CSc-180 (Gordon) Week 3B notes Fuzzy Logic Truth Tables Consider standard Boolean logic truth table for OR: A 0 0 1 1 B 0 1 0 1 Boolean truth table for NOT: ^ 0 1 1 1 A 0 1 ¬ 1 0 Given that in Fuzzy logic, A^B = max(A,B), a corresponding partial truth table for Fuzzy OR would be: A 0 0 0 .5 .5 .5 1 1 1 B 0 .5 1 0 .5 1 0 .5 1 ^ 0 .5 1 .5 .5 1 1 1 1 Fuzzy logic for NOT(A) is 1-A, ∴ partial fuzzy table for NOT: A 0 .5 1 note that when membership=0.5, A=¬A What about implication? In Boolean logic, A A 0 0 0 .5 .5 .5 1 1 1 B max((1-A),B) 0 1 .5 1 1 1 0 .5 .5 .5 1 1 0 0 .5 .5 1 1 A B 0 0 0 .5 .5 .5 1 1 1 0 .5 1 0 .5 1 0 .5 1 ¬ 1 .5 0 In Fuzzy Logic, that would be max((1-A),B) “Godel” implication (A≤B)νB 1 1 1 0 1 1 0 .5 1 Modus Ponens ≡ max((1-A),B) 1 1 1 .5 .5 1 1 .5 1 B = ¬A ν B Which definition of implication is “better”? One test would be to see which obeys Modus Ponens. Modus Ponens is: ((A Modus Ponens ≡ (A≤B)νB 1 1 1 1 1 1 1 1 1 B) ^A) B
© Copyright 2026 Paperzz