ‚ πœ‹ βˆ’1 𝑂𝑐 the corresponding barrier function
β„Žβ€²π‘ (𝜁, πœƒ) + β„Žβ€²π‘ (πœƒ, πœ‚) = β„Žπ‘ (𝜁, πœƒ) + β„Žπ‘ (πœƒ, πœ‚) + 𝐺1 (πœƒ)
for each πœƒ ∈ 𝑂𝑐 . The same conclusion holds for β„Žπ‘ (πœ‚, πœƒ) + β„Žπ‘ (πœƒ, 𝜁).
46
P. Bernard, V. Kaloshin, K. Zhang
For a fixed 𝑐, it is easy to see 𝑏±
𝑐 (πœƒ) + 𝐺1 (πœƒ) has isolated minimal set in 𝑅𝑑 (𝑒) for
an open and dense set of 𝐺1 . Repeat the arguments for Λœπ‘±
𝑐 , we obtain a perturbation
for which the both statements of Proposition 6.10 hold.
β–‘
Appendix A. Generic conditions
We prove Theorem 2.1 in this section. Consider the following (degeneracy) conditions on the function 𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) : π•‹π‘›βˆ’1 × [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ] βˆ’β†’ ℝ.
[T0] For 𝑝𝑓 ∈ [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ], all local maxima of 𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) is nondegenerate.
[T1] For each 𝑝𝑓 ∈ [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ] and there are at most two distinct πœƒ1𝑠 , πœƒ2𝑠 ∈ π•‹π‘›βˆ’1 such
that βˆ‚πœƒπ‘  𝑍(πœƒπ‘—π‘  , π‘βˆ— (𝑝𝑓 )) = 0 for 𝑗 = 1, 2 and that 𝑍(πœƒ1𝑠 , π‘βˆ— (𝑝𝑓 )) = 𝑍(πœƒ2𝑠 , π‘βˆ— (𝑝𝑓 )).
[T2] For any 𝑝𝑓 ∈ [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ] and distinct πœƒ1𝑠 , πœƒ2𝑠 ∈ π•‹π‘›βˆ’1 such that βˆ‚πœƒπ‘  𝑍(πœƒπ‘—π‘  , π‘βˆ— (𝑝𝑓 )) =
0 for 𝑗 = 1, 2, we have that
βˆ‚π‘π‘“ 𝑍(πœƒ1𝑠 , π‘βˆ— (𝑝𝑓 )) βˆ•= βˆ‚π‘π‘“ 𝑍(πœƒ2𝑠 , π‘βˆ— (𝑝𝑓 )).
Let 𝒰 β€² denote the set of functions in π‘†π‘Ÿ that satisfies one or more of the conditions
[T0]-[T2].
Proposition A.1. 𝒰 β€² is open and dense.
Proof of Theorem 2.1. The set 𝒰 is open, since if 𝐻1 satisfies conditions [G0]-[G2]
with some πœ† > 0, any 𝐻1β€² sufficiently close to 𝐻1 in 𝐢 π‘Ÿ norm satisfies these conditions
with a slightly smaller πœ†β€² > 0.
We now prove that 𝒰 is dense by showing that 𝒰 βŠƒ 𝒰 β€² . The conditions [T0]-[T2]
implies the statement that any 𝑝𝑓 is either a nondegenerate regular point or a nondegenerate bifurcation point, and that there are at most finitely many bifurcation
π‘ βˆ’1
points. To see that [T0]-[T2] also imply conditions [G0]-[G2], let {[π‘Žπ‘— , π‘Žπ‘—+1 ]}π‘—βˆ’0
be
𝑓
the partition of [π‘Žπ‘šπ‘–π‘› , π‘Žπ‘šπ‘Žπ‘₯ ] by bifurcation points. Each 𝑝 ∈ (π‘Žπ‘— , π‘Žπ‘—+1 ) defines a
unique global maximum πœƒπ‘—π‘  (𝑝𝑓 ). The function πœƒπ‘  (𝑝𝑓 ) is continuous since any converging sequence πœƒπ‘  (π‘π‘“π‘˜ ) also converges to a global maximum, and it must be smooth by
implicit function theorem. The function extends to [π‘Žπ‘— , π‘Žπ‘—+1 ] by continuity, and using
the nondegeneracy of the maximum and implicit function theorem, we can extend πœƒπ‘—π‘ 
smoothly to the interval [π‘Žπ‘— βˆ’π‘‘, π‘Žπ‘—+1 +𝑑], such that each πœƒπ‘—π‘  (𝑝𝑓 ) is a nondegenerate local
maxima. Assume that for each 𝑝𝑓 ∈ [π‘Žπ‘— βˆ’π‘‘, π‘Žπ‘—+1 +𝑑] we have βˆ’βˆ‚πœƒ2𝑠 πœƒπ‘  𝑍(πœƒπ‘  , π‘βˆ— (𝑝𝑓 )) β‰₯ 𝑑′ 𝐼
as a quadratic form, hence 𝑍 satisfies [G0] with πœ† = min{𝑑, 𝑑′ }. [G1] and [G2] are
direct consequences of [T0]-[T2].
β–‘
Appendix B. Normally hyperbolic manifold
Let 𝐹 : ℝ𝑛 βˆ’β†’ ℝ𝑛 be a 𝐢 1 vector field. We give sufficient conditions for the
existence of a Normally hyperbolic invariant graph of 𝐹 . We split the space ℝ𝑛 as
Arnold diffusion along normally hyperbolic invariant cylinders
47
ℝ𝑛𝑒 ×ℝ𝑛𝑠 ×ℝ𝑛𝑐 , and denote by π‘₯ = (𝑒, 𝑠, 𝑐) the points of ℝ𝑛 . We denote by (𝐹𝑒 , 𝐹𝑠 , 𝐹𝑐 )
the components of 𝐹 :
𝐹 (π‘₯) = (𝐹𝑒 (π‘₯), 𝐹𝑠 (π‘₯), 𝐹𝑐 (π‘₯)).
We study the flow of 𝐹 in the domain
Ξ© = 𝐡 𝑒 × π΅ 𝑠 × Ξ©π‘
where 𝐡 𝑒 and 𝐡 𝑠 are the open Euclidean balls of radius π‘Ÿπ‘’ and π‘Ÿπ‘  in ℝ𝑛𝑒 and ℝ𝑛𝑠 ,
and Ω𝑐 is a convex open subset of ℝ𝑛𝑐 . We denote by
⎑
⎀
𝐿𝑒𝑒 (π‘₯) 𝐿𝑒𝑠 (π‘₯) 𝐿𝑒𝑐 (π‘₯)
𝐿(π‘₯) = 𝑑𝐹 (π‘₯) = ⎣ 𝐿𝑠𝑒 (π‘₯) 𝐿𝑠𝑠 (π‘₯) 𝐿𝑠𝑐 (π‘₯) ⎦
𝐿𝑐𝑒 (π‘₯) 𝐿𝑐𝑠 (π‘₯) 𝐿𝑐𝑐 (π‘₯)
the linearized vector field at point π‘₯. We assume that βˆ₯𝐿(π‘₯)βˆ₯ is bounded on Ξ©, which
implies that each trajectory of 𝐹 is defined until it leaves Ξ©. We denote by π‘Š 𝑐 the
union of full orbits contained in Ξ©. In other words, this is the set of initial conditions
π‘₯ ∈ Ξ© such that there exists a solution π‘₯(𝑑) : ℝ βˆ’β†’ Ξ© of the equation π‘₯Λ™ = 𝐹 (π‘₯)
satisfying π‘₯(0) = 0. We denote by π‘Š 𝑠𝑐 the set of points whose positive orbit remains
inside Ξ©. In other words, this is the set of initial conditions π‘₯ ∈ Ξ© such that there
exists a solution π‘₯(𝑑) : [0, ∞) βˆ’β†’ Ξ© of the equation π‘₯Λ™ = 𝐹 (π‘₯) satisfying π‘₯(0) = 0.
Finally, we denote by π‘Š 𝑒𝑐 the set of points whose negative orbit remains inside Ξ©. In
other words, this is the set of initial conditions π‘₯ ∈ Ξ© such that there exists a solution
π‘₯(𝑑) : (∞, 0] βˆ’β†’ Ξ© of the equation π‘₯Λ™ = 𝐹 (π‘₯) satisfying π‘₯(0) = 0. These sets have
specific features under the following assumptions:
Hypothesis B.1 (Isolating block). We have:
βˆ™ 𝐹𝑐 = 0 on 𝐡 𝑒 × π΅ 𝑠 × βˆ‚Ξ©π‘ .
¯ 𝑠 × Ξ©Μ„π‘ .
βˆ™ 𝐹𝑒 (𝑒, 𝑠, 𝑐) β‹… 𝑒 > 0 on βˆ‚π΅ 𝑒 × π΅
𝑒
¯ × βˆ‚π΅ 𝑠 × Ξ©Μ„π‘ .
βˆ™ 𝐹𝑠 (𝑒, 𝑠, 𝑐) β‹… 𝑠 < 0 on 𝐡
Hypothesis B.2. There exist positive constants πœ†, π‘š and 𝑀 such that:
βˆ™ 𝐿𝑒𝑒 (π‘₯) β©Ύ πœ†πΌ, 𝐿𝑠𝑠 (π‘₯) β©½ βˆ’πœ†πΌ for each π‘₯ ∈ Ξ© in the sense of quadratic forms.
βˆ™ βˆ₯𝐿𝑒𝑠 (π‘₯)βˆ₯ + βˆ₯𝐿𝑒𝑐 (π‘₯)βˆ₯ + βˆ₯𝐿𝑠𝑠 (π‘₯)βˆ₯ + βˆ₯𝐿𝑠𝑐 (π‘₯)βˆ₯ β©½ π‘š for each π‘₯ ∈ Ξ©.
βˆ™ βˆ₯𝐿𝑐𝑒 (π‘₯)βˆ₯ + βˆ₯𝐿𝑐𝑠 (π‘₯)βˆ₯ + βˆ₯𝐿𝑐𝑐 (π‘₯)βˆ₯ β©½ 𝑀 for each π‘₯ ∈ Ξ©.
Theorem B.1. Assume that Hypotheses B.1 and B.2 hold, and that
π‘š
1
𝐾 :=
⩽√ .
πœ† βˆ’ 2(𝑀 + π‘š)
2
Then the set π‘Š 𝑠𝑐 is the graph of a 𝐢 1 function
𝑀𝑠𝑐 : 𝐡 𝑠 × Ξ©π‘ βˆ’β†’ 𝐡 𝑒 ,
48
P. Bernard, V. Kaloshin, K. Zhang
the set π‘Š 𝑒𝑐 is the graph of a 𝐢 1 function
𝑀𝑒𝑐 : 𝐡 𝑒 × Ξ©π‘ βˆ’β†’ 𝐡 𝑠 ,
and the set π‘Š 𝑐 is the graph of a 𝐢 1 function
𝑀𝑐 : Ω𝑐 βˆ’β†’ 𝐡 𝑒 × π΅ 𝑠 .
Moreover, we have the estimates
βˆ₯𝑑𝑀𝑠𝑐 βˆ₯ β©½ 𝐾,
βˆ₯𝑑𝑀𝑒𝑐 βˆ₯ β©½ 𝐾,
βˆ₯𝑑𝑀𝑐 βˆ₯ β©½ 2𝐾.
Proof. This results can be reduced to several already existing ones or proved directly
by well-known methods. We shall use Theorem 1.1 in [Ya] which is the closest to
our needs because it is expressed in terms of vector fields. We first derive some
conclusions from the isolating block conditions. We denote by πœ‹ 𝑠𝑐 the projection
(𝑒, 𝑠, 𝑐) ?βˆ’β†’ (𝑠, 𝑐), and so on.
Lemma B.1. If Hypothesis B.1 holds, then
πœ‹ 𝑒𝑐 (π‘Š 𝑒𝑐 ) = 𝐡 𝑒 × Ξ©π‘
and
πœ‹ 𝑠𝑐 (π‘Š 𝑠𝑐 ) = 𝐡 𝑠 × Ξ©π‘ .
Moreover, the closures of π‘Š 𝑠𝑐 and π‘Š 𝑒𝑐 satisfy
¯ 𝑠𝑐 βŠ‚ 𝐡 𝑠 × π΅
¯ 𝑐 × Ξ©Μ„π‘ , π‘Š
¯ 𝑒𝑐 βŠ‚ 𝐡
¯ 𝑠 × π΅ 𝑐 × Ξ©Μ„π‘ .
π‘Š
Proof. Let us define 𝑇 + (π‘₯) ∈ [0, ∞] as the first positive time where the orbit of π‘₯
hits the boundary βˆ‚Ξ©. Let us denote by πœ‘(𝑑, π‘₯) the flow of 𝐹 . If 𝑇 (π‘₯) < ∞, we have
πœ‘(𝑇 (π‘₯), π‘₯) ∈ βˆ‚π΅ 𝑒 × π΅ 𝑠 × Ξ©, as follows from Hypothesis B.1. Then, it is easy to check
that the function 𝑇 is continuous, and even 𝐢 1 , at π‘₯.
We prove the first equality of the Lemma by contradiction, and assume that there
exists a point (𝑒, 𝑐) ∈ 𝐡 𝑒 ×Ω𝑐 such that π‘Š 𝑒𝑐 does not intersect the disc {𝑒}×𝐡 𝑠 ×{𝑐}.
Then, the first exit map
𝐡 𝑠 βˆ‹ 𝑠 ?βˆ’β†’ πœ‘(𝑇 (π‘₯), π‘₯) ∈ βˆ‚π΅ 𝑠
¯ 𝑠 to its boundary βˆ‚π΅ 𝑠 . Such
extends by continuity to a continuous retraction from 𝐡
a retraction does not exist. The proof of the other equality is similar.
Finally, we have
)βˆͺ( 𝑒
)
(
¯ 𝑒𝑐 βŠ‚ 𝐡
¯π‘’ × π΅
¯ 𝑠 × Ξ©Μ„π‘ = 𝐡 𝑒 × π΅
¯ 𝑠 × Ξ©Μ„π‘
¯ 𝑠 × Ξ©Μ„π‘ .
π‘Š
βˆ‚π΅ × π΅
¯ 𝑠 × Ξ©Μ„π‘ has a neighborhood formed
Hypothesis B.1 implies that each point of βˆ‚π΅ 𝑒 × π΅
¯ 𝑠 × Ξ©Μ„π‘
of points which leave Ξ© after a small time. As a consequence, the set βˆ‚π΅ 𝑒 × π΅
𝑒𝑐
𝑒𝑐
𝑒
𝑠
𝑐
¯ , and we have proved that π‘Š
¯ βŠ‚ 𝐡 ×𝐡
¯ × Ξ©Μ„ . The other inclusion
can’t intersect π‘Š
can be proved in a similar way.
β–‘
Arnold diffusion along normally hyperbolic invariant cylinders
49
In order to prove the statement of the Theorem concerning π‘Š 𝑠𝑐 , we apply Theorem
1.1 of [Ya]. More precisely, using the notation of that paper, we set
π‘Ž = 𝑠/𝐾,
𝑧 = (𝑒, 𝑐),
𝑓 (π‘Ž, 𝑧) = 𝐹𝑒 (πΎπ‘Ž, 𝑧)/𝐾,
We have the estimates
βˆ‚π‘Ž 𝑓 = 𝐿𝑒𝑒 β©Ύ πœ†,
𝑔(π‘Ž, 𝑧) = (𝐹𝑠 (πΎπ‘Ž, 𝑧), 𝐹𝑐 (πΎπ‘Ž, 𝑧)).
[
]
𝐿𝑠𝑠 𝐿𝑠𝑐
βˆ‚π‘§ 𝑔 =
β©½π‘š+𝑀
𝐿𝑐𝑠 𝐿𝑐𝑐
in the sense of quadratic forms. Moreover, we have the estimates
π‘š
βˆ₯βˆ‚π‘§ 𝑓 βˆ₯ β©½ , βˆ₯βˆ‚π‘Ž 𝑔βˆ₯ β©½ 𝐾(π‘š + 𝑀 ).
𝐾
Since
π‘š + 𝑀 + π‘š/𝐾 + 𝐾(π‘š + 𝑀 ) < 2(π‘š + 𝑀 ) + π‘š/𝐾 = πœ†
we conclude that Hypothesis 2 of [Ya] is satisfied. Hypothesis 1 of [Ya] is verified
by the domain Ξ©, and Hypothesis 3 is precisely the conclusion of Lemma B.1. As a
consequence, we can apply Theorem 1.1 of [Ya], and conclude that the set π‘Š 𝑠𝑐 is the
graph of a 𝐢 1 and 1-Lipschitz map above 𝐡 𝑠 × Ξ©π‘ in (π‘Ž, 𝑧) coordinates, and therefore
the graph of a 𝐾-Lipschitz 𝐢 1 map 𝑀𝑠𝑐 : 𝐡 𝑠 × Ξ©π‘ βˆ’β†’ 𝐡 𝑒 in (𝑒, 𝑠, 𝑐) coordinates.
In order to prove the statement concerning π‘Š 𝑒𝑐 , we apply Theorem 1.1 of [Ya] with
π‘Ž = 𝑒/𝐾,
𝑧 = (𝑠, 𝑐),
𝑓 (π‘Ž, 𝑧) = βˆ’πΉπ‘  (πΎπ‘Ž, 𝑧)/𝐾, 𝑔(π‘Ž, 𝑧) = βˆ’(𝐹𝑒 (πΎπ‘Ž, 𝑧), 𝐹𝑐 (πΎπ‘Ž, 𝑧)).
It is easy to check as above that all hypotheses are satisfied.
Let us now study the set π‘Š 𝑐 = π‘Š 𝑠𝑐 ∩ π‘Š 𝑒𝑐 . First, let us prove that π‘Š 𝑐 is a 𝐢 1
graph above Ω𝑐 . We know that π‘Š 𝑠𝑐 is the graph of a 𝐾-Lipshitz 𝐢 1 function 𝑀𝑠𝑐 (𝑠, 𝑐)
and that π‘Š 𝑒𝑐 is the graph of a 𝐾-Lipshitz 𝐢 1 function 𝑀𝑒𝑐 (𝑒, 𝑐). The point (𝑒, 𝑠, 𝑐)
belongs to π‘Š 𝑐 if and only if
𝑒 = 𝑀𝑠𝑐 (𝑠, 𝑐) and 𝑠 = 𝑀𝑒𝑐 (𝑒, 𝑐),
or in other words if and only if (𝑒, 𝑠) is a fixed point of the 𝐾-Lipschitz 𝐢 1 map
(𝑒, 𝑠) ?βˆ’β†’ (𝑀𝑠𝑐 (𝑠, 𝑐), 𝑀𝑒𝑐 (𝑒, 𝑐)).
¯π‘’ × π΅
¯ 𝑠 , which corFor each 𝑐, this contracting map has a unique fixed point in 𝐡
𝑠𝑐
𝑒𝑐
¯ βˆ©π‘Š
¯ . It follows from Lemma B.1 that this point is
responds to a point of π‘Š
𝑒
𝑠
contained in 𝐡 × π΅ . Then, it depends in a 𝐢 1 way of the parameter 𝑐. We have
proved that π‘Š 𝑐 is the graph of a 𝐢 1 function 𝑀𝑐 . In order to estimate the Lipschitz
constant of this graph, we consider two points (𝑒𝑖 , 𝑠𝑖 , 𝑐𝑖 ), 𝑖 = 0, 1 in Ξ“. We have
βˆ₯𝑒1 βˆ’ 𝑒0 βˆ₯2 β©½ 𝐾 2 (βˆ₯𝑠1 βˆ’ 𝑠0 βˆ₯2 + βˆ₯𝑐1 βˆ’ 𝑐0 βˆ₯2 )
50
P. Bernard, V. Kaloshin, K. Zhang
and
βˆ₯𝑠1 βˆ’ 𝑠0 βˆ₯2 β©½ 𝐾 2 (βˆ₯𝑒1 βˆ’ 𝑒0 βˆ₯2 + βˆ₯𝑐1 βˆ’ 𝑐0 βˆ₯2 ).
Taking the sum gives
and
(1 βˆ’ 𝐾 2 )(βˆ₯𝑒1 βˆ’ 𝑒0 βˆ₯2 + βˆ₯𝑠1 βˆ’ 𝑠0 βˆ₯2 ) β©½ 2𝐾 2 βˆ₯𝑐1 βˆ’ 𝑐0 βˆ₯2
√
2𝐾 2
βˆ₯(𝑒1 , 𝑠1 ) βˆ’ (𝑒0 , 𝑠0 )βˆ₯ β©½
βˆ₯𝑐1 βˆ’ 𝑐0 βˆ₯ β©½ 2𝐾βˆ₯𝑐1 βˆ’ 𝑐0 βˆ₯,
1 βˆ’ 𝐾2
√
β–‘We need an addendum
since 𝐾 β©½ 1/ 2. We conclude that 𝑀𝑐 is 2𝐾-Lipschitz.
for applications:
Proposition B.2. Assume in addition that there exists a translation 𝑔 of ℝ𝑛𝑐 such
that
𝑔(Ω𝑐 ) = Ω𝑐 and 𝐹 ∘ (𝑖𝑑 βŠ— 𝑖𝑑 βŠ— 𝑔) = 𝐹.
Then we have
𝑀𝑠𝑐 ∘ (𝑖𝑑 βŠ— 𝑔) = 𝑀𝑠𝑐 ,
𝑀𝑒𝑐 ∘ (𝑖𝑑 βŠ— 𝑔) = 𝑀𝑒𝑐 ,
𝑀𝑐 ∘ 𝑔 = 𝑀𝑐 .
Proof. It follows immediately from the definition of the sets π‘Š 𝑠𝑐 , π‘Š 𝑒𝑐 and π‘Š 𝑐 that
𝑔(π‘Š 𝑠𝑐 ) = π‘Š 𝑠𝑐 , 𝑔(π‘Š 𝑒𝑐 ) = π‘Š 𝑒𝑐 and 𝑔(π‘Š 𝑐 ) = π‘Š 𝑐 .
β–‘
In applications the first condition of Hypothesis B.1 is usually not satisfied, except
in the case where Ω𝑐 = ℝ𝑛𝑐 . It is thus useful to state a more ”applicable” variant of
the result. given a positive parameter π‘Ÿ, let Ξ©π‘π‘Ÿ be the set of points 𝑐 ∈ ℝ𝑛𝑐 such that
𝑑(𝑐, Ω𝑐 ) < π‘Ÿ. This is a convex open subset of ℝ𝑛𝑐 containing Ω𝑐 . We denote by Ξ©π‘Ÿ
the product 𝐡 𝑒 × π΅ 𝑠 × Ξ©π‘π‘Ÿ .
Proposition B.3. Assume that there exists πœ†, π‘š, 𝑀, π‘Ÿ > 0 such that
¯ 𝑠 × Ξ©Μ„π‘π‘Ÿ .
βˆ™ 𝐹𝑒 (𝑒, 𝑠, 𝑐) β‹… 𝑒 > 0 on βˆ‚π΅ 𝑒 × π΅
𝑒
¯ × βˆ‚π΅ 𝑠 × Ξ©Μ„π‘π‘Ÿ .
βˆ™ 𝐹𝑠 (𝑒, 𝑠, 𝑐) β‹… 𝑠 < 0 on 𝐡
βˆ™ 𝐿𝑒𝑒 (π‘₯) β©Ύ πœ†πΌ, 𝐿𝑠𝑠 (π‘₯) β©½ βˆ’πœ†πΌ for each π‘₯ ∈ Ξ©π‘Ÿ in the sense of quadratic forms.
βˆ™ βˆ₯𝐿𝑒𝑠 (π‘₯)βˆ₯ + βˆ₯𝐿𝑒𝑐 (π‘₯)βˆ₯ + βˆ₯𝐿𝑠𝑠 (π‘₯)βˆ₯ + βˆ₯𝐿𝑠𝑐 (π‘₯)βˆ₯ β©½ π‘š for each π‘₯ ∈ Ξ©π‘Ÿ .
βˆ™ βˆ₯𝐿𝑐𝑒 (π‘₯)βˆ₯ + βˆ₯𝐿𝑐𝑠 (π‘₯)βˆ₯ + βˆ₯𝐿𝑐𝑐 (π‘₯)βˆ₯ + 2βˆ₯𝐹𝑐 (π‘₯)βˆ₯/π‘Ÿ β©½ 𝑀 for each π‘₯ ∈ Ξ©π‘Ÿ .
Assume Furthermore that
1
π‘š
⩽√ .
𝐾 :=
πœ† βˆ’ 2(𝑀 + π‘š)
2
1
𝑐
Then, there exists a 𝐢 function 𝜌 : Ξ©π‘Ÿ βˆ’β†’ [0, 1] which is equal to 1 on Ω𝑐 and such
that the vector field
𝐹˜ (𝑒, 𝑠, 𝑐) := (𝐹𝑒 (𝑒, 𝑠, 𝑐), 𝐹𝑐 (𝑒, 𝑠, 𝑐), 𝜌(𝑐)𝐹𝑐 (𝑒, 𝑠, 𝑐))
satisfies all the hypotheses of Theorem B.1 on Ξ©π‘Ÿ . Note that 𝐹˜ = 𝐹 on Ξ©.
Arnold diffusion along normally hyperbolic invariant cylinders
51
Proof. We take a function 𝜌(𝑐) such that :
βˆ™ 𝜌 = 0 near the boundary of Ξ©π‘π‘Ÿ ,
βˆ™ 𝜌 = 1 on Ω𝑐 ,
βˆ™ βˆ₯π‘‘πœŒβˆ₯ β©½ 2/π‘Ÿ.
˜ βˆ—βˆ— the variational matrix associated to 𝐹˜ , we see that
Denoting by 𝐿
˜ 𝑐𝑒 (𝑒, 𝑠, 𝑐) = 𝜌(𝑐)𝐿𝑐𝑒 (𝑒, 𝑠, 𝑐), 𝐿
˜ 𝑐𝑠 (𝑒, 𝑠, 𝑐) = 𝜌(𝑐)𝐿𝑐𝑠 (𝑒, 𝑠, 𝑐)
𝐿
and
˜ 𝑐𝑐 (𝑒, 𝑠, 𝑐) = 𝜌(𝑐)𝐿𝑐𝑐 (𝑒, 𝑠, 𝑐) + π‘‘πœŒ(𝑒, 𝑠, 𝑐) βŠ— 𝐹𝑐 (𝑒, 𝑠, 𝑐).
𝐿
As a consequence, we have
˜ 𝑐𝑒 (π‘₯)βˆ₯+βˆ₯𝐿
˜ 𝑐𝑠 (π‘₯)βˆ₯ + βˆ₯𝐿
˜ 𝑐𝑐 (π‘₯)βˆ₯ =
βˆ₯𝐿
(
)
= 𝜌(𝑐) βˆ₯𝐿𝑐𝑒 (π‘₯) + βˆ₯𝐿𝑐𝑠 (π‘₯)βˆ₯ + βˆ₯𝐿𝑐𝑐 (π‘₯)βˆ₯ + βˆ₯𝐹𝑐 (π‘₯)βˆ₯βˆ₯π‘‘πœŒ(𝑐)βˆ₯
β©½ βˆ₯𝐿𝑐𝑒 (π‘₯) + βˆ₯𝐿𝑐𝑠 (π‘₯)βˆ₯ + βˆ₯𝐿𝑐𝑐 (π‘₯)βˆ₯ + 2βˆ₯𝐹𝑐 (π‘₯)βˆ₯/π‘Ÿ β©½ 𝑀.
β–‘
˜ 𝑠𝑐 , π‘Š
˜ 𝑒𝑐 , π‘Š
˜ 𝑐 associated to 𝐹˜
Under the hypotheses of Proposition B.3, the sets π‘Š
are graphs of 𝐢 1 functions
π‘€Λœ 𝑠𝑐 : 𝐡 𝑠 × Ξ©π‘π‘Ÿ βˆ’β†’ 𝐡 𝑒 ,
which satisfying the estimates
π‘€Λœ 𝑒𝑐 : 𝐡 𝑒 × Ξ©π‘π‘Ÿ βˆ’β†’ 𝐡 𝑠 ,
βˆ₯π‘‘π‘€Λœ 𝑠𝑐 βˆ₯ β©½ 𝐾,
The restrictions to Ξ©
˜ 𝑠𝑐 ∩ Ξ©,
𝒲 𝑠𝑐 = π‘Š
βˆ₯π‘‘π‘€Λœ 𝑒𝑐 βˆ₯ β©½ 𝐾,
˜ 𝑒𝑐 ∩ Ξ©,
𝒲 𝑒𝑐 = π‘Š
π‘€Λœ 𝑐 : Ξ©π‘π‘Ÿ βˆ’β†’ 𝐡 𝑒 × π΅ 𝑠
βˆ₯π‘‘π‘€Λœ 𝑐 βˆ₯ β©½ 2𝐾.
˜ 𝑐 ∩ Ξ©,
𝒲 𝑐 = 𝒲 𝑠𝑐 ∩ 𝒲 𝑒𝑐 = π‘Š
are weakly invariant by 𝐹 in the sense that this vector field is tangent to them. They
satisfy various interesting properties. For example, each 𝐹 -invariant set contained in
Ξ© is contained in 𝒲 𝑐 .
References
[Ar1]
[Ar2]
[Be1]
[Be2]
[Be3]
Arnold, V. Instabilities in dynamical systems with several degrees of freedom, Sov Math Dokl
5 (1964), 581–585.
Arnold, V. Mathematical methods of classical mechanics, 2nd edition, Graduate Texts in
Mathematics, Springer, 1989.
Bernard, P. The dynamics of pseudographs in convex Hamiltonian systems. J. Amer. Math.
Soc. 21 (2008), no. 3, 615–669.
Bernard, P. Symplectic aspects of Mather theory. Duke Math. J. 136 (2007), 401–420
Bernard, P. Large normally hyperbolic cylinders in a priori stable Hamiltonian systems.
Annales Henri Poincaré 11 (2010), No. 5, 929–942.
52
[BK]
[CY1]
[CY2]
[DH]
[Fa]
[KZZ]
[Ma1]
[Ma2]
[Ma3]
[Ma4]
[Ma5]
[MF]
[Ya]
P. Bernard, V. Kaloshin, K. Zhang
Bourgain J. and Kaloshin V. On diffusion in high-dimensional Hamiltonian systems. J.
Funct. Anal. 229(1) (2005), 1–61.
Cheng, Ch.-Q. and Yan, J. Existence of diffusion orbits in a priori unstable Hamiltonian
systems. J. Diff Geom. 67 (2004), 457–517
Cheng, Ch.-Q. and Yan, J. Arnold diffusion in Hamiltonian systems a priori unstable case.
J. Diff Geom. 82 (2009), 229–277
Delshams, A. and Huguet, G. Geography of resonances and Arnold diffusion in a priori
unstable Hamiltonian systems. Nonlinearity 22 (2009), no. 8, 1997–2077.
Fathi, A. A. Weak KAM theorem in Lagrangian dynamics, fifth prelimiary edition, book
preprint.
Kaloshin, V. Zhang, K. Zheng, Y. Almost dense orbit on energy surface, Proceedings of
XVITH International Congress on Mathmatical Physics. Prague, Czech Republic, 2009.
Edited by Pavel Exner (Doppler Institute, Prague, Czech Republic). Published by World
Scientific Publishing Co. Pte. Ltd., 314-322.
Mather, J. Action minimizing invariant measures for positive definite Lagrangian systems,
Math. Z. 207 (1991), 169–207.
Mather J. Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 13491386.
Mather, J. Arnold diffusion. I. Announcement of results. (Russian) Sovrem. Mat. Fundam.
Napravl. 2 (2003), 116–130 (electronic); translation in J. Math. Sci. (N. Y.) 124 (2004), no.
5, 5275–5289.
Mather, J. Arnold diffusion II, prerpint, 2008, 183 pp.
Mather, J. Lecture course on Arnold diffusion, Maryland, spring 2010, 15 lectures.
Mather, J and Forni, G. Action minimizing orbits in Hamiltonian systems. Transition to
chaos in classical and quantum mechanics (Montecatini Terme, 1991), 92186, Lecture Notes
in Math., 1589, Springer, Berlin, 1994.
Yang, D. An invariant manifold for ODEs and its applications, preprint,
http://arxiv.org/abs/0909.1103v1.
βˆ— - Université Paris - Dauphine,
# - Penn State University, University of Maryland at College Park,
βˆ—βˆ— - University of Toronto.