Chapter 6: Modeling Random Events: Normal and Binomial Models InChapters2and3,weexploredtheideaofadistributionfromasampleofdata,which tellsusthevaluesinthesampleandtheirfrequency.Fornumericalvariables,weused histograms,dotplotsorstemplotstovisualizethedistribution,andwelearnedhowto describethedistributionintermsofshape,center,andspread.Nowweturnourattention todistributionsofrandomvariables,whichtellusthepossiblevalues(outcomes)ofan experimentandtheirprobability. 6.1: Probability Distributions are Models of Random Experiments Arandomvariableisanumericalvariablethatassumesvaluesassociatedwiththe randomoutcomesofanexperiment.Randomvariablesmaybeeitherdiscreteor continuous.Discreterandomvariablescanassumevaluesthatyoucanlistorcount. Continuousrandomvariablesmaytakeonanyrealnumberinsomerangeorinterval. Thedifferencebetweencontinuousanddiscreteisanalogoustothedifferencebetween buyingcoffeebythecuporbythepound.Forexample,youmightaskabaristafortwocups ofcoffee(oneforyouandoneforafriend).Thenumberofcupsofcoffeeisadiscrete randomvariable.Itwouldnotmakesensetoaskfor1.64cupsofcoffee.Butifyouare buyingcoffeebeans,thecoffeeisweighedandyoumightendupwithanumberlike1.64 pounds.Thenumberofpoundsofcoffeeisacontinuousrandomvariable. Ex1: Determinewhethereachofthefollowingrandomvariablesisdiscreteor continuous. a. Shoesizeofaperson b. Weightofaperson c. Lengthofyourlastphonecall d. Numberoftextsyousenttoday e. PercentofyesterdayspentwatchingTV Aprobabilitydistribution,alsoknownasaprobabilitydistributionfunction,tellsusall thepossibleoutcomesforarandomvariable,andtheprobabilitiesassociatedwiththose outcomes. Allprobabilitydistributionsmustmeettworequirements.Wewillassumexisarandom variablewithprobabilitydistributionfunctionp(x). 1. 2. Foranyx,p(x) 0. Thetotaloftheprobabilitiesforallpossibleoutcomesisequalto1. 1 Discrete Probability Distributions: Theprobabilitydistributionofadiscreterandomvariablecanbegivenasagraph,table,or formula. Ex2: Considertheexperimentofflippingacointhreetimesandlettherandomvariable representthenumberofheadsrecorded. a. Findaprobabilitydistributionforthisexperimentintableform.Thengraphthe distributionasastickgraphandasahistogram. Samplespace: x p(x) b. Find 1 ,thatis,theprobabilityofgettingatleastoneheads. c. Findandinterpretp(2). Ex3: Amicrochipmanufacturerknowsthat,basedonqualitycontrolstudies,two microchipsoutofeverylotof100chipsproducedwillbedefective.Supposethat onemicrochipisrandomlyselectedfromeachoftworandomlotsof100.Letxbe thetotalnumberofdefectivechipsselected. a. Findaprobabilitydistributionforthisexperimentintableform. x p(x) b. Verifythatthetablemeetsbothrequirementsforaprobabilitydistribution. 2 Continuous Probability Distributions: Acontinuousrandomvariable hasaprobabilitydistributionthatisasmoothcurve(as opposedtoastickgraphorhistogramwithbars).Thecurveiscalledaprobabilitydensity function.Probabilitiesarerepresentedasareasunderthiscurve.Thismeansthatthetotal areaunderthecurvemustbeequalto1. Thereisnoareaunderthecurveatasinglepoint,say .So, 0.Thismeans thatthereisnoprobabilityofobtainingaspecificvalue inacontinuousprobability distribution,wehavetotalkabouttheprobabilityofobtainingsome inarangeofvalues. TheareaAunderthecurvebetweenthetwopoints and istheprobabilitythat assumesavaluebetween and ( .Also,since 0,this meansthat isthesameas (itmakesnodifferenceifyousee or .) The Uniform Distribution: Continuousrandomvariablesthathaveequallylikelyoutcomesovertheirrangeofpossible valuespossessauniformprobabilitydistribution.Thefunctionthatrepresentsthe probabilitydistributionisaconstantfunction. Ex4: ConsiderthespinningwheelfromthegameshowWheelofFortune.Wecan simulatespinningthewheelbyimaginingthatthewheelitselfisfixedandthesmall arrowindicatingthefinalwheelpositionspinsaroundthewheelandhasanequally likelychanceoflandinginanypositionbetween0°and360°.(Assume0°isatthe topofthewheelandxismeasuredclockwise.) Density 1/360 x ArrowPosition(Degrees) Theprobabilitydensityfunctionisshownnexttothewheel.Theprobabilitydensity curveisaconstantfunction(horizontalline)at1/360. a. Findthetotalareaunderthedensitycurve. b. Findaprobabilitythatx=90°. 3 c. SupposetheBankruptsectionoccupiestheportionofthewheelbetween285° and300°.FindtheprobabilityofspinningBankrupt.Showthisprobabilityasan areaunderthedensitycurve. Density 1/360 x ArrowPosition(Degrees) d. Thefoursegmentsbetweenandincludingthetwo$900slotscorrespondto valuesofxbetween225°and285°.The$5000sectoroccupiestheportionofthe wheelbetween90°and105°.Findtheprobabilitythataspinlandsineitherone oftheseregions.Showthisprobabilityasanareaunderthedensitycurve. Density 1/360 ArrowPosition(Degrees) x 4 6.2: The Normal Model Nowwewillinvestigatethemostwidelyusedprobabilitymodelforcontinuousrandom variables.Manynumericalvariablesinrealexperimentshavedistributionsforwhichthis particulardensitycurveprovidesaveryclosefit. Ex5: FromtheLinkspage,gototheRossman/ChancesiteandloadtheOneProportion simulation.Makesureprobabilityofheadsis0.5,animationisoff,andselect proportionofheads. a. Runthesimulation100timeswith10tosses.Describethedistribution. b. Runthesimulation10,000timeswith50tosses.Describethedistribution. c. TurnonSummaryStats.Runthesimulation100,000timeswith100tosses. Describethedistribution. WeobserveinExample5thatasweincreasethenumberoftosses,thedistributionstarts tolooklesslikeaseriesofseparatebarsandfillsin,morelikeasolidarea.Also,theshape ofthedistributionlookslessjaggedandmorelikeasmooth,unimodalsymmetriccurve. WhatweareseeingisanapproximationoftheNormaldistribution,sometimesreferred toasthebellcurve. Ourexperimentshowsameanof x 0.5 andstandarddeviationof s 0.05 .Forthe correspondingNormaldistribution,wewouldusetheGreeklettersμandσ.TheNormal distributionwithameanof 0.5 andstandarddeviation 0.05 isdenotedas N 0.5,0.05 .Hereisagraphofthedensitycurve. Density Proportionofheads 100flips 5 Ex6: Supposeweflipacoin100times.UsetheN(0.5,0.05)Normaldistributionto representtheprobabilitythat: a. theproportionofheadswouldbebetween0.45and0.5. b. theproportionofheadswouldbegreaterthan0.55. Ex7: A1992study(https://www.ncbi.nlm.nih.gov/pubmed/1302471)showedthat normalbodytemperatures(indegreesFahrenheit)forpeopleaged18‐40are approximatelyNormallydistributedwithmeanμ=98.2andstandarddeviation σ=0.73.Supposeweselectarandompersoninthisagebracket.UseMinitabtofind theprobabilitythattheirbodytemperaturewillbebetween98.2and98.6. OpenMinitab.Type98.2and98.6intothefirsttwocellsincolumnC1. SelectCalc,ProbabilityDistributions,Normal.ChooseCumulativeprobability,and enterthemeanandstandarddeviation.SelectInputcolumnandenterC1,thenC2for Optionalstorage.ClickOK. SubtractthevaluesnowshowninC2. TheexactshapeoftheNormaldistributionisdeterminedbythemeanμ(whereitis centered)andstandarddeviationσ(howwideandtallitis),andisgivenbythefollowing equation(whichyoudonotneedtomemorize): N(μ,σ): p ( x) 2 2 1 e ( x ) /(2 ) 2 6 TheNormaldistributionhavingmean 0 andstandarddeviation 1 ,N 0,1 ,iscalled thestandardNormaldistribution.WecanconvertanyNormaldistributiontothestandard Normaldistributionbycomputing ‐scores: z x ThestandardNormaldistributionhasarandomvariablewhichistypicallydenoted (thinkz‐scores).HereisagraphofthestandardNormaldistribution: Distribution Plot Normal, Mean=0, StDev=1 0.4 Density 0.3 0.2 0.1 0.0 -3 -2 -1 0 X z 1 2 3 Finding Probabilities for the Standard Normal Distribution: FindingareasunderthestandardNormalcurverequirescalculusortechnology.However, weuseatabletofindareas(probabilities)underthiscurve.Table2inAppendixAofthe textisonesuchtable.TheonethatIwilluseisfoundonmywebsite(Handoutspage),and isalsolocatedinmyfolderintheQ‐drive.Thefirstcolumngivesyouthefirst2digitsofthe variablez,andthecorrespondingrowgivesyouthethirddigit(onlyaccuratetothe hundredthplace). Ex8: InExample7weweretoldthatnormalbodytemperatures(indegreesFahrenheit) forpeopleaged18‐40areapproximatelyNormallydistributedwithmeanμ=98.2 andstandarddeviationσ=0.73.Supposeweselectarandompersoninthisage bracket. a. Whatistheprobabilitythepersonwillhaveabodytemperaturelessthan 98.2°F?SketchaNormalcurve,labelthehorizontalaxiswithz‐scoresand temperatures,andthenshadethearearepresentingthisvalue. z 7 b. Usethetabletofindtheprobabilitythepersonwillhaveabodytemperatureless than98.6°F.Shadethearearepresentingthisvalue. z c. Findtheprobabilitythepersonwillhaveabodytemperaturemorethan98.6°F. Shadethearearepresentingthisvalue. z d. Whatistheprobabilitythepersonwillhaveabodytemperaturebetween98.2°F and98.6°F?Shadethearearepresentingthisvalue. z e. Whatistheprobabilitythepersonwillhaveabodytemperaturebetween97.5°F and98.9°F?Shadethearearepresentingthisvalue.Isthisnumberfamiliar? z 8 f. Whatistheprobabilitythepersonwillhaveabodytemperaturebelow96.7°For above99.7°F?Shadethearearepresentingthisvalue. z InChapter3wediscussedtheEmpiricalRule,whichcanbeusedwithanydistributionthat isunimodalandsymmetric.ThiscertainlyappliestotheNormaldistribution,onwhichthe ruleisactuallybased. Finding Measurements from Percentiles (Inverse Normal): SometimeswemayneedtousetheNormaldensitycurveinreverse;thatis,tofinda measurement(orz‐score)correspondingtoagivencumulativeprobability.Wecallthis probabilityapercentile. 9 Ex9: Whatz‐scorecorrespondstothe85thpercentile?Inotherwords,whatz‐score captures85%oftheareaunderthestandardNormalcurve(toitsleft)? ShowthisareaonthestandardNormalcurve. z Ex10: Thequantitativeportionofthe2016SATexamhasameanof510andastandard deviationof103.AssumeSATscoresareNormallydistributed. c. UseMinitabtofindthisscore. a. Wouldyouratherhaveascoreatthe10thpercentileor90thpercentile?Why? b. UsethetabletofindtheSATscorecorrespondingtothe90thpercentile. OpenMinitab.Type0.90intothefirstcellincolumnC1. SelectCalc,ProbabilityDistributions,Normal.ChooseInversecumulative probability,andenterthemeanandstandarddeviation.SelectInputcolumnand enterC1,thenC2forOptionalstorage.ClickOK. 10 6.3: The Binomial Model TheNormaldistributionisagoodmodelformanysituationsinvolvingacontinuous randomvariable.Forexperimentsinvolvingadiscreterandomvariable,wherethe outcomeoftheexperimentinvolvesacount,thebinomialprobabilitydistributionis oftenabettermodel. Thebinomialdistributioncanbeusedwhentheexperimentmeetsallofthefollowing conditions: 1. Thereisafixed,predeterminednumberofidenticaltrialsn. 2. Onlytwooutcomesarepossibleineachtrial,whicharesuccess(S)andfailure(F). 3. Theprobabilityofsuccess,p,isthesameineachtrial. 4. Thetrialsareindependent(theoutcomeofonehasnoeffectontheothers). 5. Therandomvariablexisthenumberofsuccessesinntrials. Theshapeofthebinomialdistributionisdeterminedbythevaluesofnandp.Wewilluse thenotationb(n,p,x)torepresentthevalueofthebinomialdistributionwithntrials, probabilityofsuccessp,andxsuccesses.Thevaluesaregivenbytheformula: b(n, p, x) n! p x (1 p ) n x forx=1,2,3,…,n x !(n x)! Thedistributionwillbesymmetricifp=0.5,andskewedwhenp 0.5. However,evenifp 0.5thedistributionbecomesapproximatelysymmetricforlarge valuesofn. Ex11: Whichofthefollowingdefinexasabinomialrandomvariable. a. Iflipacoin20times,andxisthenumberofheadsobserved. b. Iflipacoinuntilatailsisflipped,andxisthenumberofheadsobserved. 11 Ex12: Whichofthefollowingdefinexasabinomialrandomvariable. a. Idraw10cardsatrandomfromadeckofcards(withoutreplacement),andxis thenumberoffacecardsdrawn. b. Idraw13cardsatrandomfromadeckofcards(withreplacement),andxisthe numberofheartsdrawn. NOTE:Replacementisanimportantissuewiththebinomialdistribution,becauseinmany experimentsitallowsustomeetCondition3.However,ifthepopulationsizeisatleast10 timesbiggerthanthesamplesize,thenthedifferencebetweenreplacementornon‐ replacementissmallenoughtobepracticallyinsignificant.InExample12a,thepopulation size(52cards)isnotlargeenoughcomparedtothesamplesize(10cards)forthistobe true,soreplacementisnecessary. Finding Probabilities for the Binomial Distribution: Althoughitisnotterriblydifficulttocalculateb(n,p,x)directlyfromtheformula,wewill mostlyrelyontablesortechnologytodeterminevaluesforthebinomialdistribution.Table 3inAppendixAofthetextisonesuchtable.TheonethatIwilluseisfoundonmywebsite (Handoutspage),andisalsolocatedinmyfolderintheQ‐drive.Inthefirstcolumn,locate theappropriatevalueofnandx.Thenlocatethecorrectcolumntotherightbasedonthe valueofp. Ex13: Findtheprobabilityofobserving7headsifafaircoinisflipped10times. Ex14: Findtheprobabilityofobservingatleast7headsifafaircoinisflipped10times. 12 Ex15: APewResearchstudyin2015foundthatabout60%ofalladultsintheU.S.owna smartphone. a. If100Americanadultswererandomlyselected,howmanyofthemwouldyou expecttoownasmartphone? b. If12Americanadultsarerandomlyselected,whatistheprobabilitythatexactly 5ownasmartphone? c. If12Americanadultsarerandomlyselected,whatistheprobabilitythatno morethan10ownasmartphone? Ex16: UseMinitabtodeterminetheprobabilityforpart(b)ofExample15. OpenMinitab.Type5intothefirstcellincolumnC1. SelectCalc,ProbabilityDistributions,Binomial.ChooseProbability,andenter12for theNumberofTrialsand0.60forEventprobability.SelectInputcolumnandenterC1, thenC2forOptionalstorage.ClickOK. Ex17: UseMinitabtodeterminetheprobabilityforpart(c)ofExample15. OpenMinitab.Type10intothefirstcellincolumnC1. SelectCalc,ProbabilityDistributions,Binomial.ChooseCumulativeprobability,and enter12fortheNumberofTrialsand0.60forEventprobability.SelectInputcolumn andenterC1,thenC2forOptionalstorage.ClickOK. 13 Ex18: InExample15,theactualpercentagewas64%.Usetheformulafindtheprobability thatexactly5outof12randomlyselectedAmericanadultsownasmartphone. Center and Spread for the Binomial Distribution: Themeanandstandarddeviationforabinomialdistributioncanbecalculatedusingsome simpleformulas: Mean: np Standarddeviation: np(1 p) (1 p) Themeanofanyprobabilitydistributionisreferredtoastheexpectedvalue.Because mostoutcomeswillliewithinonestandarddeviationofthemean,weoftensayweexpecta valueof . Ex19: TheoddsinwinningacashprizeinDiamondsScratchers,aCalifornialotterygame, is1in8.51.Supposeyoubuy100tickets(at$1each).Considersuccesstomeanthat aticketisawinner(cashprize). a. Doesthisexperimentmeettheconditionsforthebinomialdistribution?Why? b. Findthemeannumberofwinningtickets. c. Findthestandarddeviationforthenumberofwinningtickets. d. Howmanyticketsoutof100shouldyouexpecttobewinners? 14
© Copyright 2026 Paperzz