ENSEMBLE EMPIRICAL MODE DECOMPOSITION Noise Assisted Signal Analysis (nasa) Part II EEMD Zhaohua Wu and N. E. Huang: Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method. Advances in Adaptive Data Analysis, 1, 1-41, 2009 The Ensemble Effects The true answer is not the one without perturbation of noise. EXAMPLE : ORIGINAL DATA Original Data 1 0.5 0 -0.5 -1 E1: Original Data + 0.1*RANDN/std(Oiginal data) 1 0.5 0 -0.5 -1 Mean E50 data 1 0.5 0 -0.5 -1 0 200 400 600 800 1000 1200 “LOCAL” -> “LOCAL” IMF 4 IMF 3 IMF 2 IMF 1 Signal Decomposition of the Dirac function 8 6 4 2 0 4 2 0 -2 -4 4 2 0 -2 -4 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 1 0 -1 0.5 0 -0.5 Ensemble EMD Solves the mode mixing problem utilizing the uniformly distributed reference frame based on the white noise EXAMPLE : ORIGINAL DECOMP. C1 of the Original Data 1 0 -1 C2 of the Original ) 1 0 -1 C3 of the Original ) 0.2 0 -0.2 Remainder of the Original ) 0.2 0 -0.2 0 200 400 600 800 1000 1200 Procedures for EEMD • • • • Add a white noise series to the targeted data; Decompose the data with added white noise into IMFs; Repeat step 1 and step 2 again and again, but with different white noise series each time; and Obtain the (ensemble) means of corresponding IMFs of the decompositions as the final result. Definition of Signal in EEMD The signal used in EEMD is given by : S (t) = s( t ) n j ( t ) , j in which s(t) is the original signal, n j ( t ) is th eadded noise. Definition of IMF in EEMD The truth defined by EEMD is given by the number of the ensemble approaching infinite: c (t) = lim j N in which 1 N c N k 1 j ,k (t) + rk ( t ) , c j ,k (t) + rk ( t ) is the k-th realization of the j-th IMF in the noise added signal, and is the magnitude of the added noise that is not necessarily small. The Standard Deviation of EEMD With the truth defined, the discrepancy, Δ, should be Δ = E cn (t) j j=1 t m - cn (t) j 2 in which E{ } is the expected value as given in Equation. 1/2 , Effect of the White Noise • The effects of the added white noise should decrease following the well established statistical rule: n n , n number of ensemble. Data of the Noise Effects: Dotted line = theoretical; solid line = high frequency components; dashed line = low frequency components. standard deviation of error vs. number of ensemble member N -3 -5 -6 2 log (std of error) -4 -7 -8 -9 1 2 3 4 5 6 log2(N) 7 8 9 10 11 Procedure for EEMD Illustration EXAMPLE : E1 DECOMP. EXAMPLE : E10 DECOMP. EXAMPLE : E100 DECOMP. EXAMPLE : Intermittence DECOMP. EXAMPLE : Difference Main IMF. EXAMPLE : Difference Intermittent Signal. EXAMPLE : Difference Intermittent Signal Details. EXAMPLE : Instantaneous Frequency from Main Signal. Summary: Numerical Data • From the intermittency Example, we see that the Ensemble EMD can generate IMFs with comparable quality as the ones through the Intermittence test. • More ensemble in the average will improve confidence in the EMD results. • The main advantage of Ensemble EMD is that we do not need to determine the ‘Intermittence test criteria’ subjectively, which could become impossible for complicated data. Example I : Geophysical Data Surface Temperature Data from Two Difference Satellite Radiometer channels EXAMPLE I: ORIGINAL DATA ORIGINAL DATA ( blue: RSS-T2; red: UAH-T2 ) 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 1980 1985 1990 1995 2000 EXAMPLE I: DECOMPOSITION (I) C1 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0 -0.2 C2 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0 -0.2 C3 ( blue: RSS-T2; red: UAH-T2 ) 0.5 0 -0.5 C4 ( blue: RSS-T2; red: UAH-T2 ) 0.5 0 -0.5 1980 1985 1990 1995 2000 EXAMPLE I: DECOMPOSITION (II) C5 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0.1 0 -0.1 -0.2 C6 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0.1 0 -0.1 -0.2 TREND ( blue: RSS-T2; red: UAH-T2 ) 0.5 0 -0.5 1980 1985 1990 1995 2000 EXAMPLE I: NOISY DATA (added noise std=0.1) ORIGINAL DATA ( b: RSS-T2; r: UAH-T2; g: RSS-T2-esb01; m: UAH-T2-esb01 ) 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 1980 1985 1990 1995 2000 NOISY DATA DECOMPOSITION (I) (added noise std=0.1) C1 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0 -0.2 C2 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0 -0.2 C3 ( blue: RSS-T2; red: UAH-T2 ) 0.5 0 -0.5 C4 ( blue: RSS-T2; red: UAH-T2 ) 0.5 0 -0.5 1980 1985 1990 1995 2000 NOISY DATA DECOMPOSITION (II) (added noise std=0.1) C5 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0.1 0 -0.1 -0.2 C6 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0.1 0 -0.1 -0.2 TREND ( blue: RSS-T2; red: UAH-T2 ) 0.5 0 -0.5 1980 1985 1990 1995 2000 EXAMPLE I: NOISY DATA (added noise std=0.2) ORIGINAL DATA ( b: RSS-T2; r: UAH-T2; g: RSS-T2-esb02; m: UAH-T2-esb02 ) 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 1980 1985 1990 1995 2000 NOISY DATA DECOMPOSITION (I) (added noise std=0.2) C1 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0 -0.2 C2 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0 -0.2 C3 ( blue: RSS-T2; red: UAH-T2 ) 0.5 0 -0.5 C4 ( blue: RSS-T2; red: UAH-T2 ) 0.5 0 -0.5 1980 1985 1990 1995 2000 NOISY DATA DECOMPOSITION (II) (added noise std=0.2) C5 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0.1 0 -0.1 -0.2 C6 ( blue: RSS-T2; red: UAH-T2 ) 0.2 0.1 0 -0.1 -0.2 TREND ( blue: RSS-T2; red: UAH-T2 ) 0.5 0 -0.5 1980 1985 1990 1995 2000 NOISY DATA DECOMPOSITION (II) (RSS_T2) Original data ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 1 0.5 0 -0.5 C1 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.2 0 -0.2 C2 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.2 0 -0.2 C3 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.2 0 -0.2 1980 1985 1990 1995 2000 NOISY DATA DECOMPOSITION (II) (RSS_T2) C4 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 1 0.5 0 -0.5 C5 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.2 0 -0.2 C6 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.2 0 -0.2 TREND ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.5 0 -0.5 1980 1985 1990 1995 2000 NOISY DATA DECOMPOSITION (II) (UAH_T2) C4 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 1 0.5 0 -0.5 C1 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.2 0 -0.2 C2 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.2 0 -0.2 TREND ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.5 0 -0.5 1980 1985 1990 1995 2000 NOISY DATA DECOMPOSITION (II) (UAH_T2) C4 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 1 0.5 0 -0.5 C5 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.2 0 -0.2 C6 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.2 0 -0.2 TREND ( b: 0.0; r: 0.1; g: 0.2; m: 0.4; k: 1.0 ) 0.5 0 -0.5 1980 1985 1990 1995 2000 EXAMPLE I: CORR. COEF.’s CORRELATION COEFFICIENTS ( r: rss00~rss04; b: uaht00~uaht04 ) 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 CORRELATION COEFFICIENTS ( r: uaht00~rss04; b: uaht04~rss00 ) 1 0.8 0.6 0.4 0.2 0 CORRELATION COEFFICIENTS ( r: uaht00~rss00; b: uaht04~rss04 ) 1 0.8 0.6 0.4 0.2 0 6 7 Summary: Radiometer Data • Data from the two different channels should reflect a similar overall structure, especially for medium and long wave length. • Straightforward sifting will have severe mode mixing for medium scale IMFs. • It is impossible to select the proper scales for the ‘Intermittence test’ to separate the modes. • Ensemble EMD provided an automatic dyadic filter to separate the modes. • Ensemble EMD especially effective when the data contain intermittent signal as in UAH case as shown by the correlation coefficients between RSS and UAH series. Example II : Geophysical Data SOI and the Sea Surface temperature at Nino 34 EXAMPLE II: ORIGINAL DATA ORIGINAL DATA ( blue: CTI; red: SOI ) corrcoef=-0.5661 5 0 -5 1880 1900 1920 1940 1960 1980 2000 ENLARGEMENT 5 0 -5 1970 1975 1980 1985 1990 1995 2000 EXAMPLE II: DECOMPOSITION (I) C1 ( blue: SOI; red: CTI ) 2 0 -2 C2 ( blue: SOI; red: CTI ) 2 0 -2 C3 ( blue: SOI; red: CTI ) 2 0 -2 C4 ( blue: SOI; red: CTI ) 2 0 -2 1880 1900 1920 1940 1960 1980 2000 EXAMPLE II: DECOMPOSITION (II) C5 ( blue: SOI; red: CTI ) 1 0 -1 C6 ( blue: SOI; red: CTI ) 1 0 -1 C7 ( blue: SOI; red: CTI ) 1 0 -1 C8 ( blue: SOI; red: CTI ) 0.5 0 -0.5 1880 1900 1920 1940 1960 1980 2000 EXAMPLE II: DECOMPOSITION (III) C9 ( blue: SOI; red: CTI ) 0.2 0 -0.2 TREND ( blue: SOI; red: CTI ) 0.2 0 -0.2 1880 1900 1920 1940 1960 1980 2000 EXAMPLE II: NOISY DATA (added noise std=0.4) ORIGINAL DATA ( b: CTI; r: SOI; g: CTI-esb04; m: SOI-esb04 ) 5 0 -5 1880 1900 1920 1940 1960 1980 2000 ENLARGEMENT 5 0 -5 1970 1975 1980 1985 1990 1995 2000 EXAMPLE II: DECOMPOSITION (I) (added noise std=0.4) C1 ( blue: SOI; red: CTI ) 2 0 -2 C2 ( blue: SOI; red: CTI ) 2 0 -2 C3 ( blue: SOI; red: CTI ) 2 0 -2 C4 ( blue: SOI; red: CTI ) 2 0 -2 1880 1900 1920 1940 1960 1980 2000 EXAMPLE II: DECOMPOSITION (II) (added noise std=0.4) C5 ( blue: SOI; red: CTI ) 1 0 -1 C6 ( blue: SOI; red: CTI ) 1 0 -1 C7 ( blue: SOI; red: CTI ) 1 0 -1 C8 ( blue: SOI; red: CTI ) 0.5 0 -0.5 1880 1900 1920 1940 1960 1980 2000 EXAMPLE II: DECOMPOSITION (III) (added noise std=0.4) C9 ( blue: SOI; red: CTI ) 0.2 0 -0.2 TREND ( blue: SOI; red: CTI ) 0.2 0 -0.2 1880 1900 1920 1940 1960 1980 2000 CTI: DECOMPOSITION (I) Original data ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 5 0 -5 C1 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 2 0 -2 C2 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 2 0 -2 C3 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 2 0 -2 1880 1900 1920 1940 1960 1980 2000 CTI: DECOMPOSITION (II) C4 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 2 0 -2 C5 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 1 0 -1 C6 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 1 0 -1 C7 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 1 0 -1 1880 1900 1920 1940 1960 1980 2000 CTI: DECOMPOSITION (III) C8 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 0.2 0 -0.2 C9 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 0.2 0 -0.2 TREND ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 0.2 0 -0.2 1880 1900 1920 1940 1960 1980 2000 SOI: DECOMPOSITION (I) Original data ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 5 0 -5 C1 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 2 0 -2 C2 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 2 0 -2 C3 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 2 0 -2 1880 1900 1920 1940 1960 1980 2000 SOI: DECOMPOSITION (II) C4 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 2 0 -2 C5 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 1 0 -1 C6 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 1 0 -1 C7 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 1 0 -1 1880 1900 1920 1940 1960 1980 2000 SOI: DECOMPOSITION (III) C8 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 0.2 0 -0.2 C9 ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 0.2 0 -0.2 TREND ( b: 0.0; r: 0.1; g: 0.2; m: 0.4 ) 0.2 0 -0.2 1880 1900 1920 1940 1960 1980 2000 EXAMPLE II: CORR. COEF.’s CORRELATION COEFFICIENTS ( r: soi00~soi04; b: cti00~cti04 ) 1 0.5 0 CORRELATION COEFFICIENTS ( r: cti00~soi04; b: cti04~soi00 ) 1 0.5 0 -0.5 -1 CORRELATION COEFFICIENTS ( r: cti00~soi00; b: cti04~soi04 ) 1 0.5 0 -0.5 -1 0 1 2 3 4 5 6 7 8 9 10 11 Summary : CTI and SOI • Straightforward sift produced low correlated IMFs from the two difference time series. • Correlation test indicates that the Ensemble EMD can separate the time scales in the IMFs, and improve the correlation significantly. Application of EEMD to Sound March 30, 2005 Data : Hello Data : Hello c3y Data : IMF100 Hilbert Spectrum : IMF100 (500, 12000; 7x7^3) Hilbert Spectrum : c3y (500, 12000; 7x7^3) Hilbert Spectrum : IMF100 (500, 12000; 7x7^3) Hilbert Spectrum : c3y (500, 12000; 7x7^3) Summary • True IMFs can be derived from adding finite amplitude of noise, rather than the case with infinitesimal noises. • Ensemble EMD indeed enables the signals of similar scale collated together. • No need for a priori criteria for intermittency. Summary • Sum of IMFs may not be an IMF. • As the components produced by EEMD are the averaged values of many IMFs, they might not be IMFs: some of the component might have multi-extrema. More stringent stoppage criteria and/or trials in the ensemble can improve the situation. Data Stoppage Criteria : S=1 Stoppage Criteria : S=10 Stoppage Criteria : S=1 Detail Stoppage Criteria : S=10 Detail OI vs. Noise Level OI vs. Stoppage Criteria Orthogonal Index of S-Number & Noise Level Orthogonal Index 0.5 0.11 0.45 0.1 0.4 0.09 0.35 Noise Level 0.08 0.3 0.07 0.25 0.06 0.2 0.05 0.15 0.04 0.03 0.1 0.02 0.05 1 0.01 2 3 4 5 6 S-Number 7 8 9 10 Orthogonal Index 0.5 0.14 0.45 0.12 0.4 0.1 Noise Level 0.35 0.08 0.3 0.25 0.06 0.2 0.04 0.15 0.02 0.1 0.05 248 16 32 0 64 128 Fixed Sifting Number 256 Same as last slide, but with log2 x-axis Orthogonal Index 0.5 0.14 0.45 0.12 0.4 0.1 Noise Level 0.35 0.08 0.3 0.25 0.06 0.2 0.04 0.15 0.02 0.1 0.05 1 0 2 3 4 5 6 Fixed Sifting Number: Power of 2 7 8 It looks like the fixed-sifting number method can give better orthogonal index for the same noise-level. But there are several shortcomings for the fixed-sifting number procedure: 1) un-adaptive IMF’s number. This must be determined by user. 2) Too much computations. For the same case, the fixed sifting number method requires extremely more computations. Observations • • • • It looks like the fixed-sifting number method can give better orthogonal index for the same noise-level. Fixed sifting number method requires unadaptive IMF’s number. This must be determined by user. Too much computations. For the same case, the fixed sifting number method requires extremely more computations. All EEM results might not be IMFs. Latest Development • It has been noted that the EEMD could implemented with the added noise used in pairs: once with plus sign, and once with minus sign. • This pair-wise noise addition could reduce the noise in the final re-constitution of the signal. Conclusions • Ensemble EMD enables the EMD method to be a truly dyadic filter bank. • By adding finite noise, the Ensemble EMD eliminates mode mixing in most cases automatically. • Ensemble EMD, utilized the scale separation principle of EMD, represents a major improvement of the EMD method. • The true IMF components should be the results of the Ensemble EMD rather than from the raw data. • Sum of IMF is not necessarily an IMF; therefore, the ensemble EMD results might not be IMFs. EEMD Is equivalent to an artificial ensemble mean of EMDs.
© Copyright 2025 Paperzz