Maximal tension, Born’s
reciprocity, Discrete time and
conformally flat Gaussian-like
metric.
Lev.M.Tomilchik
B.I.Stepanov Institute of Physics of
NAS of Belarus, Minsk.
Gomel, July 2009
Topics
Maximal Tension and Reciprocity;
Reciprocally-invariant generalization of the energymomentum connection;
Reciprocally-invariant Hamiltonian one-particle
dynamics;
Explicit expression for the classical time-dependent
action;
Canonical quantization, semi classical approach;
Discrete time and quantized action;
The possible cosmological outcomes;
Connection between Born’s reciprocity and
conformally-flat metric;
Maximal Tension Principle in GR
c
dp
MaximumForce : F0
.
4G
dt lim
4
c
dE
MaximumPower :
.
cF0
4G
dt lim
5
Maximum Force is the reversal to Einstein’s gravitational
constant.
Gibbons (2002), Schiller (2003, 2005).
The problem: MTP beyond the GR.
Our proposition: to connect MTP with Born’s reciprocity.
Born’s reciprocity principle
Reciprocity transformations : p x, x p.
RI quadratic form : S B2 p p x x B inv.
RI equation :
2
x x B ;
x
x
SU(3,1) - invariance
M. Born’s Reciprocal Symmetry
and Maximal Force 1
RI Infinitesimal Interval
dS B 2
dp
1
dp
2
dx dx 2 dp dp ds 1 2
0
0 ds ds
1
0 – universal constant with dimension
momentum/length or energy/time
(L. Tomilchik - 1974)
Choice: 0 c G (L. Tomilchik - 2003)
3
M. Born’s Reciprocal Symmetry
and Maximal Force 2
dp
If ds 2 c 2 d 2 ,
f Minkowski force
d
1
2
f f
than dS B cd 2 , f f 0.
F
0
In comoving reference frame
1
2
2
f
2
f f f , so dS B cd 2 .
F0
One can see that F0 c 0 is the Maximum Force
(MF) the upper limit of any force.
Reciprocally-Invariant Quadratic
Form in the QTPH Space 1
SB
2
1
1 2
2
2
x x 2 p p x0 r 2 p0 p2 inv ,
κ0
κ0
μ
μ
x
x
,
r
;
p
p0 , p ,
4-vectors
0
p and x are canonical variables
ημν diag (1,1,1,1, ).
Poisson brackets (classical) are defined as
p μ , xν ημν .
Reciprocity transformations : p 0 x, x 01 p.
The symmetry group — SU (1,3) .
Case SB2=0 and hyperbolic motion
Condition S B 2 p p 02 x x 0.
Twopossibilities : (A) p p x x 0 (light cone)
(B) p02 p 2 = m 2 c 2 ; x02 x 2 r02 (hyperbolic motion).
In the case(B) we obtain the condition :
mc mG 1
2 2
2 2
m c 0 r0 0, hence r0
2 rg
0
c
2
( rg is the Schwartzchield radius)
F0
c2
c4
w(m)
is the maximal acceleration for the mass m.
r0 Gm m
Reciprocally-Invariant Quadratic
Form in the QTPH Space 2
The dimensionless variables
p
r
p
P Q , where qee 0 ,
pe
qe
pe qe a constant having dimension of action
1
2
1
a
Planck constant, qe pe a 0 2 ,
0
pe qe min amin
c
pextr 0
pP
G
1
2
1
G
2
qextr / 0 3 lP
c
1
2
3
1
2
Planck's parameters
The self-reciprocal invariant
(dimensionless values)
ct
S H P Q B inv., .
qe
2
B
2
2
2
2
Thetime - dependentHamiltonian :
1
2 2
H ( P , Q, ) ( H ) , where H P Q B .
2
0
2
0
2
2
The canonical equations :
dQ H
dP
H
2
2
P(H0 ) ;
Q ( H 02 2 )
d P
dt
Q
1
2
1
2
Its easy to see, that H is the integral o f motion, and can be considered
0
as a constant, with respect to differentiation and integration by .
The maximum power
The rate of change of the energy
dH
2
2
( H 0 )
d
1
2
dH
The functions H and
are real in the domain
d
H0 H0
dH
The average value of
:
d
fin
H fin H in
1
dH
dH
fin in
d
d
fin in
in d
The maximum power (cont.)
Choosing in 0, fin H 0 , we have H in H 0 , H fin 0.
dH
Hence
1 and in dimensional values :
d
5
dE c 2 pe dH
c
c 2 0 cF0 the maximal power
d
qe d
G
The explicit form of action
The conventional connection between the action S and
Hamiltonian H is:
S ( H 0 )
H ( H 0 )
Under supposition that integral of motion H0 can be treated as a
parameter, we can write the following:
1
dS ( H 0 )
( H 02 2 ) 2
d
Elementary integration gives :
2
H
2
0
S ( H 0 , ) ( H 0 )
arcsin
S0 ( H 0 ) const.
2
2
H0
1
2 2
The arbitary function S 0 ( H 0 ) and const
are to be defined from the initial conditions.
The classical motion picture
1. Initial conditions :
1
S0 ( H 0 ) (k ) H 02 (k 0,1, 2,3...), const 0.
4
2. For the fixed value of H 0 the duration of the "particle's" motion.
qe
is restricted by the time interval t
H0.
c
3. Change of energy : E cpe H 0 .
E c 2 pe dE
4. Average rate of energy change :
.
t
qe
dt lim
5. Value of action S
4
E t
e
4
qe pe H 02 .
The canonical quantization
k , Ql i kl .
S ( H 0 , ) S N N | S | N , is considered as a parameter.
1
2
SN N | H | N
2
2
0
2
1
2
N | H 0 | N arcsin
2
2
N
|
H
0 | N
1
2
1
2
2
S0 N | H 0 | N
The canonical quantization (cont.)
N | H 02 | N
For the definition of
we use the discrete spectrum of
2
2
2
2
Born's equation :
0 0 , B 0 , .
2
0
Its solution :
, n
3
0
k 0
k
,
nk is the well - known oscillator eigen functions,
B n0 , n 2n0 1 2n 3 , n n1 n2 n3 .
n0 , n | H 02 | n0 , n n0 , n | P 2 Q 2 | n0 , n (n0 , n) 2n0 1
The action spectrum
1
S N 2 N 1 2 1
1
2
2 N 1 2
1
2
2
S0 2 N 1 , N n0 0,1, 2,...
2 N 1 arcsin
1
2
2
2 N 1
Linear dependence S N on N requires :
1
1)
1
2
2
N
1
2
1; 2)S 2 N 1 2 N 1 ,
0
is numerical parameter
The action spectrum (cont.)
Then (in dimentional units) : S N pe qe 2 N 1 .
4
S N 1 S N h is the condition for the choice of and pe qe :
5
1)
,
4
2) pe qe
.
Finally :
1
S N h N , N 0,1,2,...
2
Energy spectrum and discrete time
1
2
1
2
5
1
c
E N EP N , EP
.
2
G
1
2
1
2
1
G
tN tP N , tP 5 .
2
c
The maximal power :
E E N fin E N in EN c 5 dE
t
t
G
dt
t N fin t N in
lim
N
The possible cosmological
outcome
Early Universe : Radiation - Dominated Stage
(A) Standard picture : FLRW - model, scale factor R(t )
wavelength time dependence (t )
R (t )
t
radiation energy dependence
1
2
t fin
E t ,
.
fin
E
tin
(B) Discrete time picture :
12
E in
E
fin
E
in
( N fin 2)
N fin
N fin 1
1
2
1
2
1
2
t ,
Universe Expansion stages on
energy scale
Plankian magnitude
CUT (SU(5)) - breaking
SUL(2) U(1) - breaking
Quark confinement
pp - annihilation
ee - annihilation
separation
(final of RD stage)
Energy,
GeV
Time,
sec
1019
10–44
1015
102
100
10–3
10–4
10–9
10–36
10–10
10–6
100
102
1012
E in EP
E fin
19
N fin
10
= 108
15
10
1
2
1
1019
34 2
= 10
102
19
10
= 1038
0
10
19
10
= 10 44
3
10
19
10
46
=
10
10 4
19
10
= 1056
9
10
1
2
1
2
1
2
t
in
t tP
fin
1
2
1
2
10
4
44 = 10
10
36
1
10 10 2
17
44 = 10
10
1
2
10
19
44 = 10
10
6
1
2
10
22
44 = 10
10
0
1
1
2
1
2
102 2
23
44 = 10
10
1
2
10
28
44 = 10
10
12
Born’s reciprocity and
conformally-flat metrics
We will show that in the Gaussian-like
conformally-flat metric:
the D’Alembert equation has the form of the
M.Born’s equation;
the solution of the geodesic equation describes the
hyperbolic motion of the probe particle;
there is a solution corresponding to the discrete
spectrum;
The general covariant D’Alembert equation
1
g
gg
( x) 0
In conformally flat metric
gμν = U2(x)ημν , ημν = diag{1, -1, -1, -1}
gives
∂μ∂μφ + 2U-1(∂μU)(∂μφ) = 0
After substitution
φ(x) = U-1(x)Φ(x)
We obtain
∂μ∂μ Φ – (U-1 ∂μ∂μU) Φ = 0
= exp(αx2) we have
U-1 ∂μ ∂νU = 2αδνμ + 4α2xμxν
In the case U(x)
In the case of pseudo Euclidian space with dimension
D = Ns+1, were Ns - number of the space dimensions
ημν = diag{1, -1, -1,… -1}
Ns times
In the Minkovsky space case: D = 4, Ns = 3.
The equation for Φ(x) in general case
(- ∂ξ2+ ξ2 ±D)Φ(ξ) = 0,
were ξ2 = xμ/l0, i.e. α = ± 1/2l02
Sign (±) corresponds to U2(ξ) = exp(±ξ2)
This equation coincide with the self-reciprocal M.Born’s equation in
the general case of Ns space dimensions
(- ∂ξ2+ ξ2)Ψ(ξ) = λBΨ(ξ)
For the case B N s 1
In the Minkovski space case:
(- ∂ξ2+ ξ2 ±4)Φ(ξ) = 0.
For the Gaussian-like metric gμν = exp(±ξ2) ημν correspondingly.
The geodesic equation
d 2 x
dx
dx
0
2
ds
ds ds
2
g
U
( x) can be presented in the form
in the case of metric
d 2 dx 1
2
U
U
0
2
ds
ds 2U 1
ds
U
dx
dx
Using
2
cUd
we can write
1 d U 2 dx d 2 x
c 2
2
U
0
2
2
2
2U d d
d
2U
x2
In the case U ( x) exp :
2l
0
1 d x 2 dx d 2 x c 2
2
2 x 0
2
l0 d d
d
l0
Under condition x 2 const, the geodesic line belongs to the
hyperboloid. In this case:
d x2
dx
2x
0
d
d
The geodesic equation under this condition transforms in
d 2 x c2
2 x 0
2
d
l0
The equations coincide (in the case of Minkovski space) with the
SR equations for hyperbolic motion of the probe particle.
Minkovski force f ~ x
Multiplying by x we have
2
2
d x c 2
x 2 2 x 0
d
l0
, ( corresponds to U ( x) e
x2
l02
)
Using the identity
2
2
d x
dx 1 d
2
x 2
(
x
)
2
d
d 2 d
2
We receive under condition x 2 const
2
2
dx c 2
2 ( x const ) 0
d l0
This condition is satisfied for the upper sign (-), i.e. U ( x) e
2
when dx
unparted
2
2
2
с , x l0
hyperboloi d
d
of two sheets
c is the
upper
lower
limit for velocity
x2
One interesting exact solution of M.Born’s equation (discrete
spectrum)
(- ∂ξ2+ ξ2)Ψ(ξ) = λBΨ(ξ)
In Cartesian coordinates
( ) e
02
2
Ns
H n0 ( 0 ) e
k 1
H n ( )
k2
2
H nk ( k )
- are the Hermitian polynomials
B (2n0 1) (2n N s )
Ns
Where n nk , n and nk are the natural numbers in the case
0
k 1
under consideration
B ( N s 1)
Now we have the following conditions
(2n0 + 1) - ( 2n + Ns) = ± (Ns + 1)
The nonzero solutions exists when
(I)
n0 = n - 1 in the case U ( x) exp x 2 /( 2l02 )
(II)
n0 = n + Ns in the case U ( x) exp x 2 /( 2l02 )
In the case I (II) states with n0 – n = -1 (n0 – n = Ns) we have infinite
degeneracy. In the case of Minkovski space the condition I
remain unchanged, condition II becomes the form n0 = n + 3
2
g
exp(
x
)
Einstein tensor G for metric
1
2
G 6 2 x x x , 2
l0
Energy-momentum tensor
C 4
T
6 2 x x x 2
8G
2 4
3
С
Minkovski force density f T: f
x
2G
Energy density
3C 4 2C 4
T00
3x02 r 2
4G
8G
Thank You for Your
attention!
© Copyright 2026 Paperzz