<Sol. 1> 1. x 0 (a). 2. x 0 when x0 3. x x , R 4. x y x y 1. x, x 0 2. x, x 0 (b). x0 when 3. x, y y, x 4. x, y x, y 5. x y, z x, z y, z 6. x, y 2 x, x y , y (c). Yes, x x, x 1/ 2 The inner product space contains angle information but the normed space does Not (d). A Hibert space is a complete inner product space. x x, x d ( x, y ) x y x y, x y (e). A Banach space is a complete normed space (f). when n x n+1 xn xn 1 2 xn 此 cauchy sequence 不具完備性 2 xn2 xn2 2 xn 2 (g). (h). c1 x (1) x (2) c2 x (1) c1 & c2 0, x R n 25 49 16 25 <Sol. 2> Set of functions un ( x) x n , n=01,2,… The interval is 1 x 1 and w( x) 1 In accordance with the Gram-Schmidt orthogonalization process descried, u0 1 , hence 0 1 2 Then 1 x a1,0 1 2 and 1 a1,0 1 x dx 0 2 by symmetry. We normalize 1 to obtain 3 x 2 Then we continue the Gram-Schmidt procedure with 1 2 x 2 a2,0 1 3 a2,1 x 2 2 where a2 , 0 1 1 a2,1 x2 2 dx 3 2 3 3 x dx 0 2 1 1 again by symmetry. Therefore 2 x2 1 3 and on normalizing to unity, we have 2 5 1 2 (3x 1) 2 2 The next function, 3 ( x) , becomes 3 7 1 (5 x3 3x) 2 2 Show that n 2n 1 Pn ( x) 2 So P0 ( x) 1 P1 ( x) x 1 (3 x 2 1) 2 1 P3 ( x) x(5 x 2 3) 2 P2 ( x) <Sol. 3> Because 2 (r , , z ) r2 2 1 1 2 2 0 r 2 r r r 2 2 z 2 2 2 2 2 r r 0 r 2 r 2 z 2 So r 2 2 [r ] 2 r2 2 0 r r z ∴ That Laplacian operator 2 is self-adjoint Set 1 2 1 (r, , z) R(r )Q( )Z ( z) So 1 1 R QZ R QZ 2 RQZ RQ Z 0 r r R 1 R 1 Q Z 0 R r R r2 Q Z 1 R R r 1 Q Z 0 R r2 Q Z Set Z 2 Z Z ( z ) A cos z B sin z Q 2 Q( ) C cos D sin Q 1 R R r 1 ( 2 ) 2 0 R r2 r 2 R rR (2 r 2 2 ) R 0 R(r ) C I (r ) D K (r ) Then lim bounded r 0 B.C. R ( r ) C I ( r ) 1 (r a, , z ) V1 ( , z ) 21 (r , , z ) 0 1 (r , , z 0) 0 A0 ( r , , z L) 0 0 B sin L L n n , n 1,2,3... 1 L ∵ 1 (r , , z ) (C cos D sin ) I (a) sin z ∴ V1 ( , z ) [Cn cos Dn sin ]I ( 0 n1 n n a) sin( z) L L Orthogonal: L 0 2 0 cos sin( [Cn I ( 0 n 1 n z )V1 ( , z )ddz L L 2 n n n a ) ( cos cos d ) sin( z ) sin( z )dz ] 0 0 L L L n z )V1 ( , z )ddz 0 0 L 2 L n n I ( a) cos 2 d sin 2 ( z )dz 0 0 L L L Cn 2 cos sin( 2 for 0 , cos2 d 2 for 0 , cos2 d 0 2 0 L n 0 , sin 2 ( for 0 C0 n Cn 2 L 0 L 2 0 0 2 0 n L z )dz L 2 n z )V1 ( , z )ddz L n LI 0 ( a) L sin( n z )V1 ( , z )ddz L n LI ( a) L cos sin( n z )V1 ( , z )ddz L Dn 2 L n n I ( a) sin 2 d sin 2 ( z )dz 0 0 L L L 2 0 0 sin sin( So that 1 (r , , z ) [Cn cos Dn sin ]I ( 0 n1 n n r ) sin( z) L L And so 2 (r, , z) R(r )Q( )Z ( z) So 1 1 R QZ R QZ 2 RQZ RQ Z 0 r r R 1 R 1 Q Z 0 R r R r2 Q Z 1 R R r 1 Q Z 0 R r2 Q Z Set Z 2 Z Z ( z ) A cosh z B sinh z Q 2 Q( ) C cos D sin Q 1 R R r 1 ( 2 ) 2 0 R r2 r 2 R rR (2 r 2 2 ) R 0 R(r ) C J (r ) D N (r ) Then lim bounded r 0 R ( r ) C J (r ) B.C. 2 ( r a, , z ) 0 J (a) 0 a n , n 1,2,3... 2 (r , , z ) 0 2 (r , , z 0) V2 (r , ) (r , , z L) 0 2 2 ∵ 2 (r , , z ) ( A cos B sin ) J ( r ) sinh z ∴ V2 (r , ) An [ A 0 n 1 n cos Bn sin ]J (n r ) sinh( n L) 2 cos ech(n L) 2 a d drrV2 (r , ) J (n r ) sin 0 a I 1 (n a) 0 a 2 cos ech(n L) 2 Bn d drrV2 (r , ) J (n r ) cos 2 2 0 a I 1 (n a) 0 2 2 So that 2 (r , , z ) [ An cos Bn sin ]J (n r ) sinh( n z) 0 n1
© Copyright 2026 Paperzz