Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 Phil. Trans. R. Soc. A (2008) 366, 1025–1054 doi:10.1098/rsta.2007.2060 Published online 26 June 2007 Real-valued algebro-geometric solutions of the Camassa–Holm hierarchy B Y F RITZ G ESZTESY 1, * AND H ELGE H OLDEN 2 1 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA 2 Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway We provide a detailed treatment of real-valued, smooth and bounded algebro-geometric solutions of the Camassa–Holm (CH) hierarchy and describe the associated isospectral torus. We employ Dubrovin-type equations for auxiliary divisors and certain aspects of direct and inverse spectral theory for self-adjoint Hamiltonian systems. In particular, we rely on Weyl–Titchmarsh theory for singular (canonical) Hamiltonian systems. We also briefly discuss real-valued algebro-geometric solutions with a cusp behaviour. While we focus primarily on the case of stationary algebro-geometric CH solutions, we note that the time-dependent case subordinates to the stationary one with respect to isospectral torus questions. Keywords: Camassa–Holm hierarchy; real-valued algebro-geometric solutions; isospectral tori; self-adjoint Hamiltonian systems; Weyl–Titchmarsh theory 1. Introduction In Gesztesy & Holden (2002) we provided a detailed treatment of the Camassa– Holm (CH) hierarchy with special emphasis on its algebro-geometric solutions. The first nonlinear partial differential equation of this hierarchy, the Camassa– Holm equation, also known as the dispersive shallow water equation (Camassa & Holm 1993) is given by 4ut K uxxt K2uuxxx K4ux uxx C 24uux Z 0; ðx; tÞ 2R2 ð1:1Þ (choosing a convenient scaling of x, t). For various aspects of local and global existence, and uniqueness of solutions of (1.1), wave breaking phenomena, soliton-type solutions (‘peakons’), complete integrability aspects, such as infinitely many conservation laws, (bi-)Hamiltonian formalism, Bäcklund transformations, infinite dimensional symmetry groups, etc., we refer to the literature provided in Gesztesy & Holden (2002, 2003, ch. 5). The case of spatially periodic solutions, the corresponding inverse spectral problem, isospectral classes of solutions and quasi-periodicity of solutions with respect * Author for correspondence ([email protected]). One contribution of 15 to a Theme Issue ‘30 years of finite-gap integration’. 1025 This journal is q 2007 The Royal Society Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1026 F. Gesztesy and H. Holden to time are discussed in Constantin (1997a,b, 1998a,b) and Constantin & McKean (1999). Moreover, algebro-geometric solutions of (1.1) and their properties are studied in Alber & Fedorov (2000, 2001), Alber et al. (2001) and Gesztesy & Holden (2002, 2003, ch. 5). In §2, we recall the basic polynomial recursion formalism that defines the CH hierarchy using a zero-curvature approach. Section 3 recalls the stationary CH hierarchy and the associated algebro-geometric formalism. Section 4 provides a brief summary of self-adjoint canonical systems as needed in this paper, and §5 finally discusses the principal result of this paper, the class of real-valued, smooth and bounded algebro-geometric solutions of the CH hierarchy and the associated isospectral torus. We also briefly discuss real-valued algebro-geometric solutions with a cusp behaviour (cf. (5.80)). We focus primarily on the case of stationary CH hierarchy solutions as the time-dependent case subordinates to the stationary one with respect to isospectral torus questions, a fact that is briefly commented on at the end of §5. This paper should be viewed as a companion to our treatment (Gesztesy & Holden 2002, 2003, ch. 5) of the CH hierarchy and we refer to it for background material and pertinent references on the subject. 2. The CH hierarchy, recursion relations and hyperelliptic curves In this section, we review the basic construction of the Camassa–Holm hierarchy using a zero-curvature approach following (Gesztesy & Holden 2002, 2003, ch. 5). Throughout this section, we suppose the following hypothesis (N0 Z Ng f0g). Hypothesis 2.1. In the stationary case, we assume that dm u u 2CNðRÞ; 2LNðRÞ; m 2N0 : dx m In the time-dependent case (cf. (2.28)–(2.35)), we suppose vm u uð$; tÞ 2CNðRÞ; ð$; tÞ 2LNðRÞ; m 2N0 ; vx m ð2:1Þ t 2R; ð2:2Þ uðx; $Þ; uxx ðx; $Þ 2C 1 ðRÞ; x 2R: We start by formulating the basic polynomial set-up. One defines ff[ g[2N0 recursively by f0 Z 1; f[ ;x ZK2Gð2ð4uK uxx Þf[K1;x C ð4ux K uxxx Þf[K1 Þ; where G is given by N N G : L ðRÞ/ L ðRÞ; 1 ðGvÞðxÞ Z 4 ð dy eK2jxKyj vðyÞ; x 2R; [ 2N; ð2:3Þ v 2LNðRÞ: R ð2:4Þ One observes that G is the resolvent of minus the one-dimensional Laplacian at energy parameter equal to K4, i.e. K1 d2 : ð2:5Þ G Z K 2 C4 dx Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1027 Real-valued algebro-geometric solutions The first coefficient reads as follows: f1 ZK2u C c1 ; ð2:6Þ where c1 is an integration constant. Subsequent coefficients are non-local with respect to u. At each level, a new integration constant, denoted by c[ , is introduced. Moreover, we introduce coefficients fg[ g[2N0 and fh[ g[2N0 by ð2:7Þ g[ Z f[ C 12 f[ ;x ; h[ Z ð4uK uxx Þf[ K g[ C1;x ; [ 2N0 : Explicitly, one computes f0 Z 1; f1 ZK2u C c1 ; f2 Z 2u2 C 2G u 2x C 8u 2 C c1 ðK2uÞ C c2 ; g0 Z 1; g1 ZK2uK ux C c1 ; g2 Z 2u 2 C 2uux C 2G u 2x C ux uxx C 8uux C 8u 2 C c1 ðK2uK ux Þ C c2 ; h 0 Z 4u C 2ux ; h 1 ZK2u 2x K4uux K8u2 K 2G ux uxxx C u 2xx C 2ux uxx C 8uuxx C 8u 2x C 16uux ð2:8Þ Cc1 ð4u C 2ux Þ; etc: Given hypothesis 2.1, one introduces the 2!2 matrix U by ! K1 1 ; x 2R; U ðz; xÞ Z z K1 ð4uðxÞK uxx ðxÞÞ 1 and for each n 2N0 , the following 2!2 matrix Vn by ! KGn ðz; xÞ Fn ðz; xÞ ; n 2N0 ; z 2Cnf0g; Vn ðz; xÞ Z z K1 Hn ðz; xÞ Gn ðz; xÞ ð2:9Þ x 2R; ð2:10Þ assuming Fn, Gn and Hn to be polynomials of degree n with respect to z and C N in x. Postulating the zero-curvature condition KVn;x ðz; xÞ C ½U ðz; xÞ; Vn ðz; xÞ Z 0; ð2:11Þ Fn;x ðz; xÞ Z 2Gn ðz; xÞK 2Fn ðz; xÞ; ð2:12Þ zGn;x ðz; xÞ Z ð4uðxÞK uxx ðxÞÞFn ðz; xÞK Hn ðz; xÞ; ð2:13Þ Hn;x ðz; xÞ Z 2Hn ðz; xÞK 2ð4uðxÞK uxx ðxÞÞGn ðz; xÞ: ð2:14Þ one finds From (2.12) to (2.14) one infers that d 1 d detðVn ðz; xÞÞ ZK ðzGn ðz; xÞ2 C Fn ðz; xÞHn ðz; xÞÞ Z 0 dx z dx ð2:15Þ and hence z 2 Gn ðz; xÞ2 C zFn ðz; xÞHn ðz; xÞ Z R2nC2 ðzÞ; Phil. Trans. R. Soc. A (2008) ð2:16Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1028 F. Gesztesy and H. Holden where the polynomial R 2nC2 of degree 2nC2 is x -independent, 2nC1 Y ðz K Em Þ; E0 ; E1 ; .; E2n 2C; E2nC1 Z 0: R2nC2 ðzÞ Z ð2:17Þ mZ0 Next, one makes the ansatz that Fn, Hn and Gn are polynomials of degree n, related to the coefficients f[ , h[ and g[ by n n n X X X fnK[ ðxÞz [ ; Gn ðz; xÞ Z gnK[ ðxÞz [ ; Hn ðz; xÞ Z hnK[ ðxÞz [ : Fn ðz; xÞ Z [ Z0 [ Z0 [ Z0 ð2:18Þ Insertion of (2.18) into (2.12)–(2.14) then yields the recursion relations (2.3), (2.4) and (2.7) for f[ and g[ for [Z0, ., n. For fixed n2N, we obtain the recursion (2.7) for h[ for [Z0, ., nK1 and hn Z ð4uK uxx Þfn : ð2:19Þ (When nZ0 one directly gets h0 Z ð4uK uxx Þ.) Moreover, taking zZ0 in (2.16) yields 2n Y Em : ð2:20Þ fn ðxÞhn ðxÞ ZK mZ0 In addition, one finds hn;x ðxÞK 2hn ðxÞ C 2ð4uðxÞK uxx ðxÞÞgn ðxÞ Z 0; n 2N0 : ð2:21Þ Using the relations (2.19) and (2.7) permits one to write (2.21) as s-CHn ðuÞ Z ðuxxx K4ux Þfn K 2ð4uK uxx Þfn;x Z 0; n 2N0 : ð2:22Þ Varying n 2N0 in (2.22) then defines the stationary CH hierarchy. We record the first few equations explicitly s-CH0 ðuÞ Z uxxx K4ux Z 0; s-CH1 ðuÞ ZK2uuxxx K4ux uxx C 24uux C c1 ðuxxx K4ux Þ Z 0; s-CH2 ðuÞ Z 2u2 uxxx K8uux uxx K40u 2 ux C 2ðuxxx K4ux ÞG u 2x C 8u 2 K8ð4uK uxx ÞGðux uxx C 8uux Þ Cc1 ðK2uuxxx K4ux uxx C 24uux Þ C c2 ðuxxx K4ux Þ Z 0; etc: ð2:23Þ By definition, the set of solutions of (2.22), with n ranging in N0, represents the class of algebro-geometric CH solutions. If u satisfies one of the stationary CH equations in (2.22) for a particular value of n, then it satisfies infinitely many such equations of order higher than n for certain choices of integration constants c[ . At times, it will be convenient to abbreviate (algebro-geometric) stationary CH solutions u simply as CH potentials. Using equations (2.12)–(2.14), one can also derive individual differential equations for Fn and Hn. Focusing on Fn only, one obtains Fn;xxx ðz; xÞK4ðz K1 ð4uðxÞK uxx ðxÞÞ C 1ÞFn;x ðz; xÞ K 2z K1 ð4ux ðxÞK uxxx ðxÞÞFn ðz; xÞ Z 0 Phil. Trans. R. Soc. A (2008) ð2:24Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1029 Real-valued algebro-geometric solutions and Kðz 2 =2ÞFn;xx ðz; xÞFn ðz; xÞ C ðz 2 =4ÞFn;x ðz; xÞ2 C z 2 Fn ðz; xÞ2 C zð4uðxÞK uxx ðxÞÞFn ðz; xÞ2 Z R2nC2 ðzÞ: ð2:25Þ Equation (2.25) leads to an explicit determination of the integration constants c1 ; .; cn in the stationary CH equations (2.22) in terms of the zeros E0Z0, E1 ; .; E2nC1 of the associated polynomial R 2nC2 in (2.17). In fact, one can prove c[ Z c[ ðEÞ; ð2:26Þ [ Z 0; .; n; where c0 ðE Þ Z 1; ck ðEÞZK k X j1 ;.;j2nC1Z0 ð2j1 Þ! /ð2j2nC1 Þ! 2 2k 2 ðj1 !Þ /ðj2nC1 !Þ2 ð2j1 K1Þ /ð2j2nC1 K1Þ j1C/Cj2nC1Zk 2nC1 !E j11 .E j2nC1 ; k 2N: ð2:27Þ Next, we turn to the time-dependent CH hierarchy. Introducing a deformation parameter tn 2R into u (i.e. replacing u(x) by uðx; tn Þ), the definitions (2.9), (2.10) and (2.18) of U, Vn and Fn, Gn and Hn, respectively, still apply. The corresponding zero-curvature relation then reads Utn ðz; x; tn ÞK Vn;x ðz; x; tn Þ C ½U ðz; x; tn Þ; Vn ðz; x; tn Þ Z 0; n 2N0 ; ð2:28Þ which results in the following set of time-dependent equations: 4utn ðx; tn ÞK uxxtn ðx; tn ÞK Hn;x ðz; x; tn Þ C 2Hn ðz; x; tn Þ K 2ð4uðx; tn ÞK uxx ðx; tn ÞÞGn ðz; x; tn Þ Z 0; Fn;x ðz; x; tn Þ Z 2Gn ðz; x; tn ÞK 2Fn ðz; x; tn Þ; ð2:29Þ ð2:30Þ zGn;x ðz; x; tn Þ Z ð4uðx; tn ÞK uxx ðx; tn ÞÞFn ðz; x; tn ÞK Hn ðz; x; tn Þ: ð2:31Þ Inserting the polynomial expressions for Fn, Hn and Gn into (2.30) and (2.31), respectively, first yields recursion relations (2.3) and (2.7) for f[ and g[ for [ Z 0; .; n. For fixed n2N, we obtain from (2.29) the recursion for h[ for [ Z 0; .; nK1 and hn Z ð4uK uxx Þfn : ð2:32Þ (When nZ0 one directly gets h0 Z ð4uK uxx Þ.) In addition, one finds 4utn ðx; tn ÞK uxxtn ðx; tn ÞK hn;x ðx; tn Þ C 2hn ðx; tn Þ K 2ð4uðx; tn ÞK uxx ðx; tn ÞÞgn ðx; tn Þ Z 0; n 2N0 : ð2:33Þ Using relations (2.19) and (2.32) permits one to write (2.33) as CHn ðuÞ Z 4utn K uxxtn C ðuxxx K4ux Þfn K 2ð4uK uxx Þfn;x Z 0; Phil. Trans. R. Soc. A (2008) n 2N0 : ð2:34Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1030 F. Gesztesy and H. Holden Varying n2N0 in (2.34) then defines the time-dependent CH hierarchy. We record the first few equations explicitly CH0 ðuÞ Z 4ut 0 K uxxt 0 C uxxx K4ux Z 0; CH1 ðuÞ Z 4ut1 K uxxt1 K 2uuxxx K4ux uxx C 24uux C c1 ðuxxx K4ux Þ Z 0; 2 CH2 ðuÞ Z 4ut2 K uxxt 2 C 2u2 uxxx K8uu x uxx K40u ux 2 2 C2ðuxxx K4ux ÞG u x C 8u K8ð4uK uxx ÞGðux uxx C 8uux Þ Cc1 ðK2uuxxx K4ux uxx C 24uux Þ C c2 ðuxxx K4ux Þ Z 0; etc: ð2:35Þ Up to an inessential scaling of the (x, t1) variables, CH1 ðuÞZ 0 with c1Z0 represents the Camassa–Holm equation as discussed in Camassa & Holm (1993). 3. The stationary algebro-geometric CH formalism This section is devoted to a quick review of the stationary CH hierarchies and the corresponding algebro-geometric formalism as derived in Gesztesy & Holden (2002, 2003, ch. 5). We start with the stationary hierarchy and suppose that u : R2/C satisfies dm u N u 2CNðRÞ; m 2N0 ð3:1Þ m 2L ðRÞ; dx and assume (2.3), (2.7), (2.9)–(2.11) and (2.16)–(2.22), keeping n2N0 fixed. Recalling (2.17), 2nC1 Y R2nC2 ðzÞ Z ðz K Em Þ; E0 ; E1 ; .; E2n 2C; E2nC1 Z 0; ð3:2Þ mZ0 we introduce the (possibly singular) hyperelliptic curve Kn of arithmetic genus n defined by Kn : F n ðz; yÞ Z y2 K R2nC2 ðzÞ Z 0: ð3:3Þ In the following, we will occasionally impose further constraints on the zeros Em of R 2nC2 introduced in (3.2) and assume that ð3:4Þ E0 ; .; E2n 2Cnf0g; E2nC1 Z 0: We compactify Kn by adding two points at infinity, PNC, PNK, with PNC sPNK, still denoting its projective closure by Kn. Hence, Kn becomes a two-sheeted Riemann surface of arithmetic genus n. Points P on Kn nfPNGg are denoted by PZ(z, y), where yð$Þ denotes the meromorphic function on Kn satisfying F n(z, y)Z0. For notational simplicity, we will usually tacitly assume that n2N (the case nZ0 being trivial). In the following, the roots of the polynomials Fn and Hn will play a special role and, hence, we introduce on C!R n n Y Y Fn ðz; xÞ Z ðz K mj ðxÞÞ; Hn ðz; xÞ Z h 0 ðxÞ ðz K nj ðxÞÞ; ð3:5Þ jZ1 jZ1 temporarily assuming h 0 ðxÞ s0; Phil. Trans. R. Soc. A (2008) x 2R: ð3:6Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1031 Real-valued algebro-geometric solutions Moreover, we introduce m^j ðxÞ Z ðmj ðxÞ;Kmj ðxÞGn ðmj ðxÞ; xÞÞ 2Kn ; j Z 1; .; n; n^j ðxÞ Z ðnj ðxÞ; nj ðxÞGn ðnj ðxÞ; xÞÞ 2Kn ; j Z 1; .; n; x 2R; ð3:7Þ x 2R ð3:8Þ and P0 Z ð0; 0Þ: ð3:9Þ The branch of y($) near PNG is fixed according to lim jzðPÞj/N P/PNG yðPÞ ZH1: zðPÞGn ðzðPÞ; xÞ ð3:10Þ Due to assumption (3.1), u is smooth and bounded, and hence Fn ðz; $Þ and Hn ðz; $Þ share the same property. Thus, one concludes mj ; nk 2C ðRÞ; ð3:11Þ j; k Z 1; .; n; taking multiplicities (and appropriate reordering) of the zeros of Fn and Hn into account. Next, we introduce the fundamental meromorphic function fð$; xÞ on Kn by fðP; xÞ Z yKzGn ðz; xÞ zHn ðz; xÞ Z ; Fn ðz; xÞ y C zGn ðz; xÞ P Z ðz; yÞ 2Kn ; x 2R: ð3:12Þ Assuming (3.4) and (3.6), the divisor ðfð$; xÞÞ of fð$; xÞ is given by ðfð$; xÞÞ Z DP0 nðxÞ ^ KDPNC mðxÞ ^ ; ð3:13Þ taking into account (3.10). Here we abbreviated m^ Z f^ m1 ; .; m^n g; n^ Z f^ n1 ; .; n^n g 2sn Kn ; ð3:14Þ where sm Kn , m2N, denotes the mth symmetric product of Kn. If h 0 is permitted to vanish at a point x 12N, then for xZx 1, the polynomial Hn ð$; x 1 Þ is at most of degree nK1 (cf. (2.18)) and (3.13) is altered to ðfð$; x 1 ÞÞ Z DP0 PNKn^1 ðx 1 Þ;.;^nnK1 ðx 1 Þ KDPNC mðx ^ 1Þ; ð3:15Þ that is, one of the n^j ðxÞ tends to PNK as x/x 1 (cf. also (3.36)). Analogously one can discuss the case of several n^j approaching PNK. Since this can be viewed as a limiting case of (3.13), we will henceforth not particularly distinguish the case h 0s0 from the more general situation where h0 is permitted to vanish. Given fð$; xÞ, one defines the associated Baker–Akhiezer vector Jð$; x; x 0 Þ on Kn nfPNC ; PNK; P0 g by ! j1 ðP; x; x 0 Þ JðP; x; x 0 Þ Z ; P 2Kn nfPNC ; PNK; P0 g; ðx; x 0 Þ 2R2 ; ð3:16Þ j2 ðP; x; x 0 Þ Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1032 F. Gesztesy and H. Holden where ðx 0 0 dx fðP; x ÞKðx K x 0 Þ ; j1 ðP; x; x 0 Þ Z exp Kð1=zÞ ð3:17Þ j2 ðP; x; x 0 Þ ZKj1 ðP; x; x 0 ÞfðP; xÞ=z: ð3:18Þ x0 Although J is formally the analogue of the Baker–Akhiezer vector of the stationary CH hierarchy when compared to analogous definitions in the context of the KdV or AKNS hierarchies, its actual properties in a neighbourhood of its essential singularity feature characteristic differences to standard Baker– Akhiezer vectors as discussed in Gesztesy & Holden (2002, 2003, ch. 5). The basic properties of f and J then read as follows. Lemma 3.1. Suppose (3.1), assume the nth stationary CH equation (2.22) holds, and let P Z ðz; yÞ 2Kn nfPNC ; PNK; P0 g, ðx; x 0 Þ 2R2 . Then f satisfies the Riccati-type equation fx ðP; xÞKz K1 fðP; xÞ2 K 2fðP; xÞ C 4uðxÞK uxx ðxÞ Z 0; ð3:19Þ as well as fðP; xÞfðP ; xÞ ZK zHn ðz; xÞ ; Fn ðz; xÞ fðP; xÞ C fðP ; xÞ ZK2 fðP; xÞKfðP ; xÞ Z ð3:20Þ zGn ðz; xÞ ; Fn ðz; xÞ ð3:21Þ 2y ; Fn ðz; xÞ ð3:22Þ while J fulfils Jx ðP; x; x 0 Þ Z U ðz; xÞJðP; x; x 0 Þ; ð3:23Þ KyJðP; x; x 0 Þ Z zVn ðz; xÞJðP; x; x 0 Þ; ð3:24Þ Fn ðz; xÞ j1 ðP; x; x 0 Þ Z Fn ðz; x 0 Þ 1=2 ðx 0 0 K1 exp Kðy=zÞ dx Fn ðz; x Þ ; j1 ðP; x; x 0 Þj1 ðP ; x; x 0 Þ Z Fn ðz; xÞ ; Fn ðz; x 0 Þ j2 ðP; x; x 0 Þj2 ðP ; x; x 0 Þ ZK ð3:26Þ Hn ðz; xÞ ; zFn ðz; x 0 Þ j1 ðP; x; x 0 Þj2 ðP ; x; x 0 ÞK j1 ðP ; x; x 0 Þj2 ðP; x; x 0 Þ Z ð3:27Þ Gn ðz; xÞ ; Fn ðz; x 0 Þ ð3:28Þ 2y : zFn ðz; x 0 Þ ð3:29Þ j1 ðP; x; x 0 Þj2 ðP ; x; x 0 Þ C j1 ðP ; x; x 0 Þj2 ðP; x; x 0 Þ Z 2 Phil. Trans. R. Soc. A (2008) ð3:25Þ x0 Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1033 Real-valued algebro-geometric solutions In addition, as long as the zeros of Fn ð$; xÞ are all simple for x 2U, U 4R an open interval, Jð$; x; x 0 Þ, x; x 0 2U, is meromorphic on Kn nfP0 g. Next, we recall the Dubrovin-type equations for mj. Since in the remainder of this section, we will frequently assume Kn to be non-singular, we list all restrictions on Kn in this case, Em 2Cnf0g; Em sEm 0 ; for m sm 0 ; m; m 0 Z 0; .; 2n C 1; E 2nC1 Z 0: ð3:30Þ Lemma 3.2. Suppose (3.1) and the nth stationary CH equation (2.22) holds ~ m 4R. Moreover, suppose subject to the constraint (3.30) on an open interval U ~ m . Then that the zeros mj, jZ1, ., n, of Fn($) remain distinct and non-zero on U {m^j }jZ1, ., n defined by (3.7), satisfies the following first-order system of differential equations: mj;x ðxÞ Z 2 n yð^ mj ðxÞÞ Y ðmj ðxÞK m[ ðxÞÞ K1 ; mj ðxÞ j Z 1; .; n; ~m: x 2U ð3:31Þ [ Z1 [ sj Next, assume Kn to be non-singular and introduce the initial condition f^ mj ðx 0 ÞgjZ1;.;n 3Kn ; ð3:32Þ for some x 0 2R, where mj ðx 0 Þ s0, jZ1, ., n, are assumed to be distinct. Then there exists an open interval Um 4R, with x 0 2Um , such that the initial value problem (3.31) and (3.32) has a unique solution fm^j gjZ1;.;n 3Kn satisfying m^j 2C NðUm ; Kn Þ; j Z 1; .; n; ð3:33Þ and mj, jZ1, ., n, remain distinct and non-zero on Um. Combining the polynomial approach in §2 with (3.5) yields trace formulae for the CH invariants. For simplicity, we just record two simple cases. Lemma 3.3. Suppose (3.1), assume the nth stationary CH equation (2.22) holds, and let x 2R. Then uðxÞ Z n X 1X 1 2nC1 mj ðxÞK E ; 2 jZ1 4 mZ0 m 1 0 ! n C Y B 2nC1 C B Y Em C m ðxÞ K2 : 4uðxÞK uxx ðxÞ ZKB A jZ1 j @ mZ0 Ems0 Next, we turn to asymptotic properties of f and jj, jZ1, 2. Phil. Trans. R. Soc. A (2008) ð3:34Þ ð3:35Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1034 F. Gesztesy and H. Holden Lemma 3.4. Suppose (3.1), assume the nth stationary CH equation (2.22) holds, and let P Z ðz; yÞ 2Kn nfPNC ; PNK; P0 g, x2R. Then fðP; xÞ Z 8 < K2z K1 K 2uðxÞ C ux ðxÞ C OðzÞ; P / PNC ; z/0 : 2uðxÞ C ux ðxÞ C OðzÞ; 0 ð3:36Þ z Z z K1 ; P / PNK; 11=2 B 2nC1 C B Y C fðP; xÞ Z B Em C z/0 @ A fn ðxÞ K1 z C Oðz2 Þ; P / P0 ; z Z z 1=2 ; ð3:37Þ P / PNG; z Z 1=z; ð3:38Þ mZ0 Ems0 and j1 ðP; x; x 0 Þ Z expðGðx K x 0 ÞÞð1 C OðzÞÞ; z/0 j2 ðP; x; x 0 Þ Z expðGðx K x 0 ÞÞ z/0 8 < K2 C OðzÞ; : P / PNC ; z Z 1=z; 2 ð2uðxÞ C ux ðxÞÞz C Oðz Þ; P / PNK; ð3:39Þ 0 1 11=2 0 C B B 2nC1 ð C B 1 x B Y 0 K dx B Em C j1 ðP; x; x 0 Þ Z expB C B B z/0 A @ z x0 @ mZ0 0 K1 fn ðx Þ C C C Oð1ÞC C; A ð3:40Þ Ems0 P / P0 ; zZz 1=2 ; 0 j2 ðP; x; x 0 Þ Z Oðz K1 z/0 1 11=2 0 C B B 2nC1 ð C B 1 x B Y 0B B ÞexpBK dx B Em C C A @ z x0 @ mZ0 0 K1 fn ðx Þ C C C Oð1ÞC C; ð3:41Þ A Ems0 P / P0 ; z Zz 1=2 : Since the representations of f and u in terms of the Riemann theta function associated with Kn (assuming Kn to be non-singular) are not explicitly needed in this paper, we omit the corresponding details and refer to the detailed treatment in Gesztesy & Holden (2002, 2003, ch. 5) instead. Finally, we will recall that solvability of the Dubrovin equations (3.31) on Um 4R in fact implies equation (2.22) on Um. Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 Real-valued algebro-geometric solutions 1035 Theorem 3.1. Fix n2N, assume (3.30), and suppose that f^ mj gjZ1;.;n satisfies the stationary Dubrovin equations (3.31) on an open interval Um 4R such that mj, jZ1, ., n, remain distinct and non-zero on Um. Then u 2CNðUm Þ defined by n X 1X 1 2nC1 mj ðxÞK E ; ð3:42Þ uðxÞ Z 2 jZ1 4 mZ0 m satisfies the nth stationary CH equation (2.22), i.e. s-CHn ðuÞ Z 0 on Um : ð3:43Þ 4. Basic facts on self-adjoint Hamiltonian systems We now turn to the Weyl–Titchmarsh theory for singular Hamiltonian (canonical) systems and briefly recall the basic material needed in §5. This material is standard and can be found, for instance, in Kogan & Rofe-Beketov (1974), Hinton & Shaw (1981, 1983, 1984), Clark & Gesztesy (2002) and Lesch & Malamud (2003), and references therein. Hypothesis 4.1. (i) Define the 2!2 matrix ! 0 K1 JZ ; 1 0 and suppose aj;k ; bj;k 2L1loc ðRÞ, j, kZ1, 2, and AðxÞZ ðaj;k ðxÞÞj;kZ1;2 R 0, BðxÞZ ðbj;k ðxÞÞj;kZ1;2 Z BðxÞ for a.e. x2R. We consider the Hamiltonian system J J 0 ðz; xÞ Z ðzAðxÞ C BðxÞÞJðz; xÞ; z 2C; ð4:1Þ for a.e. x2R, where z plays the role of the spectral parameter, and where ð4:2Þ Jðz; xÞ Z ðj1 ðz; xÞj2 ðz; xÞÞu ; jj ðz; $Þ 2ACloc ðRÞ; j Z 1; 2: Here ACloc ðRÞ denotes the set of locally absolutely continuous functions on R and the M and M u denote the adjoint and transpose of a matrix M, respectively. (ii) For all non-trivial solutions J of (4.1), we assume the definiteness hypothesis (cf. Atkinson 1964, §9.1) ðd dx Jðz; xÞ AðxÞJðz; xÞO 0; ð4:3Þ c on every interval ðc; dÞ 3R, c!d. A simple example of a Hamiltonian system satisfying (4.3) is obtained when ! wðxÞ 0 AðxÞ Z ; 0 0 for some weight function w 2L1loc ðRÞ, wO0 a.e. on R, and b2;2 ðxÞO 0 a.e. on R (cf. §5). Hypothesis 4.1 (ii) clearly holds in this case. Next, we introduce the vector space ðKN% a! b%NÞ ð b 2 2 LA ðða; bÞÞ Z f : ða; bÞ/ C measurable dxðfðxÞ; AðxÞfðxÞÞC2 !N ; ð4:4Þ a P2 where ðf; jÞC2 Z jZ1 fj jj denotes the standard scalar product in C2. Fix a point x02R. Then the Hamiltonian system (4.1) is said to be in the limit point case at N (respectively, KN) if for some (and hence for all) z 2CnR, precisely one Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1036 F. Gesztesy and H. Holden solution of (4.1) lies in L2A ððx 0 ;NÞÞ (respectively, L2A ððKN; x 0 ÞÞ). (By the analogue of Weyl’s alternative, if (4.1) is not in the limit point case atGN, all solutions of (4.1) lie in L2A ððx 0 ;GNÞÞ for all z 2C. In the latter case, the Hamiltonian system (4.1) is said to be in the limit circle case at GN.) To simplify matters for the remainder of this section, we will always suppose the limit point case at GN from now on. Hypothesis 4.2. Assume hypothesis 4.1 and suppose that the Hamiltonian system (4.1) is in the limit point case at GN. An elementary example of a Hamiltonian system satisfying hypothesis 4.2 is given by the case where all entries of A and B are essentially bounded on R (cf. §5). When considering the Hamiltonian system (4.1) on the half-line ½x 0 ;NÞ (respectively, ðKN; x 0 ), a self-adjoint (separated) boundary condition at the point x0 is of the type aJðx 0 Þ Z 0; where aZ ða1 a2 Þ 2C aa Z I ; 1!2 ð4:5Þ satisfies aJ a Z 0 ðequivalently; ja1 j2 C ja2 j2 Z 1; Imða2 a1 Þ Z 0Þ: ð4:6Þ In particular, the boundary condition (4.5) (with a satisfying (4.6)) is equivalent to a1 j1 ðx 0 ÞC a2 j2 ðx 0 ÞZ 0 with a1 =a2 2R if a2 s0 and a2 =a1 2R if a1 s0. The special case a0 Z ð 1 0 Þ will be of particular relevance in §5. Due to our limit point assumption at GN in hypothesis 4.2, no additional boundary condition at GN needs to be introduced when considering (4.1) on the half-lines ½x 0 ;NÞ and ðKN; x 0 . The resulting full-line and half-line Hamiltonian systems are said to be self-adjoint on R, ½x 0 ;NÞ and ðKN; x 0 , respectively (assuming of course a boundary condition of the type (4.5) in the two half-line cases). Next, we digress a bit and briefly turn to Herglotz functions and their representations in terms of measures, the focal point of Weyl–Titchmarsh theory (and hence spectral theory) of self-adjoint Hamiltonian systems. Definition 4.1. Any analytic map m : CC/ CC is called a Herglotz function (here CCZ fz 2CjImðzÞO 0g). Similarly, any analytic map M : CC/ Ck!k , k 2N, is called a k!k matrix-valued Herglotz function if ImðM ðzÞÞR 0 for all z 2CC. Herglotz functions are characterized by a representation of the form ðN mðzÞ Z a C bz C duðlÞððlKzÞ K1 Klð1 C l2 Þ K1 Þ; z 2CnR; ð4:7Þ KN ðN a 2R; duðlÞð1 C l2 Þ K1 !N; bR 0; ð4:8Þ KN uððl; mÞ Z lim lim dY0 3Y0 1 p ð mCd dn Imðmðn C i3ÞÞ; ð4:9Þ lCd in the following sense: every Herglotz function admits a representation of the type (4.7) and (4.8) and, conversely, any function of the type (4.7) and (4.8) is a Herglotz function. Moreover, local singularities and zeros of m are necessarily Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1037 Real-valued algebro-geometric solutions located on the real axis and at most of first order in the sense that uðflgÞ Z limðuðl C 3ÞKuðlK3ÞÞ ZKlim i3mðl C i3ÞR 0; 3Y0 3Y0 lim i3mðl C i3Þ K1 R 0; l 2R; l 2R: 3Y0 ð4:10Þ ð4:11Þ In particular, isolated poles of m are simple and located on the real axis, the corresponding residues being negative. Analogous results hold for matrix-valued Herglotz functions (Gesztesy & Tsekanovskii 2000 and references therein). For subsequent purpose in §5, we also note that K1/z is a Herglotz function and compositions of Herglotz functions remain Herglotz functions. In addition, diagonal elements of a matrix-valued Herglotz function are Herglotz functions. Returning to Hamiltonian systems on half-lines satisfying hypotheses 4.1 and 4.2, we now denote by JGðz; x; x 0 Þ the unique solution of (4.1) satisfying JGðz; $; x 0 Þ 2L2A ð½x 0 ;GNÞÞ, z 2CnR, normalized by j1;Gðz; x 0 ; x 0 ÞZ 1. Then the half-line Weyl–Titchmarsh function mGðz; xÞ, associated with the Hamiltonian system (4.1) on ½x;GNÞ and the fixed boundary condition a0 Z ð 1 0 Þ at the point x 2R, is defined by mGðz; xÞ Z j2;Gðz; x; x 0 Þ=j1;Gðz; x; x 0 Þ; z 2CnR; Gx R x 0 : ð4:12Þ The actual normalization of JGðz; x; x 0 Þ was chosen for convenience only and is clearly immaterial in the definition of m Gðz; xÞ in (4.12). One easily verifies that m Gðz; xÞ satisfies the following Riccati-type differential equation: m 0 ðz; xÞ C ½b2;2 ðxÞ C a2;2 ðxÞzmðz; xÞ2 C ½b1;2 ðxÞ C b2;1 ðxÞ C ða1;2 ðxÞ C a2;1 ðxÞÞzmðz; xÞ C b1;1 ðxÞ C a1;1 ðxÞz Z 0: ð4:13Þ Finally, the 2!2 Weyl–Titchmarsh matrix M ðz; xÞ associated with the Hamiltonian system (4.1) on R is then defined in terms of the half-line Weyl– Titchmarsh functions mGðz; xÞ by M ðz; xÞ Z ðMj;j 0 ðz; xÞÞj;j 0Z1;2 ; z 2CnR; ð4:14Þ M1;1 ðz; xÞ Z ½mKðz; xÞK mCðz; xÞ K1 ; M1;2 ðz; xÞ Z M2;1 ðz; xÞ Z 2 K1 ½mKðz; xÞK mCðz; xÞ K1 ½mKðz; xÞ C mCðz; xÞ; M2;2 ðz; xÞ Z ½mKðz; xÞK mCðz; xÞ K1 mKðz; xÞmCðz; xÞ: ð4:15Þ One verifies that M ðz; xÞ is a 2!2 matrix-valued Herglotz function. We emphasize that for any fixed x 02R, M(z, x 0) contains all the spectral information of the selfadjoint Hamiltonian system (4.1) on R (assuming hypotheses 4.1 and 4.2). Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1038 F. Gesztesy and H. Holden 5. Real-valued algebro-geometric CH solutions and the associated isospectral torus In our final and principal section, we study real-valued algebro-geometric solutions of the CH hierarchy associated with curves Kn whose affine part is non-singular and determine the isospectral manifold of smooth and bounded CH solutions. We focus on the stationary case as this is the primary concern in this context and briefly comment on the time-dependent case at the end of this section. To study the direct spectral problem, we first introduce the following assumptions. Hypothesis 5.1. Suppose ð5:1Þ E0 ! E1 !/! E2n ! E2nC1 Z 0 and let u be a real-valued solution of the nth stationary CH equation (2.22), s-CHn ðuÞ Z 0 ð5:2Þ (i.e. u is a particular algebro-geometric CH potential), satisfying u 2CNðRÞ; vkx u 2LNðRÞ; k Z 0; 1; 2; 4uK uxx O 0: We start by noticing that the basic stationary equation (3.23), J Z ðj1 ; j2 Þu ; Jx ðz; xÞ Z U ðz; xÞJðz; xÞ; ðz; xÞ 2C !R; ð5:3Þ ð5:4Þ ð5:5Þ is equivalent to the following Hamiltonian (canonical) system: ~ z ; xÞ; ~ x ð~ z ; xÞ Z ½~ z AðxÞ C BðxÞJð~ JJ where JZ AðxÞ Z 0 K1 1 ~ Z ðj ~1 ; j ~2 Þu ; J ð~ z ; xÞ 2C !R; ð5:6Þ ! 0 ; 4uðxÞK uxx ðxÞ 0 0 0 ~ z ; xÞ Z Jðz; xÞ; Jð~ z~ ZK1=z; ! 0 K1 K1 1 ; BðxÞ Z ð5:7Þ ! ; x 2R: ð5:8Þ In particular, due to assumptions (5.3) and (5.4), the Hamiltonian system (5.6) satisfies hypotheses 4.1 and 4.2. Explicitly, the Hamiltonian system (5.6) boils down to ~1;x ð~ ~2 ð~ ~1 ð~ j z ; xÞ Z j z ; xÞKj z ; xÞ; ~2;x ð~ ~1 ð~ ~2 ð~ j z ; xÞ ZK~ z ð4uðxÞK uxx ðxÞÞj z ; xÞ C j z ; xÞ; ð5:9Þ ðz; xÞ 2C !R ð5:10Þ ~2 results in a particular case of the weighted Sturm– and upon eliminating j Liouville problem 1 d d K p Cq ; ð5:11Þ r dx dx Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1039 Real-valued algebro-geometric solutions of the type ~1 ð~ ~1 ð~ ~1:xx ð~ z ; xÞ C j z ; xÞ Z z~ð4uðxÞK uxx ðxÞÞj z ; xÞ; Kj ðz; xÞ 2C !R; ð5:12Þ with ‘weight’ r Z ð4uK uxx Þ and constant coefficients pZqZ1. Introducing n S Z g ½E2[ ; E2[ C1 ; ð5:13Þ [ Z0 we define R2nC2 ðlÞ1=2 Z R2nC2 ðlÞ1=2 8 K1 > > > > > < ðK1ÞnCj ! > ðK1Þn > > > > : iðK1ÞnCjC1 for l 2ðE2nC1 ;NÞ; for l 2ðE2jK1 ; E2j Þ; j Z 1; .; n; for l 2ðKN; E0 Þ; l 2R ð5:14Þ for l 2ðE2j ; E2jC1 Þ; j Z 0; .; n; and R2nC2 ðlÞ1=2 Z lim R2nC2 ðl C i3Þ1=2 ; 3Y0 l 2S ð5:15Þ and analytically continue R2nC2 ð$Þ1=2 to CnS. We also note the property R2nC2 ð z Þ1=2 Z R2nC2 ðzÞ1=2 : ð5:16Þ For notational convenience, we will occasionally call ðE2jK1 ; E2j Þ, j Z 1; .; n, spectral gaps and E2jK1 ; E2j the corresponding spectral gap endpoints. Next, we introduce the cut plane ð5:17Þ P Z CnS and the upper, respectively, lower sheets PG of Kn by PG Z fðz;GR2nC2 ðzÞ1=2 Þ 2Kn jz 2Pg ð5:18Þ with the associated charts P Z ðz;GR2nC2 ðzÞ1=2 Þ1 z: zG : PG/ P; ð5:19Þ The two branches JGðz; x; x 0 Þ of the Baker–Akhiezer vector JðP; x; x 0 Þ in (3.16) are then given by JGðz; x; x 0 Þ Z JðP; x; x 0 Þ; P Z ðz; yÞ 2PG; JG Z ðj1;G; j2;GÞu ð5:20Þ and one infers from (3.38) that j1;Gðz; $; x 0 Þ 2L2 ððx 0 ;HNÞÞ; for jzj sufficiently large: ð5:21Þ Thus, introducing ~Gð~ z ; x; x 0 Þ Z JHðz; x; x 0 Þ; J Phil. Trans. R. Soc. A (2008) ~G Z ðj ~1;G; j ~2;GÞu ; J z~ ZK1=z ð5:22Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1040 F. Gesztesy and H. Holden and the two branches fGðz; xÞ of fðP; xÞ on PG by fGðz; xÞ Z fðP; xÞ; P Z ðz; yÞ 2PG; ð5:23Þ ~Gð~ z ; xÞ one infers from (4.12) and (5.21) that the Weyl–Titchmarsh functions m associated with the self-adjoint Hamiltonian system (5.6) on the half-lines ½x;GNÞ and the Dirichlet boundary condition indexed by a0 Z ð 1 0 Þ at the point x2R are given by ~2;Gð~ ~1;Gð~ ~Gð~ m z ; xÞ Z j z ; x; x 0 Þ=j z ; x; x 0 Þ Z j2;Hðz; x; x 0 Þ=j1;Hðz; x; x 0 Þ Z ðK1=zÞfHðz; xÞ; z 2CnS: ð5:24Þ More precisely, (5.21) yields (5.24) only for sufficiently large jzj. However, since ~Gð$; xÞ are analytic in C\R, and by (3.12), fGð$; xÞ are by general principles m analytic in CnS, one infers (5.24) by analytic continuation. In particular, (5.21) extends to all z 2CnS, i.e. j1;Gðz; $; x 0 Þ 2L2 ððx 0 ;HNÞÞ; z 2CnS: ð5:25Þ Next, we mention a useful fact concerning a special class of Herglotz functions closely related to the problem at hand. The result must be well known to experts, but since we could not quickly locate a proof in the literature, we provide the simple contour integration argument below. 1=2 Lemma 5.1. Let PN be a monic polynomial of degree N. Then PN =R2nC2 is a Herglotz function if and only if one of the following alternatives applies: (i) NZn and Pn ðzÞ Z n Y ðz K aj Þ; aj 2½E 2jK1 ; E 2j ; j Z 1; .; n: ð5:26Þ jZ1 1=2 If (5.26) is satisfied, then Pn =R 2nC2 admits the Herglotz representation ð Pn ðzÞ 1 jPn ðlÞjdl 1 Z ; z 2CnS: ð5:27Þ 1=2 1=2 p S jR2nC2 ðlÞ j lKz R2nC2 ðzÞ (ii) N Z nC 1 and n Y PnC1 ðzÞ Z ðz K b[ Þ; b0 2ðKN; E0 ; bj 2½E2jK1 ; E2j ; j Z 1; .; n: [ Z0 ð5:28Þ If (5.28) is satisfied, then admits the Herglotz representation ! ð PnC1 ðzÞ PnC1 ðiÞ 1 jPnC1 ðlÞjdl 1 l C ; Z Re K p S jR2nC2 ðlÞ1=2 j lKz 1 C l2 R2nC2 ðzÞ1=2 R2nC2 ðiÞ1=2 ð5:29Þ z 2CnS: 1=2 PnC1 =R2nC2 Proof. Since Herglotz functions are O(z) as jzj/Nand cannot vanish faster than O(1/z) as jzj/N, we can confine ourselves to the range N 2fn; nC 1; nC 2g. We start with the case NZn and employ the following contour integration approach. Consider a closed oriented contour GR;3 , which consists of the clockwise oriented semicircle C3 Z fz 2Cjz Z E0 K3 expðKiaÞ;Kp=2% a% p=2g centred at E0, the Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 Real-valued algebro-geometric solutions 1041 straight line LCZ fz 2CCjz Z E0 C x C i3; 0% x % Rg (oriented from left to right), the following part of the anticlockwise oriented circle of radius ðR2 C 32 Þ1=2 centred at E0, CR Z fz 2Cjz Z E0 C ðR2 C 32 Þ1=2 expðibÞ, arctanð3=RÞ% b% 2pK arctanð3=RÞg, and the straight line LKZ fz 2CKjz Z E0 C x Ki3; 0% x % Rg (oriented from right to left). Then, for 3O0 small enough and RO0 sufficiently large, one infers ð Pn ðzÞ 1 1 Pn ðzÞ 1 1 Pn ðlÞdl Z dz Z : 1=2 1=2 1=2 3Y0;R[N p S lKz iR 2pi GR;3 zKz R2nC2 ðzÞ R2nC2 ðzÞ 2nC2 ðlÞ ð5:30Þ # Here we used (5.14) to compute the contributions of the contour integral along [E0, R] in the limit 3Y0 and note that the integral over CR tends to zero as R[N since Pn ðzÞ R2nC2 ðzÞ1=2 Z Oðjzj K1 Þ: ð5:31Þ z/N Next, utilizing the fact that Pn is monic and using (5.14) again, one infers that Fn ðlÞdl=½iR2nC2 ðlÞ1=2 represents a positive measure supported on S if and only if Pn has precisely one zero in each of the intervals ½E2jK1 ; E2j , j Z 1; .; n. In other words, Pn ðlÞ 1=2 iR2nC1 ðlÞ Z jPn ðlÞj jR2nC1 ðlÞ1=2 j R 0 on S; ð5:32Þ if and only if Pn has precisely one zero in each of the intervals ½E2jK1 ; E2j , j Z 1; .; n. The Herglotz representation (4.7) and (4.8) then finishes the proof of (5.27). In the case where NZnC1, the proof of (5.28) follows along similar lines taking into account the additional residues at Gi inside GR;3 , which are responsible for the real part on the right-hand side of (5.29). 1=2 Finally, in the case NZnC2, assume that PnC2 =R2nC2 is a Herglotz function. Then necessarily, ð0 PnC2 ðzÞ Z a C bz C duðlÞðlKzÞ K1 ; z 2CnS; ð5:33Þ E0 R2nC2 ðzÞ1=2 for some a2R, bR0, and some finite (positive) measure u supported on [E0, 0], since lim ImðPnC2 ðlÞR2nC2 ðl C i3Þ K1=2 Þ Z 0; 3Y0 for lO E2nC2 Z 0 and l! E0 : ð5:34Þ In particular, (5.33) implies PnC2 ðzÞR2nC2 ðzÞ K1=2 Z bz C Oð1Þ; jzj/N bR 0: ð5:35Þ However, by (5.14), one immediately infers PnC2 ðlÞR2nC2 ðlÞ K1=2 Z Kl C Oð1Þ: l[N This contradiction dispenses with the case NZnC2. Phil. Trans. R. Soc. A (2008) ð5:36Þ & Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1042 F. Gesztesy and H. Holden Now we are in position to state the following result concerning the half-line and full-line Weyl–Titchmarsh functions associated with the self-adjoint ~ Gð~ Hamiltonian system (5.6). We denote by m z ; xÞ the Weyl–Titchmarsh m-functions corresponding to (5.6) associated with the half-lines ðx;GNÞ and the Dirichlet boundary condition indexed by a0 Z ð 1 0 Þ at the point x2R, and ~ ð~ by M z ; xÞ the 2!2 Weyl–Titchmarsh matrix corresponding to (5.6) on R (cf. (4.12), (4.14) and (4.15)). Moreover, S0 denotes the open interior of S and the real part of a matrix M is defined as usual by ReðM ÞZ ðM C M Þ=2. Theorem 5.1. Assume hypothesis 5.1 and let ðz; xÞ 2R !ðCnSÞ, z~ZK1=z. Then GR2nC2 ðzÞ1=2 C zGn ðz; xÞ ~Gð~ m z ; xÞ Z ; zFn ðz; xÞ R2nC2 ðiÞ1=2 ~Gð~ z ; xÞ Z 1GRe m iFn ði; xÞ 1 G p ! C ð5:37Þ n X Gn ðmj ðxÞ; xÞð1H3j ðxÞÞ dFn ðmj ðxÞ; xÞ=dz jZ1 1 z K mj ðxÞ jR2nC2 ðlÞ1=2 jdl 1 l ; K jlFn ðl; xÞj lKz 1 C l2 S ð ð5:38Þ where 3j ðxÞ 2f1;K1g, j Z 1; .; n, is chosen such that Gn ðmj ðxÞ; xÞ3j ðxÞ R 0; dFn ðmj ðxÞ; xÞ=dz ð5:39Þ j Z 1; .; n: Moreover, ~ ð~ M z ; xÞ Z KHn ðz; xÞ zGn ðz; xÞ K1 2R2nC2 ðzÞ1=2 ~ ð~ ~ ði; xÞÞ C M z ; xÞ Z ReðM zGn ðz; xÞ ð zFn ðz; xÞ ! ; 1 l K dUðl; xÞ ; lKz 1 C l2 S ð5:40Þ ð5:41Þ where Uðl; xÞ Z 1 2piR2nC2 ðlÞ 1=2 Hn ðl; xÞ KlGn ðl; xÞ KlGn ðl; xÞ KlFn ðl; xÞ ! ; l 2S0 : ð5:42Þ The essential spectrum of the half-line Hamiltonian systems (5.6) on ½x;GNÞ (with any self-adjoint boundary condition at x) as well as the essential spectrum of the Hamiltonian system (5.6) on R is purely absolutely continuous and given by K1 g KE 2lK1 ;KE 2K1 [ C1 g KE 2n ;N : nK1 ð5:43Þ [ Z0 The spectral multiplicities are simple in the half-line cases and of uniform multiplicity two in the full-line case. Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1043 Real-valued algebro-geometric solutions Proof. Equation (5.37) follows from (3.12), (5.14) and (5.24). Equation (5.40) is then a consequence of (3.20)–(3.22), (4.14), (4.15), (5.24) and (5.37). Different self-adjoint boundary conditions at the point x lead to different half-line Hamiltonian systems whose Weyl–Titchmarsh functions are related by a linear fractional transformation (cf. Clark & Gesztesy 2002) that leads to the invariance of the essential spectrum with respect to the boundary condition at x. In order to prove the Herglotz representation (5.38), one can follow the corresponding computation for Schrödinger operators with algebro-geometric potentials in Levitan (1987, §8.1). For this purpose, one first notes that by (5.29) also R2nC2 ðzÞ1=2 =½zFn ðz; xÞ is a Herglotz function. A contour integration as in the proof of lemma 5.1 then proves ! n X jR2nC2 ðmj ðxÞÞ1=2 j R2nC2 ðzÞ1=2 R2nC2 ðiÞ1=2 1 Z Re C zFn ðz; xÞ iFn ði; xÞ m ðxÞjdFn ðmj ðxÞ; xÞ=dzj z K mj ðxÞ jZ1 j 1 C p ð jR2nC2 ðlÞ1=2 jdl 1 l ; K jlFn ðl; xÞj lKz 1 C l2 S ð5:44Þ ! n X Gn ðmj ðxÞ; xÞ3j ðxÞ R2nC2 ðzÞ1=2 R2nC2 ðiÞ1=2 1 Z Re K zFn ðz; xÞ iFn ði; xÞ dFn ðmj ðxÞ; xÞ=dz z K mj ðxÞ jZ1 C 1 p jR2nC2 ðlÞ1=2 jdl 1 l : K jlFn ðl; xÞj lKz 1 C l2 S ð ð5:45Þ The only difference compared to the corresponding argument in the proof of lemma 5.1 concerns additional (approximate) semicircles of radius 3 centred at each mj(x), j Z 1; .; n, in the upper and lower complex half-planes. Whenever mj ðxÞ 2ðE2jK1 ; E2j Þ, the limit 3Y0 picks up a residue contribution displayed in the sum over j in (5.44). This contribution vanishes, however, if mj ðxÞ 2fE2jK1 ; E2j g. In this case, dFn ðmj ðxÞ; xÞ=dz s0 by (4.10) and R2nC2 ðmj ðxÞÞZ 0 by (2.17). Equation (5.45) then follows from (3.7) and the sign of 3j(x) must be chosen according to (5.39) in order to guarantee non-positive residues in (5.45) (cf. (4.10)). Next, we apply the Lagrange interpolation formula. If QnK1 is a polynomial of degree nK1, then QnK1 ðzÞ Z Fn ðzÞ n X QnK1 ðmj Þ 1 ; dFn ðmj Þ=dz z K mj jZ1 z 2C: ð5:46Þ Since Fn and Gn are monic polynomials of degree n, we can apply (5.46) to QnK1ZGnKFn and obtain n X Gn ðmj ðxÞ; xÞ Gn ðz; xÞ 1 Z1C : dFn ðmj ðxÞ; xÞ=dz z K mj ðxÞ Fn ðz; xÞ jZ1 Phil. Trans. R. Soc. A (2008) ð5:47Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1044 F. Gesztesy and H. Holden Insertion of (5.47) into (5.37) then yields n Gn ðmj ðxÞ; xÞ½3j ðxÞ C ð1K 3j ðxÞÞ GR2nC2 ðzÞ1=2 X 1 ~Gð~ C C1 z ; xÞ Z m z K mj ðxÞ zFn ðz; xÞ dFn ðmj ðxÞ; xÞ=dz jZ1 ð5:48Þ and hence (5.38) follows by inserting (5.45) into (5.48). Equations (5.41) and (5.42) are clear from the matrix analogue of (4.9). The statement (5.43) for the essential half-line spectra then follows from the fact ~G (as a function of z) is that the measure in the Herglotz representation (5.38) of m supported on the set S in (5.13), with a strictly positive density on the open interior S0 of S. The transformation z /K1=z then yields (5.43) and since half-line spectra with a regular endpoint x have always simple spectra, this completes the proof of our half-line spectral assertions. The full-line case follows in exactly the same manner since the corresponding 2!2 matrix-valued measure U in the Herglotz ~ (as a function of z) also has support S and rank equal representation (5.41) of M 0 to 2 on S . & Returning to direct spectral theory, we note that the two spectral problems ~ (5.6) on R associated with the vanishing of the first and second component of J at x, respectively, are clearly self-adjoint since they correspond to the choices aZ ð 1 0 Þ and aZ ð 0 1 Þ in (4.5). Hence, a comparison with (3.5), (3.26) and (3.27) necessarily yields fmj ðxÞgjZ1;.;n ; fnj ðxÞgjZ1;.;n 3R. Thus, we will assume the convenient eigenvalue ordering mj ðxÞ! mjC1 ðxÞ; nj ðxÞ! njC1 ðxÞ; for j Z 1; .; nK1; x 2R: ð5:49Þ ~ The zeros of j1 ð$; xÞ belong to the Dirichlet spectral problem associated with the Hamiltonian system (5.12) (respectively, the weighted Sturm–Liouville problem (5.12)) on R. A comparison with (3.26) then relates the zeros mj ðx 1 Þ, j Z 1; .; n, of Fn ð$; x 1 Þ in (3.5) to the Dirichlet spectrum of (5.6) (respectively, (5.12)) on R. The correspondence between each mj and the related spectral point of the Dirichlet problem (5.6) (respectively, (5.12)) on R is of course effected by the ~2 ð$; x 1 Þ do not belong transformation z /K1=z. In contrast to this, the zeros of j to the Neumann spectrum associated with the Hamiltonian system (5.6) (respectively, the weighted Sturm–Liouville problem (5.12)) on R. In fact, by ~2 ð$; x 1 Þ correspond to a mixed boundary condition of the (5.9), zeros of j ~ ~ type j1;x ðx 1 ÞC j1 ðx 1 ÞZ 0. By (3.27), this relates the zeros nj ðx 1 Þ, j Z 1; .; n, of Hn ð$; x 1 Þ in (3.5) to the spectrum of (5.6) (respectively, (5.12)) on R ~1;x ðx 1 ÞC j ~1 ðx 1 ÞZ 0. corresponding to the self-adjoint boundary condition j Combining lemma 5.1 with the Herglotz property of the 2!2 Weyl– ~ ð$; xÞ then yields the following refinement of theorem 3.2. Titchmarsh matrix M Theorem 5.2. Assume hypothesis 5.1. Then fm^j gjZ1;.;n , with the projections mj ðxÞ, j Z 1; .; n, the zeros of Fn ð$; xÞ in (3.5), satisfies the first-order system of differential equations (3.31) on UmZR and m^j 2CNðR; Kn Þ; j Z 1; .; n: ð5:50Þ Moreover, mj ðxÞ 2½E2jK1 ; E2j ; Phil. Trans. R. Soc. A (2008) j Z 1; .; n; x 2R: ð5:51Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 Real-valued algebro-geometric solutions 1045 In particular, m^j ðxÞ changes sheets whenever it hits E 2jK1 or E 2j and its projection mj(x) remains trapped in ½E 2jK1 ; E 2j for all j Z 1; .; n and x2R. The analogous statements apply to n^j ðxÞ and one infers ð5:52Þ nj ðxÞ 2½E 2jK1 ; E 2j ; j Z 1; .; n; x 2R: ~ Proof. Since M ð$; xÞ is a 2!2 Herglotz matrix, its diagonal elements are Herglotz functions. Thus, Hn ðz; xÞ KzFn ðz; xÞ ~ 1;1 ð~ ~ 2;2 ð~ M z ; xÞ Z ; M z ; xÞ Z ; z~ ZK1=z ð5:53Þ 1=2 2R2nC2 ðzÞ 2R2nC2 ðzÞ1=2 are Herglotz functions (the left-hand sides with respect to z~, the right-hand sides with respect to z) and the interlacing properties (5.51) and (5.52) then follow from (5.28) and (5.26). & Remark 5.1. Combining the interlacing property (5.51) with (2.18), (2.19) and (2.20) yields (cf. also (3.35)) ! ! 2n n Y Y 4uðxÞK uxx ðxÞ ZK ð5:54Þ Em mj ðxÞK2 O 0; x 2R; mZ0 jZ1 in accordance with (5.4). Moreover, since by (5.52) the vj(x) also remain trapped in the intervals ½E2jK1 ; E 2j for all x2R, none of the n^j can reach PNK and hence h 0 Z 4uC 2ux s0 on R (cf. the discussion surrounding (3.15)). Actually, h 0 ðxÞO 0; x 2R; ð5:55Þ 1=2 since Hn ð$; xÞ=R2nC2 is a Herglotz function (cf. (5.27)). Remark 5.2. The zeros mj ðxÞ 2ðE2jK1 ; E2j Þ, j Z 1; .; n of Fn ð$; xÞ, which are related to eigenvalues of the Hamiltonian system (5.6) on R associated with the ~1 ðxÞZ 0, in fact, are related to left and right half-line boundary condition j eigenvalues of the corresponding Hamiltonian system restricted to the half-lines ðKN; x and ½x;NÞ, respectively. Indeed, by (5.22) and (5.25), depending on whether m^j ðxÞ 2PC or m^j ðxÞ 2PK, mj(x) is related to a left or right half-line ~1 ðxÞZ 0. A careful eigenvalue associated with the Dirichlet boundary condition j investigation of the sign of the right-hand sides of the Dubrovin equations (3.30) (combining (5.1), (5.14) and (5.18)), then proves that the mj(x) related to right (respectively, left) half-line eigenvalues of the Hamiltonian system (5.6) ~1 ðxÞZ 0, are strictly monotone associated with the boundary condition j increasing (respectively, decreasing) with respect to x, as long as the mj stay away from the right (respectively, left) endpoints of the corresponding spectral gaps ðE2jK1 ; E 2j Þ. Here we purposely avoided the limiting case where some of the mk(x) hit the boundary of the spectral gaps, mk ðxÞ 2fE 2kK1 ; E 2k g, since the halfline eigenvalue interpretation is lost as there is no L2 ððx;GNÞÞ2 eigenfunction ~ ~1 ðxÞZ 0 in this case. In fact, whenever an eigenvalue mk(x) hits a JðxÞ satisfying j spectral gap endpoint, the associated point m^j ðxÞ on Kn crosses over from one sheet to the other (equivalently, the corresponding left half-line eigenvalue becomes a right half-line eigenvalue and vice versa) and, accordingly, strictly increasing half-line eigenvalues become strictly decreasing half-line eigenvalues and vice versa. In particular, using the appropriate local coordinate ðz K E2k Þ1=2 (respectively, ðz K E2kK1 Þ1=2 ) near E2k (respectively, E2kK1), one verifies that mk(x) does not pause at the endpoints E2k and E2kK1. Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1046 F. Gesztesy and H. Holden Next, we turn to the inverse spectral problem and determine the isospectral manifold of real-valued, smooth and bounded CH solutions. Our basic assumptions then will be the following. Hypothesis 5.2. Suppose E0 ! E1 !/! E2n ! E2nC1 Z 0; fix x 02R and assume that the initial data ð5:56Þ f^ mj ðx 0 Þ Z ðmj ðx 0 Þ;Kmj ðx 0 ÞGn ðmj ðx 0 Þ; x 0 ÞÞgjZ1;.;n 3Kn ; ð5:57Þ for the Dubrovin equations (3.31) are constrained by mj ðx 0 Þ 2½E2jK1 ; E2j ; ð5:58Þ j Z 1; .; n: Theorem 5.3. Assume hypothesis 5.2. Then the Dubrovin initial value problem (3.31), (5.57) and (5.58) has a unique solution fm^j gjZ1;.;n 3Kn satisfying m^j 2CNðR; Kn Þ; ð5:59Þ j Z 1; .; n; and the projections mj remain trapped in the intervals ½E2jK1 ; E2j , j Z 1; .; n, for all x2R, mj ðxÞ 2½E2jK1 ; E2j ; j Z 1; .; n; x 2R: ð5:60Þ Moreover, u defined by the trace formula (3.34), i.e. uðxÞ Z n X 1X 1 2nC1 mj ðxÞK E ; 2 jZ1 4 mZ0 m x 2R; ð5:61Þ satisfies hypothesis 5.1, i.e. u 2CNðRÞ; ð5:62Þ u is real -valued; vkx u 2LNðRÞ; k 2N0 ; ð5:63Þ x 2R ð5:64Þ s-CHn ðuÞ Z 0 on R; ð5:65Þ 4uK uxx O 0; and the nth stationary CH equation with integration constants c[ in (5.65) given by c[ Z c[ ðEÞ, [ Z 1; .; n, according to (2.26) and (2.27). Proof. Given initial data constrained by mj ðx 0 Þ 2ðE2jK1 ; E2j Þ, j Z 1; .; n, one 1=2 concludes from the Dubrovin equations (3.31) and the sign properties of R2nC2 on the intervals ½E2kK1 ; E2k , k Z 1; .; n, described in (5.14), that the solution mj(x) remains in the interval ½E2jK1 ; E2j as long as m^j ðxÞ stays away from the branch points ðE2jK1 ; 0Þ; ðE2j ; 0Þ. In case m^j hits such a branch point, one can use the local chart around (Em,0), with local coordinate zZ sðz K Em Þ1=2 , s 2f1;K1g, m 2f2j K1; 2jg, to verify (5.59) and (5.60). Relations (5.61)–(5.63) are then evident from (5.59), (5.60) and jvkx mj ðxÞj% Ck ; Phil. Trans. R. Soc. A (2008) k 2N0 ; j Z 1; .; n; x 2R: ð5:66Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 Real-valued algebro-geometric solutions 1047 In the course of the proof of theorem 3.1 presented in Gesztesy & Holden (2002, 2003, §5.3), one constructs the polynomial formalism (Fn, Gn, Hn, R 2nC2, etc.) and then obtains identity (3.35) as an elementary consequence. The latter immediately proves (5.64). Finally, (5.65) follows from theorem 3.1 (with UmZR). & Corollary 5.1. Fix fEm gmZ0;.;2nC1 3R and assume the ordering (5.56). Then the isospectral manifold of smooth and bounded real-valued solutions u 2 CNðRÞh LNðRÞ of s-CHn ðuÞZ 0 is given by a real n-dimensional torus Tn. Proof. The discussion in remark 5.2 and theorem 5.3 shows that the motion of each m^j ðxÞ on Kn proceeds topologically on a circle and is uniquely determined by the initial data m^k ðx 0 Þ, k Z 1; .; n. More precisely, the initial data m^j ðx 0 Þ Z ðmj ðx 0 Þ; yð^ mj ðx 0 ÞÞÞ Z ðmj ðx 0 Þ;Kmj ðx 0 ÞGn ðmj ðx 0 Þ; x 0 ÞÞ; mj ðx 0 Þ 2½E 2jK1 ; E 2j ; j Z 1; .; n ð5:67Þ are topologically equivalent to data of the type ðmj ðx 0 Þ; sj ðx 0 ÞÞ 2½E 2jK1 ; E 2j !fC;Kg; j Z 1; .; n; ð5:68Þ the sign of sj ðx 0 Þ depending on m^j ðx 0 Þ 2PG. If some of the mk ðx 0 Þ 2fE 2kK1 ; E 2k g, then the determination of the sheet PG and hence the sign sk ðx 0 Þ in (5.68) becomes superfluous and is eliminated from (5.68). Indeed, since by (2.16), mj ðx 0 Þ2 Gn ðmj ðx 0 Þ; x 0 Þ Z R2nC2 ðmj ðx 0 ÞÞ; ð5:69Þ Gn ðmj ðx 0 Þ; x 0 Þ is determined up to a sign unless mj ðx 0 Þ hits a spectral gap endpoint E2jK1 ; E2j in which case Gn ðmj ðx 0 Þ; x 0 ÞZ R2nC2 ðmj ðx 0 ÞÞZ 0 and the sign ambiguity disappears. The n data in (5.68) (properly interpreted if mj ðx 0 Þ 2fE2jK1 ; E2j g) can be identified with circles. Since the latter are independent of each other, the isospectral manifold of real-valued, smooth and bounded solutions of s-CHn ðuÞZ 0 is given by a real n-dimensional torus Tn. & Remark 5.3. (i) For simplicity, we only focused on the case 4uK uxx O 0. The opposite case 4uK uxx ! 0 is completely analogous and results in a reflection of Em, mZ 0; .; 2nC 1, and mj ðxÞ; nj ðxÞ, j Z 1; .; n, about zZ0, etc. (ii) The time-dependent case also offers nothing new. Higher-order CHr flows drive each m^j ðx; tr Þ around the same circles as in the stationary case in complete analogy to the familiar KdV case. In summary, one observes that the reality problem for smooth and bounded solutions of the CH hierarchy, assuming the ordering (5.56) (respectively, the one obtained upon reflection with respect to zZ0), parallels that of the KdV hierarchy with the basic self-adjoint Lax operator (the one-dimensional Schrödinger operator) replaced by the self-adjoint Hamiltonian system (5.6). Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1048 F. Gesztesy and H. Holden The following result was found in response to a query of Igor Krichever who inquired about the significance of the eigenvalue ordering (5.56) (or the one obtained upon reflection at zZ0). As it turns out, such an ordering is crucial if one is interested in smooth algebro-geometric solutions on R. Theorem 5.4. Suppose Em ! EmC1 ; m Z 0; .2n; and E2j0K1 Z 0 ðrespectively; E2j0 Z 0Þ for some j0 2f1; .; ng: ð5:70Þ Fix x02R and assume that the initial data f^ mj ðx 0 Þ Z ðmj ðx 0 Þ;Kmj ðx 0 ÞGn ðmj ðx 0 Þ; x 0 ÞÞgjZ1;.;n 3Kn ; ð5:71Þ for the Dubrovin equations (3.31) are constrained by mj ðx 0 Þ 2½E2jK1 ; E2j ; j 2f1; .; ngnfj0 g; and mj0 ðx 0 Þ 2ðE2j0K1 ; E2j0 ðrespectively; mj0 ðx 0 Þ 2½E2j0K1 ; E2j0 ÞÞ: ð5:72Þ Then there exists a set Um3R of the type Um Z Rnfxk gk2Z ; xk ! xkC1 ; k 2Z; lim xk ZKN; kYKN lim xk ZN; k[N ð5:73Þ such that the Dubrovin initial value problem (3.31), (5.57) and (5.58) has a unique solution fm^j gjZ1;.;n 3Kn satisfying m^j 2CNðUm ; Kn Þ; j Z 1; .; n ð5:74Þ and the projections mj remain trapped in the intervals ½E2jK1 ; E2j , j Z 1; .; n, for all x2Um, ð5:75Þ mj ðxÞ 2½E2jK1 ; E2j ; j Z 1; .; n; x 2Um : Moreover, u defined by the trace formula (3.34), i.e. n X 1X 1 2nC1 mj ðxÞK E ; x 2Um ; uðxÞ Z 2 jZ1 4 mZ0 m ð5:76Þ satisfies u 2CNðUm Þ; u is real -valued; 4uK uxx O 0; ð5:77Þ x 2Um ; ð5:78Þ on Um ; ð5:79Þ and the nth stationary CH equation s-CHn ðuÞ Z 0 with integration constants c[ in (5.65) given by c[ Z c[ ðEÞ, [ Z 1; .; n, according of the type to (2.26) and (2.27). At each xk, u x exhibits a singularity ð5:80Þ ux ðxÞ Z Ck ðx K xk Þ K1=3 C o ðx K xk ÞK1=3 ; Ck s0; k 2Z: x/xk In particular, u ;C 1 ðRÞ, ux ;LNðRÞ. The isospectral manifold corresponding to (5.70)–(5.72) is then given by TnK1!R. Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1049 Real-valued algebro-geometric solutions Proof. One can follow the proof of theorem 5.3 and corollary 5.1 with one important twist, though, since the right-hand side of the Dubrovin equation of mj0 blows up as mj0 / E2j0K1 ðrespectively; E2j0 Þ. For notational convenience and without loss of generality, we may assume E1Z0 (and hence j0Z1) in the following. Recalling the Dubrovin equations (3.31), one verifies that its solutions are smooth with respect to x as long as m1 stays away from E1Z0. Varying x2R, the sign restrictions on m1;x in terms of the right-hand side of the corresponding equation in (3.31) eventually accelerate m1 into E1Z0 as x tends to some xk2R, and we now analyse what happens to all mj for x in a neighbourhood of xk. Recalling the local coordinate sz 1=2 , sZG1, near E1Z0 and hence introducing z1 ðxÞ Z sðKm1 ðxÞÞ1=2 ; for m1 ðxÞ sufficiently close to E1 Z 0 as x / xk ð5:81Þ d2 2K , the Dubrovin equation for m and the corresponding point m^1 Z Kz j n 1 becomes for x near xk, n 2 Y yðKzd 1 ðxÞ Þ z1;x ðxÞ Z ðKz1 ðxÞ2 K m[ ðxÞÞ K1 ; 3 z1 ðxÞ [ Z2 Z C1 z1 ðxÞ K2 ð1 C oð1ÞÞ; ð5:82Þ x/xk mj;x ðxÞ Z 2 n yðm^j ðxÞÞ Y ðmj ðxÞKm[ ðxÞÞK1 ; mj ðxÞ j Z 2; .; n; ð5:83Þ [ Z1 [ sj for some constant C1s0. (Here we implicitly assume that no other mj, j Z 2; .; n simultaneously hits E2jK1 or E2j as x/xk. Otherwise one simply resorts to the proper local coordinate for such a mj. We omit the details.) To treat the singularity of z1;x as z1 ðxÞ/ 0 for x/xk, we now resort to a well-known trick described, for instance, in Hille (1976, theorem 3.2.2) in the context of scalar first-order differential equations. Instead of looking for solutions z1 , mj as functions of x, we now look for x Z xðz1 Þ, m~j Z m~j ðz1 Þ as functions of z1 , where we denote m~j ðz1 ÞZ mj ðxÞ, j Z 2; .; n. Then (5.82) and (5.83) turn into n Y z31 x 0 ðz1 Þ Z ðKz21 K~ m[ ðz1 ÞÞ; ð5:84Þ d 2 yðKz1 Þ [ Z2 n n Y yðm^ ~j ðz1 ÞÞ z31 Y ðKz21 K~ m[ ðz1 ÞÞ ð~ mj ðz1 ÞK~ m[ ðz1 ÞÞ K1 ; m~j;z1 ðxÞ Z 2 d m ~ ðz Þ 2 j 1 [ Z2 y Kz1 [ Z1 [ sj j Z 2; .; n: ð5:85Þ Since the right-hand sides in (5.84) and (5.85) are holomorphic with respect to the n variables z1 ; m~2 ; .; m~n for z1 near zero and m~j near ½E2jK1 ; E2j , j Z 2; .; n, equations (5.84) and (5.85) yield solutions x; m~2 ; .; m~n holomorphic with respect to z1 near z1 Z 0. In particular, since x 0 ðz1 Þ Z z21 =C1 C Oðz31 Þ; z1/0 Phil. Trans. R. Soc. A (2008) mj0 ðz1 Þ Z Cj z21 C Oðz31 Þ; z1/0 j Z 2; .; n; ð5:86Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1050 F. Gesztesy and H. Holden for some constants Cj s0, j Z 1; .; n, one obtains xðz1 Þ Z xk C z31 =ð3C1 Þ C Oðz41 Þ; ð5:87Þ z1/0 m~j ðz1 Þ Z m~j ð0Þ C Cj z31 =3 C Oðz41 Þ Z mj ðxk Þ C Cj z31 =3 C Oðz41 Þ: z1/0 ð5:88Þ Thus, inverting xðz1 Þ, one observes z1 ðxÞ Z ½3C1 ðx K xk Þ1=3 C Oððx K xk Þ2=3 Þ; ð5:89Þ x/xk mj ðxÞ Z mj ðxk Þ C C1 Cj ðx K xk Þ C Oððx K xk Þ4=3 Þ; j Z 2; .; n ð5:90Þ Z Kð2=3Þð3C1 Þ2=3 ðx K xk Þ K1=3 C oððx K xk Þ K1=3 Þ ð5:91Þ x/xk and hence, m1;x ðxÞ Z K2z1 ðxÞz1;x ðxÞ x/xk and ux ðxÞ Z ð1=2Þ n X mj;x ðxÞ jZ1 Z Kð1=3Þð3C1 Þ2=3 ðx K xk Þ K1=3 C oððx K xk Þ K1=3 Þ: x/xk ð5:92Þ The singular behaviour (5.91) and (5.92) repeats itself after each revolution of m1 around its circle and occurs whenever m1 passes again through E1Z0, giving rise to the exceptional set fxk gk2Z in (5.73). Hence, mj 2C 1 ðRÞ, j Z 2; .; n, while m1;x ZKz1 ðxÞ2 blows up whenever x approaches an element of fxk gk2Z . The rest of the discussion follows as in theorem 5.3 and corollary 5.1. Since m1 ðx 0 ÞZ E1 Z 0 is not an admissible initial condition in (5.72), one point must be removed from the circle associated to m1, which topologically results in R instead of S 1 and hence in the non-compact isospectral manifold TnK1!R. & Thus, smooth algebro-geometric CH solutions require E0Z0 or E2nC1Z0. Finally, we briefly turn to the time-dependent case. Hypothesis 5.3. Suppose that u : R2 / C satisfies uð$; tÞ 2CNðRÞ; vm u ð$; tÞ 2LNðRÞ; vx m uðx; $Þ; uxx ðx; $Þ 2C 1 ðRÞ; x 2R: m 2N0 ; t 2R; ð5:93Þ The basic problem in the analysis of algebro-geometric solutions of the CH hierarchy consists in solving the time-dependent rth CH flow with initial data a stationary solution of the nth equation in the hierarchy. More precisely, given n2N0, consider a solution u ð0Þ of the nth stationary CH equation s-CHn ðu ð0Þ ÞZ 0 associated with Kn and a given set of integration constants fc[ g[Z1;.;n 3C. Next, let r2N0; we intend to construct a solution u of the rth CH flow CHr(u)Z0 with uðt0;r ÞZ uð0Þ for some t0;r 2R. To emphasize that the integration constants in the definitions of the stationary and the time-dependent CH equations are Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1051 Real-valued algebro-geometric solutions independent of each other, we indicate this by adding a tilde on all the time~r, H ~ r , f~s , g~s , dependent quantities. Hence, we shall employ the notation V~ r , F~ r , G h~s , c~s , etc. in order to distinguish them from Vn, Fn, Gn, Hn, f[, g[, h[, c[, etc. in the following. In addition, we will follow a more elaborate notation inspired by Hirota’s t-function approach and indicate the individual rth CH flow by a separate time variable tr2R. Summing up, we are seeking a solution u of g r ðuÞ Z 4ut K uxxt C ðuxxx K4ux Þf~r K 2ð4uK uxx Þf~r;x Z 0; CH r r uðx; t0;r Þ Z u ð0Þ ðxÞ; ð5:94Þ x 2R; s-CHn ðuð0Þ Þ Z ðuxxx K4ux Þfn K 2ð4uK uxx Þfn;x Z 0; ð5:95Þ for some t0;r 2R, n; r 2N0 , where u satisfies (5.93). We pause for a moment to reflect on the pair of equations (5.94) and (5.95): as it turns out (cf. Gesztesy & Holden 2002, 2003, §5.4), it represents a dynamical system on the set of algebro-geometric solutions isospectral to the initial value u(0). By isospectral we here allude to the fact that for any fixed tr 2R, the solution uð$; tr Þ of (5.94) and (5.95) is a stationary solution of (5.95), s-CHn ðuð$; tr ÞÞ Z ðuxxx ð$; tr ÞK4ux ð$; tr ÞÞfn ð$; tr Þ K 2ð4uð$; tr ÞK uxx ð$; tr ÞÞfn;x ð$; tr Þ Z 0; ð5:96Þ associated with the fixed underlying algebraic curve Kn. Put differently, uð$; tr Þ is an isospectral deformation of u(0) with tr the corresponding deformation parameter. In particular, uð$; tr Þ traces out a curve in the set of algebrogeometric solutions isospectral to u(0). Thus, relying on this isospectral property of the CH flows, we will go a step further and assume (5.95) not only at tr Z t0;r but also for all tr 2R. Hence, we start with ð5:97Þ Ut ðz; x; tr ÞKV~ r;x ðz; x; tr Þ C ½U ðz; x; tr Þ; V~ r ðz; x; tr Þ Z 0; r KVn;x ðz; x; tr Þ C ½U ðz; x; tr Þ; Vn ðz; x; tr Þ Z 0; where (cf. (2.18)) 0 ðz; x; tr Þ 2C !R2 ; 1 K1 U ðz; x; tr Þ Z @ ð5:98Þ 1 A; ð4uðx; tr ÞK uxx ðx; tr ÞÞ 1 0 1 ~ r ðz; x; tr Þ F~ r ðz; x; tr Þ KG B C V~ r ðz; x; tr Þ Z @ A; K1 ~ ~ z H r ðz; x; tr Þ G r ðz; x; tr Þ z 0 K1 KGn ðz; x; tr Þ Fn ðz; x; tr Þ V~ n ðz; x; tr Þ Z @ A z K1 Hn ðz; x; tr Þ Phil. Trans. R. Soc. A (2008) 1 Gn ðz; x; tr Þ ð5:99Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1052 F. Gesztesy and H. Holden and Fn ðz; x; tr Þ Z n X n Y fnK[ ðx; tr Þz Z ðz K mj ðx; tr ÞÞ; [ Z0 jZ1 Gn ðz; x; tr Þ Z [ n X gnK[ ðx; tr Þz [ ; ð5:100Þ ð5:101Þ [ Z0 Hn ðz; x; tr Þ Z n X hnK[ ðx; tr Þz [ Z h 0 ðx; tr Þ n Y ðz K nj ðx; tr ÞÞ; ð5:102Þ jZ1 [ Z0 h 0 ðx; tr Þ Z 4uðx; tr Þ C 2ux ðx; tr Þ; F~ r ðz; x; tr Þ Z r X ð5:103Þ f~rKs ðx; tr Þz s ; ð5:104Þ g~rKs ðx; tr Þz s ; ð5:105Þ h~rKs ðx; tr Þz s ; ð5:106Þ sZ0 ~ r ðz; x; tr Þ Z G r X sZ0 ~ r ðz; x; tr Þ Z H r X sZ0 ð5:107Þ h~0 ðx; tr Þ Z 4uðx; tr Þ C 2ux ðx; tr Þ; ~ ~ for fixed n; r 2N0 . Here f[ ðx; tr Þ, f s ðx; tr Þ, g[ ðx; tr Þ, g~s ðx; tr Þ, h[ ðx; tr Þ and hs ðx; tr Þ for [ Z 0; .; n, sZ0, ., r, are defined as in (2.3) and (2.7) with u(x) replaced by u(x, tr), etc. and with appropriate integration constants. Explicitly, (5.97) and (5.98) are equivalent to ~ r;x ðz; x; tr Þ C 2H ~ r ðz; x; tr Þ 4utr ðx; tr ÞK uxxtr ðx; tr ÞKH ~ r ðz; x; tr Þ Z 0; K 2ð4uðx; tr ÞK uxx ðx; tr ÞÞG ð5:108Þ ~ r ðz; x; tr ÞK 2F~ r ðz; x; tr Þ; F~ r;x ðz; x; tr Þ Z 2G ð5:109Þ ~ r;x ðz; x; tr Þ Z ð4uðx; tr ÞK uxx ðx; tr ÞÞF~ r ðz; x; tr ÞKH ~ r ðz; x; tr Þ zG ð5:110Þ and Fn;x ðz; x; tr Þ Z 2Gn ðz; x; tr ÞK 2Fn ðz; x; tr Þ; ð5:111Þ Hn;x ðz; x; tr Þ Z 2Hn ðz; x; tr ÞK 2ð4uðx; tr ÞK uxx ðx; tr ÞÞGn ðz; x; tr Þ; ð5:112Þ zGn;x ðz; x; tr Þ Z ð4uðx; tr ÞK uxx ðx; tr ÞÞFn ðz; x; tr ÞK Hn ðz; x; tr Þ: ð5:113Þ One observes that equations (2.3)–(2.25) apply to Fn, Gn, Hn, f[, g[ and h[, and (2.3)–(2.8) and (2.18), with n replaced by r and c[ replaced by c~[ , apply to F~ r , ~r, H ~ r , f~[ , g~[ and h~[ . In particular, the fundamental identity (2.16), G z 2 Gn ðz; x; tr Þ2 C zFn ðz; x; tr ÞHn ðz; x; tr Þ Z R2nC2 ðzÞ; Phil. Trans. R. Soc. A (2008) tr 2R; ð5:114Þ Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 Real-valued algebro-geometric solutions 1053 holds as in the stationary context and the hyperelliptic curve Kn is still given by 2nC1 Y ðz K Em Þ: ð5:115Þ Kn : F n ðz; yÞ Z y2 K R2nC2 ðzÞ Z 0; R2nC2 ðzÞ Z mZ0 Here we are still assuming (3.4), i.e. ð5:116Þ E0 ; .; E2n 2Cnf0g; E2nC1 Z 0: The independence of (5.114) of tr2R can be interpreted as follows. The rth KdV flow represents an isospectral deformation of the curve Kn in (5.115), in particular, the branch points of Kn remain invariant under these flows vtr Em Z 0; m Z 0; .; 2n C 1: ð5:117Þ Together with the comments following (5.95), this shows that isospectral torus questions are conveniently reduced to the study of the stationary hierarchy of CH flows since time-dependent solutions just trace out a curve in the isospectral torus defined by the stationary hierarchy. This is of course in complete agreement with other completely integrable 1C1-dimensional hierarchies such as the KdV, Toda and AKNS hierarchies. We are indebted to Mark Alber, Roberto Camassa, Adrian Constantin, Yuri Fedorov and Igor Krichever for stimulating discussions. This research was supported in part by the Research Council of Norway. References Alber, M. S. & Fedorov, Y. N. 2000 Wave solutions of evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians. J. Phys. A 33, 8409–8425. (doi:10.1088/03054470/33/47/307) Alber, M. S. & Fedorov, Y. N. 2001 Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians. Inverse Probl. 17, 1017–1042. (doi:10.1088/0266-5611/17/4/329) Alber, M. S., Camassa, R., Fedorov, Yu. N., Holm, D. D. & Marsden, J. E. 2001 The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE’s of shallow water and dym type. Commun. Math. Phys. 221, 197–227. (doi:10.1007/PL00005573) Atkinson, F. V. 1964 Discrete and continuous boundary problems. New York, NY: Academic Press. Camassa, R. & Holm, D. 1993 An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664. (doi:10.1103/PhysRevLett.71.1661) Clark, S. & Gesztesy, F. 2002 Weyl–Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators. Trans. Am. Math. Soc. 354, 3475–3534. (doi:10.1090/S0002-9947-02-03025-8) Constantin, A. 1997a A general-weighted Sturm–Liouville problem. Ann. Scuola Norm. Sup. Pisa 24, 767–782. Constantin, A. 1997b On the spectral problem for the periodic Camassa–Holm equation. J. Math. Anal. Appl. 210, 215–230. (doi:10.1006/jmaa.1997.5393) Constantin, A. 1998a On the inverse spectral problem for the Camassa–Holm equation. J. Funct. Anal. 155, 352–363. (doi:10.1006/jfan.1997.3231) Constantin, A. 1998b Quasi-periodicity with respect to time of spatially periodic finite-gap solutions of the Camassa–Holm equation. Bull. Sci. Math. 122, 487–494. (doi:10.1016/S00074497(99)80001-3) Constantin, A. & McKean, P. 1999 A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982. (doi:10.1002/(SICI )1097-0312(199908)52:8!949::AID-CPA3O3.0.CO;2-D) Phil. Trans. R. Soc. A (2008) Downloaded from http://rsta.royalsocietypublishing.org/ on July 28, 2017 1054 F. Gesztesy and H. Holden Gesztesy, F. & Holden, H. 2002 Algebro-geometric solutions of the Camassa–Holm hierarchy. Rev. Math. Iberoamericana 19, 73–142. Gesztesy, F. & Holden, H. 2003 Soliton equations and their algebro-geometric solutions. Vol. I: (1C1)-dimensional continuous models. Cambridge studies in advanced mathematics, vol. 79. Cambridge, UK: Cambridge University Press. Gesztesy, F. & Tsekanovskii, E. 2000 On matrix-valued Herglotz functions. Math. Nachr. 218, 61–138. (doi:10.1002/1522-2616(200010)218:1!61::AID-MANA61O3.0.CO;2-D) Hille, E. 1976 Ordinary differential equations in the complex domain. New York, NY: Wiley. Hinton, D. B. & Shaw, K. 1981 On Titchmarsh–Weyl M(l)-functions for linear Hamiltonian systems. J. Differ. Equations 40, 316–342. (doi:10.1016/0022-0396(81)90002-4) Hinton, D. B. & Shaw, K. 1983 Hamiltonian systems of limit point or limit circle type with both endpoints singular. J. Differ. Equations 50, 444–464. (doi:10.1016/0022-0396(83)90071-2) Hinton, D. B. & Shaw, K. 1984 On boundary value problems for Hamiltonian systems with two singular points. SIAM J. Math. Anal. 15, 272–286. (doi:10.1137/0515022) Kogan, V. I. & Rofe-Beketov, F. S. 1974 On square-integrable solutions of symmetric systems of differential equations of arbitrary order. Proc. Roy. Soc. Ed. A 74, 1–40. Lesch, M. & Malamud, M. 2003 On the deficiency indices and self-adjointness of symmetric Hamiltonian systems. J. Differ. Equations 189, 556–615. (doi:10.1016/S0022-0396(02)00099-2) Levitan, B. M. 1987 Inverse Sturm–Liouville problems. Utrecht, The Netherlands: VNU Science Press. Phil. Trans. R. Soc. A (2008)
© Copyright 2026 Paperzz