MCV 4U1 Unit 3 Review This worksheet serves as an additional exercise to complement the lesson and the examples given. Worksheets may take more than one day to complete. If you are stuck, read over the notes taken in class, see the additional examples from the website, work with fellow students, and come to the tutoring lessons after school. Complete solutions to all questions are available on the website. When in doubt do more! In Exercises 1 – 30, find the derivative of the function. 5 1). y x 4). y 3). y 2 sin x cos x 3 7 2). y 3 7 x 3 x 1 2 1 x x 8 4 2 x 1 2 x 1 5). s cos(1 2t ) 2 t 6). s cot 8). y x 2 x 1 9). r sec(1 3 ) 2 2 10). r tan (3 ) 2 11). y x csc 5 x 12). y ln x x 13). y ln(1 e ) 14). y xe 16). y ln(sin x ) 17). y ln(cos 19). s log5 (t 7) 20). s 8 1 7). y x 1 x 22). y (2 x )2 x x 2 1 25). y t sec 1 28). y 2 x 1 csc 1 In Exercises 31- 34, find 1 21). y x 29). y csc dy 1 ln x 24). y sin 26). y 1t 2 cot x (1ln x ) 2 18). r log 2 ( ) x) tan 1 x 1 ln t 2 15). y e t 23). y e t x 1 27). y z cos 2t (sec x ), 1 1u 2 1 z 1 z 2 1sin 1cos 30). y 0 x 2 2 . dx 4 6 5 32). 5 x 10 y 5 15 31). xy 2 x 3 y 1 33). xy 1 2 34). y x x 1 In Exercises 35 – 38, find an equation for the (a) tangent and (b) normal to the curve at the indicated point. 35). y x2 2 x , x 3 36). y 4 cot x 2 csc x , x 2 2 2 37). x 2 y 9, (1,2) 38). x xy 6, (4,1) MCV 4U1 Unit 3 Review 39). Free Fall Suppose two balls are falling from rest at a certain height in centimeters above the ground. 2 Use the equation s 490t to answer the following questions. A). How long does it take the balls to fall the first 160 cm? What is their average velocity for the period? B). How fast are the balls falling when they reach the 160 cm mark? What is their acceleration then? 40). Filling a Bowl If a hemispherical bowl of radius 10 in. is filed with water to a depth of x in., the x 2 x . Find the rate of increase of volume per inch increase of 3 volume of water given by V 10 depth. 41).The graph of y sin( x sin x ) appears to have horizontal tangents at the x –axis. Does it? 200 , where t is the number of days 5t 1 e since the measles first appeared, and P(t) is the total number of students who have caught the measles to date. A). Estimate the initial number of students infected with measles. B). About how many students in all will get the measles? C). When will the rate of spread of measles be greatest? What is the rate? 42). The spread of measles in a certain school is given by P (t ) 2 d y 2 2 43). If x y 1, find at the point 2, 3 . 2 dx MCV 4U1 1). Unit 3 Review Solutions 11). 2). 12). 3). 13). 14). 4). 15). 5). 6). 16). 17). 7). 18). 8). 19). 9). 20). 10), MCV 4U1 21). Unit 3 Review Solutions 25). 26). 27). 22). 28). 23). 24). MCV 4U1 29). Unit 3 Review Solutions 32). 33). 34). 30). 31). 35). MCV 4U1 36). Unit 3 Review Solutions 39). 40). 37). 41). 38). MCV 4U1 42). 43). Unit 3 Review Solutions
© Copyright 2026 Paperzz