Simulation of Molecular Bonds Rupture in Dynamic Force

Simulation of Single Molecular Bond Rupture
in Dynamic Force Spectroscopy
Prepared for MatSE385 by
Fang Li(TAM)
Samson Odunuga(MatSE)
Phenomenological description of bonds rupture
dS1 t 
 k  t S1 t   k  t 1  S1 t 
dt
S1 t 
Probability of being in state 1 at time t
Pt   
dS1 t 
Probability distribution of lifetime
dt
Probability of lifetime within [t, t+dt]
 Pf  
Pf  
dS1 f  1
   k  f S1 f   k  f 1  S1 f 
df
kv
1
 Pt 
kv
f  kvt
Dissociation rate
Bell’s Expression
1
k  t   k 0 Exp[
f x ]
k BT
k 0 Intrinsic dissociation rate
Recent Explanation
L ts
Eb
Eb
D
1
k0 
Exp[]  Exp[]
L c L ts
k BT
tD
k BT
Eb
1
1
Eb  f t x ]
k  t   Exp[tD
k BT
? x  : xmin , x ts ,
xts  xmin 
Lc
Rupture forces for a non-reversible bond
Probability distribution of rupture forces




k0
 f x
Pf  
Exp   f x  
e
1 
kv
kvx


k 0
 kvx
x  f  ln
 k0
*
 k0
x  f  Exp
 kvx




  k0
 E1 
  kvx

 
E1 x    e y dy
0
y
1

1
k BT
High loading rate




 kvx
0.5772 


x  f  ln
e
 k0

Low loading rate
x  f 
kvx
k0
Modeling the Pulling Experiment
V
Lennard-Jones potential
Z0
E0
Zmin
ZFmax
z 0 12
z0 6
U LJ ( z )  4 E 0 [( )  ( ) ]
z
z
dU LJ ( z )
 0; z
 6 2z0
min
dz
zz
min
d 2U LJ ( z )
26
6

0
;
z

z0
2
F
max
7
dz
zz
Fmax
405 E 0
Fmax  U LJ ( z
)
Fmax
169 z 0
Nanoscopic description of the pulling experiment
dz
D

[ F  f ] Overdamped Langevin Equation
dt k B T
DF
z 
t  random( z )
k BT
U ( z )  4E0 [(
F ( z) 
z 0 12
z
1
)  ( 0 ) 6 ]  k (vt  z  z min ) 2
z
z
2
E z
z
dU
 24 0 [( 0 ) 7  2( 0 )13 ]  k vt  z  z min 
dz
z0 z
z
random( z )
Brownian displacement
E random( z )  0
 2 random( z )  2 Dt
Simulate the Pulling Experiment
Initial Position
t=0, Z=Z min,
Compute F(z)
Move cantilever end
Move the particle
Measure force
No
Detached
yes
E0 z 0 7
z 0 13
F ( z )  24 [( )  2( ) ]  k vt  z n  z min 
z0 z
z
z c n 1  z c n   vt
z n 1  z n 
DF
t  random( z )
k BT
F  k c vt  z n 1  z min 
Forced in spring is
the rupture force
Dimensionless description
Dimensionless distance and time
z

z0
Dt
 2
z0
Dimensionless displacement of the particle

1
 U  1
   random   48 0  13  7
2

 k BT  
Dimensionless loading rate
 random
vz0

D
  k c z 02 vz0 k c z 02
  


  k BT D k BT

z min  

  
 
z 0  


Scaled Units
E 0 : 1K B T z 0 : 1nm
Brownian displacement
E0
F:
 4pN
z0
 random(  )  2
E0
k : 2  4pN/nm
z0
Erandom(  )  0
2
Brownian displacement: Random number generation
function ran1 (Bayes et Duham NR pp. 270-271)
•I j+1 = I j (mod m)
•generates uniform deviates (0, 1]
•adjusts against low order correlations
function gasdev (Box-Mueller method NR pp. 279-280)
• generates random deviates with standard normal distribution
Transformation p (x) = (22)-1/2 exp-[(x-<x>)2/22]
• x = <x> + x’
Single Molecular Bond Rupture
Detachment under low loading rate
2
1.2
1.4
1.6
1.8
2
-2
-4
-6
E0  5K B T ; z 0  0.1nm; T  300K; D  10 18 m 2  s 1
k m  3N  m 1 ; k c  0.03N  m 1
2.2
2.4
Detachment under high loading rate
1.2
1.4
1.6
1.8
2
2.2
-5
-10
-15
-20
-25
E0  5K B T ; z 0  0.1nm; T  300K; D  10 18 m 2  s 1
k m  3N  m 1 ; k c  0.03N  m 1
2.4
Mean rupture force V.S loading rates
Mean rupture force V.S loading rates
E0  20K B T
E0  10K B T
E0  5K B T
E0  2.5K B T
z0  0.1nm


D  10 18 m2 s 1 ; T  300K


km  3N  m 1 ; kc  0.03N  m 1
Rupture of Multiple Parallel Molecular Bonds
under Dynamic Loading
k m kc
Fm t   k m xm t  
vt
N t k m  k c
Bell’s Expression
1
k  t   k 0 Exp[
f t x  ]
k BT
Time dependent decrease of the bonds number
1
 t N   N t k 0 Exp[
Fm t x  ]
k BT
Conclusions
• The model predicts, as it is observed experimentally, the
rupture force measured is an increasing function of the
loading rate.
• At high loading rate, the rupture force equal to the
maximum force corresponding to the LJ potential.
• At low loading rate, the thermal fluctuations take an
important role in the detachment process.
Acknowledgements
Prof. Duane Johnson
Prof. Deborah Leckband