ESM1144-SOLUTION SEMESTER 2, 2009/2010 QUESTION 1 [8 marks]question 1a. Solutions 3 1 2 x x 2 dx 2 x x 2 dx 2 x x 2 dx 2 x x 2 dx 0 2 1 3 0 0 2 2 3 x3 x3 x3 x2 x2 x2 3 0 3 3 1 2 8 8 0 1 4 [( 9 9) ( 4)] 3 3 16 5 7 3 3 5 0 f ( x )dx 1(3) 2(3) 12 2 (12 ) 1 ( 2)( 3) 2 2 DEPARTMENT OF ENGINEERING 2 ESM1144-SOLUTION SEMESTER 2, 2009/2010 Question 1b Solutions (a) F ( 2) 2 f (t ) dt 2 1 1 ( 4)( 3) (12 ) 2 2 6 2 (b) DEPARTMENT OF ENGINEERING 3 ESM1144-SOLUTION SEMESTER 2, 2009/2010 F ' ( x) dF ( x ) dx d x f (t ) dt dx 2 f (t ) F ' ( 3) f ( 3) 1 Given the following graph of g(x). Evaluate 7 0 g ( x)dx DEPARTMENT OF ENGINEERING 4 ESM1144-SOLUTION SEMESTER 2, 2009/2010 CHAPTER 4 1. A spring has a natural length of 22 cm. If a force of 15 N is required to keep it stretched to a length of 32 cm, how much work is required to stretch it from 22 cm to 40 cm? F kx 15 k (0.1) k 150 Work 0.18 0 2. 150 xdx 75 x 2 0.18 0 75(0.0324) 2.43J A tank is full of water. Find the work required to pump the water out of the outlet. Round the answer to the nearest thousand. h=1m,r=1m,d=5m Select the correct answer. a. W = 30,000 J b. W = 308,000 J c. W = 757,000 J DEPARTMENT OF ENGINEERING d. W = 431,000 J e. W = 305,000 J 5 ESM1144-SOLUTION SEMESTER 2, 2009/2010 The region bounded by the given curves is rotated about the specified axis. Find the volume of the resulting solid by any method. 3. y x 2 2x 3 ; about the x-axis 4. Find the area enclosed by the line y = x - 1 and the parabola y2 = 2x + 6 Solutions 4 A 2 xR xL dy y 1 12 y 2 3 dy 2 4 4 2 1 2 y 2 y 4 dy 4 1 y3 y 2 4 y 2 3 2 2 16 (64) 8 16 43 2 8 18 DEPARTMENT OF ENGINEERING 6 ESM1144-SOLUTION SEMESTER 2, 2009/2010 Find the volume of solid generated when area bounded by y 3 2 3 2 x 3, y x 3 and 16 16 y axis is revolved about the line y = 2 DEPARTMENT OF ENGINEERING 7 ESM1144-SOLUTION 1 2 x FINAL CHAP 2 SEMESTER 2, 2009/2010 x5 dx 1 x 2 x 4 x dx u (u 1) 2 1 2 1 2 du 2 u (u 2u 1) du (u 2u u ) du 2 5/ 2 3/ 2 1/ 2 12 ( 72 u 7 / 2 2 52 u 5/ 2 23 u 3/ 2 ) C 17 (1 x 2 )7 / 2 52 (1 x 2 )5/ 2 13 (1 x 2 )3/ 2 C FINAL CHP 3 M1 M1 Question 3(a) [6 marks] ln 2 0 4e x sinh( 2 x) dx ln 2 e2 x e2 x dx 4e 2 = = 2e 0 ln 2 0 x 3x 2e x dx S1(t.id) A1(simp) DEPARTMENT OF ENGINEERING 8 ESM1144-SOLUTION SEMESTER 2, 2009/2010 ln 2 e3 x e x = 2 1 0 3 1 8 1 2 ( ) ( 1) 3 3 2 M1(u subs)A1(int) M1(ky in lim)A1(cor ans only, CAO) Question 3(b) [3 marks] cos(sec 1 x) x x2 1 dx let u = sec-1 x 1 dx du = x x2 1 M1(subs rule) = cos u du S1 (in terms u) -1 = sin u + c = sin (sec x) + c A1 (CAO) Question 4 [6 marks] Evaluate x x 2x 3 2 x dx ( x 1) 2 2 dx . Express your answer in terms of ln. M1(Csq)A1 let u = x+1 du = dx u 1 u 2 2 du u u 2 2 du du u 2 1 1 u dw sinh 1 2 w 2 x 1 = w sinh 1 2 = = S1 2 A1 (doesn’t matter in what terms) A1 (for w) ( x 1) 2 2 ln ( x 1) ( x 1) 2 2 c A1 (in terms of ln) DEPARTMENT OF ENGINEERING 9 ESM1144-SOLUTION SEMESTER 2, 2009/2010 Question 5(a) [8 marks] ln x dx e x2 let u = ln x du = 1/x dx e dv = 1/x2 v = -1/x ln x 1 1 . dx x x x e ln x 1 = 2 dx x e x = 1 1 1 = ln e e e x M1 (correct u & dv) A1A1 (diff & int) M1(IBP) S1(simp) e A1(int) e 1 1 1 1 3 e 4 = e 2 e e 2e e M1(key in) A1(COA) Question 5(b) [4 marks] x sin 3 ( x 2 ) dx = 1 sin 3 u du 2 let u = x2 du = 2x dx 1 1 2 2 sin u cos u sin udu 2 3 3 1 1 2 = sin 2 u cos u ( cos u ) c 2 3 3 1 1 = sin 2 ( x 2 ) cos( x 2 ) cos( x 2 ) c 6 3 = DEPARTMENT OF ENGINEERING M1(subs rule) M1(RF) A1(u terms) A1(x terms) 10 ESM1144-SOLUTION question 2 Evaluate 3 0 x SEMESTER 2, 2009/2010 ( x3 6 x) dx ba 3 n n 3 0 ( x3 6 x)dx n lim f ( xi )x n i 1 n 3i 3 lim f n n n i 1 3 3 n 3i 3i lim 6 n n n i 1 n (Eqn. 9 with c 3 / n) 3 n 27 3 18 3 i n i n n i 1 n lim 54 n 81 n lim 4 i 3 2 i n n n i 1 i 1 (Eqns. 11 & 9) 81 n(n 1) 2 54 n(n 1) lim 4 n2 n n 2 2 (Eqns. 7 & 5) 81 1 2 1 lim 1 27 1 n n 4 n 81 27 27 6.75 4 4 DEPARTMENT OF ENGINEERING 11
© Copyright 2026 Paperzz