Simulation of Single Molecular Bond Rupture in Dynamic Force Spectroscopy Prepared for MatSE385 by Fang Li(TAM) Samson Odunuga(MatSE) Phenomenological description of bonds rupture dS1 t k t S1 t k t 1 S1 t dt S1 t Probability of being in state 1 at time t Pt dS1 t Probability distribution of lifetime dt Probability of lifetime within [t, t+dt] Pf Pf dS1 f 1 k f S1 f k f 1 S1 f df kv 1 Pt kv f kvt Dissociation rate Bell’s Expression 1 k t k 0 Exp[ f x ] k BT k 0 Intrinsic dissociation rate Recent Explanation L ts Eb Eb D 1 k0 Exp[] Exp[] L c L ts k BT tD k BT Eb 1 1 Eb f t x ] k t Exp[tD k BT ? x : xmin , x ts , xts xmin Lc Rupture forces for a non-reversible bond Probability distribution of rupture forces k0 f x Pf Exp f x e 1 kv kvx k 0 kvx x f ln k0 * k0 x f Exp kvx k0 E1 kvx E1 x e y dy 0 y 1 1 k BT High loading rate kvx 0.5772 x f ln e k0 Low loading rate x f kvx k0 Modeling the Pulling Experiment V Lennard-Jones potential Z0 E0 Zmin ZFmax z 0 12 z0 6 U LJ ( z ) 4 E 0 [( ) ( ) ] z z dU LJ ( z ) 0; z 6 2z0 min dz zz min d 2U LJ ( z ) 26 6 0 ; z z0 2 F max 7 dz zz Fmax 405 E 0 Fmax U LJ ( z ) Fmax 169 z 0 Nanoscopic description of the pulling experiment dz D [ F f ] Overdamped Langevin Equation dt k B T DF z t random( z ) k BT U ( z ) 4E0 [( F ( z) z 0 12 z 1 ) ( 0 ) 6 ] k (vt z z min ) 2 z z 2 E z z dU 24 0 [( 0 ) 7 2( 0 )13 ] k vt z z min dz z0 z z random( z ) Brownian displacement E random( z ) 0 2 random( z ) 2 Dt Simulate the Pulling Experiment Initial Position t=0, Z=Z min, Compute F(z) Move cantilever end Move the particle Measure force No Detached yes E0 z 0 7 z 0 13 F ( z ) 24 [( ) 2( ) ] k vt z n z min z0 z z z c n 1 z c n vt z n 1 z n DF t random( z ) k BT F k c vt z n 1 z min Forced in spring is the rupture force Dimensionless description Dimensionless distance and time z z0 Dt 2 z0 Dimensionless displacement of the particle 1 U 1 random 48 0 13 7 2 k BT Dimensionless loading rate random vz0 D k c z 02 vz0 k c z 02 k BT D k BT z min z 0 Scaled Units E 0 : 1K B T z 0 : 1nm Brownian displacement E0 F: 4pN z0 random( ) 2 E0 k : 2 4pN/nm z0 Erandom( ) 0 2 Brownian displacement: Random number generation function ran1 (Bayes et Duham NR pp. 270-271) •I j+1 = I j (mod m) •generates uniform deviates (0, 1] •adjusts against low order correlations function gasdev (Box-Mueller method NR pp. 279-280) • generates random deviates with standard normal distribution Transformation p (x) = (22)-1/2 exp-[(x-<x>)2/22] • x = <x> + x’ Single Molecular Bond Rupture Detachment under low loading rate 2 1.2 1.4 1.6 1.8 2 -2 -4 -6 E0 5K B T ; z 0 0.1nm; T 300K; D 10 18 m 2 s 1 k m 3N m 1 ; k c 0.03N m 1 2.2 2.4 Detachment under high loading rate 1.2 1.4 1.6 1.8 2 2.2 -5 -10 -15 -20 -25 E0 5K B T ; z 0 0.1nm; T 300K; D 10 18 m 2 s 1 k m 3N m 1 ; k c 0.03N m 1 2.4 Mean rupture force V.S loading rates Mean rupture force V.S loading rates E0 20K B T E0 10K B T E0 5K B T E0 2.5K B T z0 0.1nm D 10 18 m2 s 1 ; T 300K km 3N m 1 ; kc 0.03N m 1 Rupture of Multiple Parallel Molecular Bonds under Dynamic Loading k m kc Fm t k m xm t vt N t k m k c Bell’s Expression 1 k t k 0 Exp[ f t x ] k BT Time dependent decrease of the bonds number 1 t N N t k 0 Exp[ Fm t x ] k BT Conclusions • The model predicts, as it is observed experimentally, the rupture force measured is an increasing function of the loading rate. • At high loading rate, the rupture force equal to the maximum force corresponding to the LJ potential. • At low loading rate, the thermal fluctuations take an important role in the detachment process. Acknowledgements Prof. Duane Johnson Prof. Deborah Leckband
© Copyright 2026 Paperzz